Research Article

Landau-Type Theorems for Certain Biharmonic Mappings

Ming-Sheng Liu, 1 Zhen-Xing Liu, 1 and Jun-Feng Xu 2

1 School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong 510631, China
2 Department of Mathematics, Wuyi University, Jiangmen, Guangdong 529020, China

Correspondence should be addressed to Ming-Sheng Liu; liumsh@scnu.edu.cn

Received 2 January 2014; Accepted 2 March 2014; Published 27 March 2014

Abstract

Let \(F(\bar{z}) = |\bar{z}|^2 \frac{f(z) + h(z)}{f(z)} \) be a biharmonic mapping of the unit disk \(D \), where \(g \) and \(h \) are harmonic in \(D \). In this paper, the Landau-type theorems for biharmonic mappings of the form \(L(F) \) are provided. Here \(L \) represents the linear complex operator \(L(\bar{z} \frac{\partial}{\partial z} - \frac{\partial}{\partial \bar{z}}) \) defined on the class of complex-valued \(C^1 \) functions in the plane. The results, presented in this paper, improve the related results of earlier authors.

1. Introduction

Suppose that \(f(z) = u(x, y) + iv(x, y), z = x + iy \) is a four times continuously differentiable complex-valued function in a domain \(D \subset C \). If \(f \) satisfies the biharmonic equation \(\Delta(\Delta f) = 0 \), then we call that \(f \) is biharmonic, where \(\Delta \) represents the Laplacian operator:

\[
\Delta = 4 \frac{\partial^2}{\partial z \partial \bar{z}} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.
\]

Biharmonic functions arise in many physical situations, particularly in fluid dynamics and elasticity problems, and have many important applications in engineering (see [1] for details). It is known that a mapping \(F \) is biharmonic in a simply connected domain \(D \) if and only if \(F \) has the following representation:

\[
F(z) = |z|^2 g(z) + h(z),
\]

where \(g(z) \) and \(h(z) \) are complex-valued harmonic functions in \(D \) [1]. Also, it is known that \(g(z) \) and \(h(z) \) can be expressed as

\[
g(z) = g_1(z) + \overline{g_2(z)}, \quad z \in D,
\]

\[
h(z) = h_1(z) + \overline{h_2(z)}, \quad z \in D,
\]

where \(g_1, g_2, k_1, \) and \(k_2 \) are analytic in \(D \) [2, 3].

For a continuously differentiable mapping \(f \) in \(D \), we define

\[
\Lambda_f(z) = \max_{0 \leq \theta \leq 2\pi} \left| f_z(z) + e^{-2i\theta} f_{\bar{z}}(z) \right| = \left| f_z(z) \right| + \left| f_{\bar{z}}(z) \right|,
\]

\[
\lambda_f(z) = \min_{0 \leq \theta \leq 2\pi} \left| f_z(z) + e^{-2i\theta} f_{\bar{z}}(z) \right| = \left| f_z(z) \right| - \left| f_{\bar{z}}(z) \right|.
\]

We use \(J_f \) to denote the Jacobian of \(f \)

\[
J_f(z) = \left| f_z(z) \right|^2 - \left| f_{\bar{z}}(z) \right|^2.
\]

Then \(J_f = \lambda_f / \Lambda_f \) if \(J_f \geq 0 \).

In [4], the authors considered the following differential operator \(L \) defined on the class of complex-valued \(C^1 \) functions:

\[
L = \bar{z} \frac{\partial}{\partial z} - z \frac{\partial}{\partial \bar{z}}.
\]

Evidently, \(L \) is a complex linear operator and satisfies the usual product rule:

\[
L(af + bg) = aL(f) + bL(g),
\]

\[
L(fg) = fL(g) + gL(f),
\]

where \(a \) and \(b \) are complex constants; \(f \) and \(g \) are \(C^1 \) functions. In addition, the operator \(L \) possesses a number of
interesting properties. For instance, it is easy to see that the operator L preserves both harmonicity and biharmonicity. Many other basic properties are stated in [4].

Landau’s theorem states that if f is an analytic function on the unit disk D with $f(0) = f'(0) = 1 = 0$ and $|f(z)| < M$ for $z \in D$, then f is univalent in the disk $D_{r_0} = \{z \in \mathbb{C} : |z| < r_0\}$ with $r_0 = 1/(M + \sqrt{M^2 - 1})$, and $f(D_{r_0})$ contains a disk D_{r_0} with $R_0 = M r_0^2$. This result is sharp, with the extremal function $f(z) = Mz(1 - Mz)/(M - z)$. Recently, many authors considered the Landau-type theorems for harmonic mappings [5–9] and biharmonic mappings [1, 4, 10–13]. Chen et al. [10] obtained the Landau-type theorems for biharmonic mappings of the form $L(f)$ as follows.

Theorem A (see [10]). Let $F(z) = |z|^2 g(z) + h(z)$ be a biharmonic mapping of the unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$ such that $F(0) = h(0) = 0$ and $J_0(0) = 1$, where $g(z)$ and $h(z)$ are harmonic in D. Assume that both $|g(z)|$ and $|h(z)|$ are bounded by M. Then there is a constant ρ_1 ($0 < \rho_1 < 1$) such that $L(F)$ is univalent in D_{ρ_1}, where ρ_1 satisfies the following equation:

$$
\frac{\pi}{4M} - \frac{6M p_1^2}{(1 - \rho_1)^2} - \frac{4M p_1^3}{(1 - \rho_1)^3} = 0,
$$

where $m_1 \approx 6.059$ is the minimum value of the function

$$
\frac{2 - x^2 + (4/\pi) \arctan x}{x(1 - x^2)}, \quad 0 < x < 1.
$$

The minimum is attained at $x_0 = 0.588$. Moreover, the range $L(F)(D_{\rho_1})$ contains a schlicht disk D_{ρ_1}, where

$$
R_1 = \rho_1 \left[\frac{\pi}{4M} - \frac{2M p_1^2}{(1 - \rho_1)^2} - \frac{16M p_1}{(1 - \rho_1)} \arctan p_1 \right].
$$

Theorem B (see [10]). Let $F(z) = |z|^2 g(z) + h(z)$ be a biharmonic mapping in D such that $g(0) = 0$, $J_0(0) = 1$, and $|g(z)| < M$, where $g(z)$ is harmonic in D. Then there is a constant ρ_2 ($0 < \rho_2 < 1$) such that $L(F)$ is univalent in D_{ρ_2}, where ρ_2 satisfies the following equation:

$$
\frac{\pi}{4M} - \frac{48M}{\pi^2 m_1} \arctan p_2 - \frac{2M p_2^3}{(1 - \rho_2)^3} = 0,
$$

where m_1 is defined as in Theorem A. Moreover, $L(F)(D_{\rho_2})$ contains a disk D_{ρ_2} with

$$
R_2 = \rho_2 \left[\frac{\pi}{4M} - \frac{16M}{\pi^2 m_1} \arctan p_1 \right].
$$

However, these results are not sharp. The main object of this paper is to improve Theorems A and B. We get three versions of Landau-type theorems for biharmonic mappings of the form $L(F)$, where F belongs to the class of biharmonic mappings, and Theorems II and 14 improve Theorems A and B. In order to establish our main results, we need to recall the following lemmas.

Lemma 1 (see [6, 14]). Suppose that $f(z)$ is a harmonic mapping of the unit disk D such that $|f(z)| \leq M$ for all D. Then

$$
\Lambda_f(z) = \frac{4M}{\pi (1 - |z|^2)}, \quad z \in D.
$$

The inequality is sharp.

Lemma 2 (see [9, 12, 15]). Suppose that $f(z) = h(z) + \overline{g(z)}$ is a harmonic mapping of the unit disk D such that $|f(z)| \leq M$ for all $z \in D$ with $h(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$. Then $|a_n| \leq M$ and for any $n \geq 1$

$$
|a_n| + |b_n| \leq \frac{4M}{\pi},
$$

These estimates are sharp.

Lemma 3 (see [8, 11]). Suppose that f is a harmonic mapping of D with $f(0) = \lambda_J(0) = 1$. If $\Lambda_f(z) \leq \Lambda_f(0)$ for $z \in D$; then

$$
|a_n| + |b_n| \leq \frac{\Lambda^2 - 1}{n \Lambda}, \quad n = 2, 3, \ldots
$$

These estimates are sharp.

Lemma 4 (see [11]). Suppose that $f(z) = h(z) + \overline{g(z)}$ is a harmonic mapping of the unit disk D such that $|f(z)| \leq M$ for all $z \in D$ with $h(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$. If $|f(0)| = 1$; then $\lambda_f(0) \geq \Lambda_0(M)$, where $M_0 = \pi/2 \sqrt{2^2 - 16} = 1.1296$ and

$$
\Lambda_0(M) = \frac{\sqrt{M^2 - 1 + \sqrt{M^2 + 1}}}{4M}, \quad 1 \leq M \leq M_0.
$$

Lemma 5 (see [13]). Suppose that $f(z) = h(z) + \overline{g(z)}$ is a harmonic mapping of the unit disk D with $h(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$. If f satisfies $|f(z)| \leq M$ for all $z \in D$ and $|f(0)| = 1$, then

$$
\left(\sum_{n=2}^{\infty} (|a_n| + |b_n|)^2 \right)^{1/2} \leq \sqrt{\Lambda^4 - 1} \cdot \lambda_f(0).
$$

Lemma 6. Suppose that $M > 0$, $\Lambda \geq 0$. Then the equation

$$
\varphi(r) = 1 - \frac{12M r^2}{\pi (1 - r^2)} - \frac{8M r^3}{\pi (1 - r^3)} - \frac{\Lambda^2 - 1}{\Lambda} \cdot \frac{2r - r^2}{(1 - r)^2} = 0
$$

has a unique root in $(0, 1)$.

Proof. It is easy to prove that the function φ is continuous and strictly decreasing on $(0, 1)$, $\varphi(0) = 1 > 0$, and $\lim_{r \to 1^-} \varphi(r) = -\infty$. Hence, the assertion follows from the mean value theorem. This completes the proof.
Lemma 7. Suppose that $M_1 > 0$, $M_2 \geq 1$, and $\lambda_0(M_2)$ is defined by (16). Then the equation
\[\frac{12 M r^2}{\pi (1 - r^2)} - \frac{8 M r^3}{\pi (1 - r^3)} - \lambda_0(M_2) \sqrt{M_2^2 - 1} \cdot \left[\frac{2 r \sqrt{4 r^2 + r^4 + 1} + r \sqrt{4 r^4 - 3 r^2 + 4}}{(1 - r^2)^{3/2}} \right] = 0 \] has a unique root in $(0, 1)$.

Lemma 8. Let $M \geq 1$. Then the equation
\[1 - \sqrt{M^4 - 1} \cdot \left[\frac{3 r \sqrt{4 r^2 - 3 r^2 + 4} + 2 r \sqrt{4 r^4 + r^4 + 1}}{(1 - r^2)^{3/2}} \right] = 0 \]
has a unique root in $(0, 1)$.

Lemma 9. For any $z_1 \neq z_2$ in D_r ($0 < r < 1$), we have
\[\int_0^1 |t z_1 + (1 - t) z_2|^2 dt \geq \frac{|z_1|^3 + |z_2|^3}{3(|z_1| + |z_2|)} > 0. \] (21)

2. Main Results

We first establish a new version of the Landau-type theorem for biharmonic mappings on the unit disk D as follows.

Theorem 10. Let $F(z) = |z|^2 g(z) + h(z)$ be a biharmonic mapping of the unit disk D, with $M_F(0) = \lambda_F(0) - 1 = 0$, $|g(z)| \leq M$, and $A_F(z) \leq A$ for $z \in D$, where $M > 0$, $A > 1$. Then $L(F)$ is univalent in the disk D_{r_0}, where r_0 is the unique root in $(0, 1)$ of the equation
\[1 - \frac{12 M r^2}{\pi (1 - r^2)} - \frac{8 M r^3}{\pi (1 - r^3)} - \frac{\Lambda^2 - 1}{\Lambda} \cdot \frac{2 r - r^2}{(1 - r)^2} = 0, \] (22)
and $L(F)(D_{r_0})$ contains a schlicht disk D_{σ_0}, where
\[\sigma_0 = r_0 \left[1 - \frac{\Lambda^2 - 1}{\Lambda} \cdot \frac{r_0}{1 - r_0} - \frac{4 M r_0^2}{\pi (1 - r_0)^2} \right]. \] (23)

Proof. Let $F(z) = |z|^2 g(z) + h(z)$ satisfy the hypothesis of Theorem 10, where
\[g(z) = g_1(z) + \bar{g}(z) = \sum_{n=0}^\infty a_n z^n + \sum_{n=0}^\infty b_n \bar{z}^n, \]
\[h(z) = h_1(z) + \bar{h}(z) = \sum_{n=1}^\infty c_n z^n + \sum_{n=1}^\infty d_n \bar{z}^n \] (24)
are harmonic in D. As L is linear and $L(|z|^2) = 0$, we may set
\[H := L(F) = |z|^2 L(g) + L(h). \] (25)
Then we have
\[H_z = 2|z|^2 g_z + |z|^2 z g_{zz} - z^2 g_z + h_z + z h_z, \]
\[H_\bar{z} = -2|z|^2 g_\bar{z} - |z|^2 \bar{z} g_{\bar{z}z} + z^2 g_{\bar{z}} - h_\bar{z} - z h_\bar{z}. \] (26)
Note that $\lambda_F(0) = ||c_1| - |d_1|| = \lambda_h(0) = 1$; by Lemma 3, we have
\[|c_n| + |d_n| \leq \frac{\Lambda^2 - 1}{n \Lambda}, \quad n = 2, 3, \ldots. \] (27)
Thus, for $z_1 \neq z_2$ in D_r ($0 < r < r_0$), we have
\[|H (z_1) - H (z_2)| \geq \int_{[z_1, z_2]} H_z (z) dz + H_\bar{z} (z) d\bar{z} \]
\[\geq \int_{[z_1, z_2]} h_z (0) dz - h_\bar{z} (0) d\bar{z} - 2 \int_{[z_1, z_2]} |z|^2 (g_z dz - g_\bar{z} d\bar{z}) \]
\[- \int_{[z_1, z_2]} |z|^2 (z g_{zz} dz - \bar{z} g_{\bar{z}\bar{z}} d\bar{z}) \]
\[- \int_{[z_1, z_2]} z h_z dz - z h_\bar{z} d\bar{z} \]
\[- \int_{[z_1, z_2]} z^2 g_z dz - \bar{z}^2 g_\bar{z} d\bar{z} \]
\[- \int_{[z_1, z_2]} (h_z - h_\bar{z} (0)) dz \]
\[- (h_z - h_\bar{z} (0)) d\bar{z}. \] (28)

Let $I_1 = \int_{[z_1, z_2]} h_z (0) dz - h_\bar{z} (0) d\bar{z}$,
\[I_2 = \int_{[z_1, z_2]} |z|^2 (g_z dz - g_\bar{z} d\bar{z}) \]
\[I_3 = \int_{[z_1, z_2]} |z|^2 (z g_{zz} dz - \bar{z} g_{\bar{z}\bar{z}} d\bar{z}) \]
\[I_4 = \int_{[z_1, z_2]} z h_z dz - z h_\bar{z} d\bar{z} \]
\[I_5 = \int_{[z_1, z_2]} z^2 g_z dz - \bar{z}^2 g_\bar{z} d\bar{z} \]
\[I_6 = \int_{[z_1, z_2]} (h_z - h_\bar{z} (0)) dz - (h_z - h_\bar{z} (0)) d\bar{z}. \] (29)
By Lemmas 1, 2, and 3, elementary calculations yield that

\[
I_1 \geq \int_{|z_1,z_2|} \lambda_h(0) |dz| = \lambda_h(0) |z_1 - z_2| = |z_1 - z_2|,
\]

\[
I_2 \leq \int_{|z_1,z_2|} |z|^2 \left(|g_1| |dz| + |g_2| |d\bar{z}| \right)
\leq r^2 |z_1 - z_2| \Lambda g(z) \leq |z_1 - z_2| \frac{4Mr^2}{\pi (1 - r^2)},
\]

\[
I_3 \leq |z_1 - z_2| \sum_{n=2}^{\infty} n (n - 1) (|a_n| + |b_n|) r^{n+1}
\leq |z_1 - z_2| \frac{8Mr^3}{\pi (1 - r)^3},
\]

\[
I_4 \leq |z_1 - z_2| \sum_{n=2}^{\infty} n (n - 1) (|c_n| + |d_n|) r^{n-1}
\leq |z_1 - z_2| \frac{\Lambda^2 - 1}{\Lambda} \cdot \frac{r}{1 - r},
\]

\[
I_5 \leq \int_{|z_1,z_2|} \left(|z|^2 |g_1| |dz| + |\bar{z}|^2 |g_2| |d\bar{z}| \right)
\leq r^2 |z_1 - z_2| \Lambda g(z) \leq |z_1 - z_2| \frac{4Mr^2}{\pi (1 - r^2)},
\]

\[
I_6 \leq |z_1 - z_2| \sum_{n=2}^{\infty} n (|c_n| + |d_n|) r^{n-1}
\leq |z_1 - z_2| \frac{\Lambda^2 - 1}{\Lambda} \cdot \frac{r}{1 - r},
\]

Using these estimates and Lemma 6, we obtain

\[
|H(z_1) - H(z_2)|
\geq I_1 - 2I_2 - I_3 - I_4 - I_5 - I_6
\geq |z_1 - z_2| \left[1 - \frac{12Mr^2}{\pi (1 - r^2)} - \frac{8Mr^3}{\pi (1 - r)^3} - \frac{\Lambda^2 - 1}{\Lambda} \cdot \frac{2r - r^2}{(1 - r)^2} \right] > 0,
\]

which implies \(H(z_1) \neq H(z_2)\).

For any \(z\) such that \(z \in \partial \mathcal{D}_{r_3}\) by Lemmas 2, 4, and 5, we obtain

\[
|H(z)| = |z|^2 (zg_z - \bar{z}g_{\bar{z}}) + (zh_z - \bar{z}h_{\bar{z}})
\geq |zh_z(0) - \bar{z}h_{\bar{z}}(0)|
\geq r_0 \left[1 - \frac{\Lambda^2 - 1}{\Lambda} \cdot \frac{r_0}{1 - r_0} - \frac{4Mr_r^2}{\pi (1 - r_0^2)} \right] = \sigma_0.
\]

This completes the proof.

Next we improve Theorem A as follows.

Theorem 11. Let \(F(z) = |z|^2 g(z) + h(z)\) be a biharmonic mapping of the unit disk \(\mathcal{D}\), with \(F(0) = h(0) = F_{\cdot}(0) = 1, |g(z)| < M_1,\) and \(|h(z)| < M_2\) for \(z \in \mathcal{D}\), where \(M_1 > 0, M_2 > 1,\) then \(L(F)\) is univalent in the disk \(\mathcal{D}_{r_3}\), where \(r_3 = r_3\) is the unique root in \((0, 1)\) of the equation

\[
\lambda_0(M_2) - \frac{12M_1r^2}{\pi (1 - r^2)} - \frac{8Mr^3}{\pi (1 - r)^3} - \lambda_0(M_2) \sqrt{M_2^3 - 1}
\cdot \left[\frac{2r\sqrt{4r^2 + r^4 + 1}}{(1 - r^2)^{5/2}} + \frac{r\sqrt{r^4 - 3r^2 + 4}}{(1 - r^2)^{5/2}} \right] = 0,
\]

and \(L(F)(\mathcal{D}_{r_3})\) contains a schlicht disk \(\mathcal{D}_{\sigma_3}\), where \(\lambda_0(M_2)\) is defined by (16) and

\[
\sigma_3 = r_3 \left[\lambda_0(M_2) - \lambda_0(M_2) \sqrt{M_2^3 - 1} \right]
\cdot \frac{r_3\sqrt{r^4 - 3r^2 + 4}}{(1 - r_3^2)^{5/2}} - \frac{4Mr_3^2}{\pi (1 - r_3)^2}.
\]

Proof. Note that \(J_F(0) = |c_1|^2 + |d_1|^2 = J_h(0) = 1;\) by Lemma 4, we have

\[
\lambda_h(0) \geq \lambda_0(M_2).
\]
We adopt the same method in Theorem 10, for $z_1 \neq z_2$ in $D_\rho(0 < \rho < \rho_3)$; by Lemmas 1, 2, and 5, we get

\[I_1 \geq \int_{[z_1, z_2]} \lambda_h(0) |dz| = \lambda_h(0) |z_1 - z_2|, \]

\[I_2 \leq \int_{[z_1, z_2]} |z|^2 (|g_z| |dz| + |g_t| |d\bar{z}|) \]
\[\leq r^2 |z_1 - z_2| \Lambda g(z) \leq |z_1 - z_2| \frac{4M_1 r^2}{\pi(1 - r^2)}, \]

\[I_3 \leq |z_1 - z_2| \sum_{n=2}^{\infty} n(n-1) (|\alpha_n| + |b_n|) r^{n+1} \]
\[\leq |z_1 - z_2| \frac{8M_1 r^3}{\pi(1 - r^2)}, \]

\[I_4 \leq |z_1 - z_2| \sum_{n=2}^{\infty} n(n-1) (|\alpha_n| + |d_{sn}|) r^{n-1} \]
\[\leq |z_1 - z_2| \left(\sum_{n=2}^{\infty} (|\alpha_n| + |d_{sn}|)^2 \right)^{1/2} \]
\[\cdot \left(\sum_{n=2}^{\infty} n^2 r^{2(n-1)} \right)^{1/2}, \]

\[I_5 \leq \int_{[z_1, z_2]} (|z|^2 |g_z| |dz| + |\bar{z}|^2 |g_t| |d\bar{z}|) \]
\[\leq r^2 |z_1 - z_2| \Lambda g(z) \leq |z_1 - z_2| \frac{4M_1 r^2}{\pi(1 - r^2)}, \]

\[I_6 \leq |z_1 - z_2| \sum_{n=2}^{\infty} n (|\alpha_n| + |d_{sn}|) r^{n-1} \]
\[\leq |z_1 - z_2| \left(\sum_{n=2}^{\infty} (|\alpha_n| + |d_{sn}|)^2 \right)^{1/2} \]
\[\cdot \left(\sum_{n=2}^{\infty} n^2 r^{2(n-1)} \right)^{1/2}, \]

\leq |z_1 - z_2| \lambda_h(0) \sqrt{M_2^2 - 1} \cdot \frac{r \sqrt{r^4 - 3r^2 + 4}}{(1 - r^2)^{3/2}}.

Using these estimates and Lemma 7, by (35), we obtain

\[|H(z_1) - H(z_2)| \]
\[\geq |z_1 - z_2| \left(\lambda_h(0) - \frac{12M_1 r^2}{\pi(1 - r^2)} \right) - \frac{8M_1 r^3}{\pi(1 - r^2)} - \lambda_h(0) \sqrt{M_2^2 - 1} \cdot \frac{2r \sqrt{4r^2 + r^4 + 1}}{(1 - r^2)^{3/2}} \]
\[\geq |z_1 - z_2| \left(\lambda_0(M_2) - \frac{12M_1 r^2}{\pi(1 - r^2)} - \frac{8M_1 r^3}{\pi(1 - r^2)} - \lambda_0(M_2) \sqrt{M_2^2 - 1} \cdot \frac{2r \sqrt{4r^2 + r^4 + 1}}{(1 - r^2)^{3/2}} \right) > 0, \]

which implies $H(z_1) \neq H(z_2)$.

For any z such that $z \in \partial D_{r_3}$, by (35) and Lemmas 2 and 5, we obtain

\[|H(z)| \geq r_3 \left[\lambda_h(0) - \sum_{n=2}^{\infty} (|\alpha_n| + |d_{sn}|) r_n^{n-1} \right. \]
\[\left. - \sum_{n=1}^{\infty} (|\alpha_n| + |b_n|) r_3^{n+1} \right] \]
\[\geq r_3 \left[\lambda_h(0) - \lambda_h(0) \sqrt{M_2^2 - 1} \cdot \frac{r_3 \sqrt{r^2 - 3r^2 + 4}}{(1 - r_3)^{3/2}} \right. \]
\[\left. - \frac{4M_1 r_3^2}{\pi(1 - r_3)^2} \right] \]
\[\geq r_3 \left[\lambda_0(M_2) - \lambda_0(M_2) \sqrt{M_2^2 - 1} \cdot \frac{r_3 \sqrt{r^2 - 3r^2 + 4}}{(1 - r_3)^{3/2}} \right. \]
\[\left. - \frac{4M_1 r_3^2}{\pi(1 - r_3)^2} \right] = \sigma_3. \]

This completes the proof. \(\square\)

Setting $M_1 = M_2 = M$ in Theorem 11, we have the following corollary.

Corollary 12. Let $F(z) = |z|^2 g(z) + h(z)$ be a biharmonic mapping of the unit disk D, with $F(0) = h(0) = F'(0) - 1 = 0$, and both $g(z)$ and $h(z)$ are bounded by M. Then $L(F)$ is
univalent in the disk \(D_{r_1} \), where \(r_1 \) is the minimum root of the equation
\[
\lambda_0(M) - \frac{12Mr_2}{\pi(1-r_2^3)} - \frac{8Mr_3^3 - \lambda_0(M)\sqrt{M^4-1}}{\pi(1-r_1^3)} = 0,
\]
and \(L(F)(D_{r_1}) \) contains a schlicht disk \(D_{s_1} \), where
\[
\sigma_1 = r_1 \left[\lambda_0(M) - \lambda_0(M)\sqrt{M^4 - 1} \right]
\]
\[
\cdot \frac{r_1\sqrt{r_1^4 - 3r_1^2 + 4} - 4Mr_1^2}{\pi(1-r_1^3)^{3/2}}.
\]

In order to show Corollary 12 improves Theorem A, we use Mathematica to compute the approximate values for various choices of \(M \) as in Table 1.

Remark 13. From Table 1 we can see, for the same \(M \),
\[
r_2 > \rho_2, \quad \sigma_2 > R_2.
\]
Finally we improve Theorems B as follows.

Theorem 14. Let \(F(z) = |z|^2g(z) \) be a biharmonic mapping in \(\mathbb{D} \) such that \(g(0) = 0 \), \(f(0) = 1 \) and \(|g(z)| < M \), where \(M \geq 1 \) and \(g(z) \) is harmonic in \(\mathbb{D} \). Then \(L(F) \) is univalent in the disk \(D_{r_2} \), where \(r_2 \) is the minimum positive root in \((0,1) \) of the following equation:
\[
1 - \sqrt{M^4 - 1} \cdot \frac{3r\sqrt{r_1^4 - 3r_1^2 + 4} + 2\sqrt{r_1^4 + 4r_3^2 + 4}}{(1-r_2^3)^{3/2}} = 0,
\]
and \(L(F)(D_{r_2}) \) contains a schlicht disk \(D_{s_2} \), with
\[
\sigma_2 = r_2^3\lambda_0(M) \left[1 - \sqrt{M^4 - 1} \cdot \frac{r_2\sqrt{r_2^4 - 3r_2^2 + 4}}{(1-r_2^3)^{3/2}} \right],
\]
where \(\lambda_0(M) \) is defined by (16).

Proof. Let
\[
g(z) = g_1(z) + \overline{g_2}(z) = \sum_{n=1}^{\infty} a_nz^n + \sum_{n=1}^{\infty} b_n\overline{z}^n.
\]

Let \(H(z) := L(F) = |z|^2L(g) \); then we have
\[
H_z = 2|z|^2g_z - \overline{z}^2g + |z|^2g_{zz},
\]
\[
H_{\overline{z}} = -2|z|^2g_{\overline{z}} + z^2g_{\overline{z}} - \overline{z}|z|^2g_{\overline{zz}}.
\]
Table 1: The values of r_1, σ_1 are in Corollary 12. The values of ρ_1, R_1 are in Theorem A.

<table>
<thead>
<tr>
<th></th>
<th>$M = 1$</th>
<th>$M = 2$</th>
<th>$M = 3$</th>
<th>$M = 4$</th>
<th>$M = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_1</td>
<td>0.0527621</td>
<td>0.0139445</td>
<td>0.00626165</td>
<td>0.00353488</td>
<td>0.0022661</td>
</tr>
<tr>
<td>r_1</td>
<td>0.357671</td>
<td>0.0593158</td>
<td>0.0269865</td>
<td>0.015355</td>
<td>0.00988556</td>
</tr>
<tr>
<td>R_1</td>
<td>0.013793</td>
<td>0.00164514</td>
<td>0.00048245</td>
<td>0.00020277</td>
<td>0.00010364</td>
</tr>
<tr>
<td>σ_1</td>
<td>0.216467</td>
<td>0.019479</td>
<td>0.00357231</td>
<td>0.00151701</td>
<td>0.00077955</td>
</tr>
</tbody>
</table>

Table 2: The values of r_2, σ_2 are in Theorem 14. The values of ρ_2, R_2 are in Theorem B.

<table>
<thead>
<tr>
<th></th>
<th>$M = 2$</th>
<th>$M = 3$</th>
<th>$M = 4$</th>
<th>$M = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_2</td>
<td>0.00623234</td>
<td>0.00277176</td>
<td>0.00153948</td>
<td>0.00099817</td>
</tr>
<tr>
<td>r_2</td>
<td>0.032209</td>
<td>0.0139701</td>
<td>0.00782686</td>
<td>0.000500376</td>
</tr>
<tr>
<td>R_2</td>
<td>6.54254 × 10^{-8}</td>
<td>3.83564 × 10^{-9}</td>
<td>5.12297 × 10^{-10}</td>
<td>1.07466 × 10^{-10}</td>
</tr>
<tr>
<td>σ_2</td>
<td>9.84416 × 10^{-6}</td>
<td>5.35363 × 10^{-7}</td>
<td>7.06092 × 10^{-8}</td>
<td>1.47596 × 10^{-8}</td>
</tr>
</tbody>
</table>

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The work was financially supported by Foundation for Distinguished Young Talents in Higher Education of Guangdong China (no. 2013LYM0093) and Training plan for the Outstanding Young Teachers in Higher Education of Guangdong (no. Yq2013159). The authors are grateful to the anonymous referees for making many suggestions that improved the readability of this paper.

References

Submit your manuscripts at http://www.hindawi.com