Research Article

A New Impulsive Multi-Orders Fractional Differential Equation Involving Multipoint Fractional Integral Boundary Conditions

Guotao Wang,¹ Sanyang Liu,¹ Dumitru Baleanu,²,³,⁴ and Lihong Zhang⁵

¹ Department of Applied Mathematics, Xidian University, Xian, Shaanxi 710071, China
² Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
³ Department of Mathematics and Computer Science, Çankaya University, 06530 Ankara, Turkey
⁴ Institute of Space Sciences, P.O. Box MG-23, 76900 Magurele-Bucharest, Romania
⁵ School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi 041004, China

Correspondence should be addressed to Guotao Wang; wgt2512@163.com and Sanyang Liu; liusanyang@126.com

Received 6 April 2014; Accepted 24 May 2014; Published 16 June 2014

Academic Editor: J. C. Prajapati

Copyright © 2014 Guotao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new impulsive multi-orders fractional differential equation is studied. The existence and uniqueness results are obtained for a nonlinear problem with fractional integral boundary conditions by applying standard fixed point theorems. An example for the illustration of the main result is presented.

1. Introduction

Nowadays, fractional differential equations have attracted a lot of attention due to its wide range of applications in many practical problems such as in physics, engineering, economics, and so on; see [1–5].

Impulsive differential equations have extensively been studied in the past two decades. Indeed impulsive differential equations are used to describe the dynamics of processes in which sudden, discontinuous jumps occur. Such processes are naturally seen in harvesting, earthquakes, diseases, and so forth. Recently, fractional impulsive differential equations have attracted the attention of many researchers. For the general theory and applications of such equations we refer the interested reader to see [6–24] and the references therein.

In this paper, we investigate a new impulsive nonlinear differential equation involving multi-orders fractional derivatives and deviating argument. Precisely, we consider the following multipoint fractional integral boundary value problem:

\[C^\alpha_k \mathcal{D}_{t_k}^\nu u(t) = f(t, u(t), u(\theta(t))), \quad 1 < \alpha_k \leq 2, \]

\[k = 0, 1, 2, \ldots, p, \quad t \in J', \]

\[\Delta u(t_k) = I_{k}^\beta u(t_k), \quad \Delta u'(t_k) = I_{k}^\beta u(t_k), \quad k = 1, 2, \ldots, p, \tag{1} \]

\[u(0) = \sum_{k=0}^{p} \lambda_k \mathcal{J}_{t_k}^\beta u(\eta_k), \quad u'(0) = 0, \quad t_k < \eta_k < t_{k+1}, \]

where \(C^\alpha_k \mathcal{D}_{t_k}^\nu \) is the Caputo fractional derivative of order \(\alpha_k \) and \(\mathcal{J}_{t_k}^\beta \) is fractional Riemann-Liouville integral of order \(\beta_k > 0 \), \(f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}) \), \(I_k \in C(\mathbb{R}, \mathbb{R}) \), \(\theta \in C(J, J) \), \(J = [0, T] \) \((T > 0)\), \(0 = t_0 < t_1 < \cdots < t_k < \cdots < t_p < t_{p+1} = T \), \(J' = J/t_1, t_2, \ldots, t_p \), and \(\Delta u(t_k) = u(t_{k+1}) - u(t_k) \), where \(u(t_k) \) and \(u(t_{k+1}) \) denote the right and the left limits of \(u(t) \) at \(t = t_k \) \((k = 1, 2, \ldots, p)\), respectively. \(\Delta u'(t_k) \) have a similar meaning for \(u'(t) \).

The paper is organized as follows. Section 2 gives some definitions and necessary lemmas, while the main results are presented in Section 3.
2. Preliminaries

Let us fix $J_0 = [0, t_1]$, $J_{k-1} = (t_{k-1}, t_k]$, and $k = 1, 2, \ldots, p + 1$ with $t_{p+1} = T$ and introduce a Banach space:

$$PC(J, \mathbb{R}) = \{ u: J \rightarrow \mathbb{R} | u \in C(J_k), k = 0, 1, \ldots, p, \}$$

with the norm $\|u\| = \sup_{t \in J} |u(t)|$.

For the reader's convenience, we present some necessary definitions from fractional calculus theory and lemmas.

Definition 1. The Riemann-Liouville fractional integral of order α for a function $f: [d, \infty) \rightarrow \mathbb{R}$ is defined as

$$I_0^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_d^t (t-s)^{\alpha-1} f(s) \, ds, \quad \alpha > 0,$$

provided the integral exists.

Definition 2. The Caputo fractional derivative of order α for a function $f: [d, \infty) \rightarrow \mathbb{R}$ is defined by

$$D_0^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_d^t (t-s)^{n-\alpha-1} f^{(n)}(s) \, ds,$$

$$n = [\alpha] + 1,$$

where $[\alpha]$ denotes the integer part of real number α.

Lemma 3. For a given $y \in C[0,T]$, a function u is a solution of the following impulsive boundary value problem:

$$D_{t_k}^{\beta_k} u(t) = y(t), \quad 1 < \alpha_k \leq 2, \quad k = 0, 1, 2, \ldots, p, \quad t \in J'_k,$$

$$\Delta u(t_k) = I_k(u(t_k)), \quad \Delta u'(t_k) = I_k^*(u(t_k)),$$

$$k = 1, 2, \ldots, p,$$

$$u(0) = \sum_{k=0}^{p} \lambda_k J_0^{\beta_k} f(\eta_k), \quad u'(0) = 0,$$

if and only if u is a solution of the impulsive fractional integral equation

$$\begin{align*}
&\frac{1}{\Gamma(\alpha_0)} \int_0^t (t-s)^{\alpha_0-1} y(s) \, ds + \mathcal{A}, \quad t \in J_0; \\
&\frac{1}{\Gamma(\alpha_k)} \int_{t_k}^t (t-s)^{\alpha_k-1} y(s) \, ds \\
&+ \sum_{i=1}^{k-1} \left[\int_{t_{i-1}}^{t_i} (t-s)^{\alpha_{i-1}-1} y(s) \, ds + I^*_1(u(t_i)) \right] \\
&+ \sum_{i=1}^{k} (t_k - t_i) \left[\int_{t_{i-1}}^{t_i} \frac{(t-s)^{\alpha_{i-2}}}{\Gamma(\alpha_{i-1}-1)} y(s) \, ds \\
&+ I^*_1(u(t_i)) \right]
\end{align*}$$

where

$$\mathcal{A} = \left(1 - \sum_{k=0}^{p} \frac{\sum_{i=1}^{k} \lambda_k \eta_{k-i}^{\beta_k} \Gamma(\beta_k + 1)}{\Gamma(\beta_k + 1)} \right)^{-1} \times \left\{ \sum_{k=0}^{p} \lambda_k \int_{t_k}^{\eta_k} \frac{(\eta_k - s)^{\alpha_k + \beta_k - 1}}{\Gamma(\alpha_k + \beta_k)} y(s) \, ds \\
+ \sum_{i=1}^{k} \frac{\lambda_k (\eta_k - t_k)^{\beta_k}}{\Gamma(\beta_k + 1)} \times \left[\int_{t_{i-1}}^{t_i} \frac{(t-s)^{\alpha_{i-1}-1}}{\Gamma(\alpha_{i-1})} y(s) \, ds + I^*_1(u(t_i)) \right] \\
+ \sum_{i=1}^{k-1} \frac{\lambda_k (\eta_k - t_k)^{\beta_k} (t_k - t_i)}{\Gamma(\beta_k + 1)} \times \left[\int_{t_{i-1}}^{t_i} \frac{(t-s)^{\alpha_{i-2}}}{\Gamma(\alpha_{i-1}-1)} y(s) \, ds + I^*_1(u(t_i)) \right] \\
+ \sum_{i=1}^{k} \frac{\lambda_k (\eta_k - t_k)^{\beta_k+1}}{\Gamma(\beta_k + 2)} \times \left[\int_{t_{i-1}}^{t_i} \frac{(t-s)^{\alpha_{i-2}}}{\Gamma(\alpha_{i-1}-1)} y(s) \, ds + I^*_1(u(t_i)) \right]\right\}.$$

Proof. Let u be a solution of (5). For any $t \in J_0$, we have

$$u(t) = \frac{1}{\Gamma(\alpha_0)} \int_0^t (t-s)^{\alpha_0-1} y(s) \, ds - c_1 - c_2 t,$$

$$t \in J_0.$$
for some \(c_1, c_2 \in \mathbb{R}\). Differentiating (8), we get

\[
\begin{align*}
 u'(t) &= \frac{1}{\Gamma(\alpha_0 - 1)} \int_0^t (t - s)^{\alpha_0 - 2} \frac{d}{ds} y(s) ds - c_1, \quad t \in I_0. \\
 u(t) &= \frac{1}{\Gamma(\alpha_0 - 1)} \int_{I_0} (t - s)^{\alpha_0 - 1} y(s) ds - d_1 - d_2 (t - t_1), \\
 u'(t) &= \frac{1}{\Gamma(\alpha_0 - 1)} \int_{I_0} (t - s)^{\alpha_0 - 2} y(s) ds - d_2, \\
 u'(t) &= -d_1, \\
 u'(t) &= -d_2.
\end{align*}
\]

Using the impulse conditions

\[
\Delta u(t_i) = u(t_i^+) - u(t_i^-) = I_1(u(t_i)), \\
\Delta u'(t_i) = u'(t_i^+) - u'(t_i^-) = I_1^*(u(t_i)),
\]
we find that

\[
\begin{align*}
 -d_1 &= \frac{1}{\Gamma(\alpha_0)} \int_0^{t_1} (t_1 - s)^{\alpha_0 - 1} \frac{d}{ds} y(s) ds - c_1 - c_2 t_1 + I_1(u(t_1)), \\
 -d_2 &= \frac{1}{\Gamma(\alpha_0 - 1)} \int_0^{t_1} (t_1 - s)^{\alpha_0 - 2} y(s) ds - c_2 + I_1^*(u(t_1)).
\end{align*}
\]

Consequently,

\[
\begin{align*}
 u(t) &= \frac{1}{\Gamma(\alpha_1)} \int_{I_1} (t - s)^{\alpha_1 - 1} \frac{d}{ds} y(s) ds \\
 &\quad + \frac{1}{\Gamma(\alpha_0)} \int_0^{t_1} (t_1 - s)^{\alpha_0 - 1} y(s) ds \\
 &\quad + \frac{t - t_1}{\Gamma(\alpha_0 - 1)} \int_0^{t_1} (t_1 - s)^{\alpha_0 - 2} y(s) ds \\
 &\quad + I_1(u(t_1)) + (t - t_1) I_1^*(u(t_1)) - c_1 - c_2 t_1, \\
 &\quad t \in I_1.
\end{align*}
\]

By a similar process, we can get

\[
\begin{align*}
 u(t) &= \int_{I_k} (t - s)^{\alpha_k - 1} \frac{d}{ds} y(s) ds \\
 &\quad + \sum_{i=1}^{k-1} \left[\int_{I_{i-1}} (t_i - s)^{\alpha_{i-1} - 1} \frac{d}{ds} y(s) ds + I_i(u(t_i)) \right] \\
 &\quad + \sum_{i=1}^k (t_k - t_i) \left[\int_{I_{i-1}} (t_i - s)^{\alpha_{i-1} - 2} \frac{d}{ds} y(s) ds + I_i^*(u(t_i)) \right] \\
 &\quad + \sum_{i=1}^k (t - t_k) \left[\frac{1}{\Gamma(\beta_k + 1)} \int_{I_{i-1}} (t_i - s)^{\alpha_{i-2} - 2} y(s) ds + I_i^*(u(t_i)) \right] \\
 &\quad - \frac{c_i(t_k - t_i)^{\beta_i}}{\Gamma(\beta_k + 1)} \left[\int_{I_{i-1}} (t_i - s)^{\alpha_{i-1} - 2} y(s) ds + I_i(u(t_i)) \right] \\
 &\quad - \frac{c_i(t - t_k)^{\beta_i}}{\Gamma(\beta_k + 1)} \left[\int_{I_{i-1}} (t_i - s)^{\alpha_{i-1} - 2} y(s) ds + I_i^*(u(t_i)) \right], \\
 &\quad t \in I_k, \quad k = 1, 2, \ldots, p.
\end{align*}
\]

The boundary condition \(u'(0) = 0\) implies \(c_2 = 0\). For \(t \in I_1\), we have

\[
\begin{align*}
 \mathcal{J}_{t_k}^{\beta_k} u(t) &= \int_{I_k} (t - s)^{\alpha_k + \beta_k - 1} \frac{d}{ds} y(s) ds \\
 &\quad + \sum_{i=1}^{k-1} \left[\int_{I_{i-1}} (t_i - s)^{\alpha_{i-1} + \beta_{i-1} - 1} y(s) ds + I_i(u(t_i)) \right] \\
 &\quad + \sum_{i=1}^k (t_k - t_i) \left[\int_{I_{i-1}} (t_i - s)^{\alpha_{i-2} + \beta_{i-2} - 2} y(s) ds + I_i^*(u(t_i)) \right] \\
 &\quad + \sum_{i=1}^k (t - t_k) \left[\frac{1}{\Gamma(\beta_k + 1)} \int_{I_{i-1}} (t_i - s)^{\alpha_{i-1} + \beta_{i-1} - 2} y(s) ds + I_i^*(u(t_i)) \right] \\
 &\quad - \frac{c_i(t_k - t_i)^{\beta_i}}{\Gamma(\beta_k + 1)} \left[\int_{I_{i-1}} (t_i - s)^{\alpha_{i-1} + \beta_{i-1} - 2} y(s) ds + I_i^*(u(t_i)) \right] \\
 &\quad - \frac{c_i(t - t_k)^{\beta_i}}{\Gamma(\beta_k + 1)} \left[\int_{I_{i-1}} (t_i - s)^{\alpha_{i-1} + \beta_{i-1} - 2} y(s) ds + I_i^*(u(t_i)) \right] - c_1 - c_2 t_1, \\
 &\quad t \in I_k, \quad k = 1, 2, \ldots, p.
\end{align*}
\]
Abstract and Applied Analysis

\[
\begin{align*}
&\frac{d^\alpha}{dt^\alpha} (t_i-s)^{\alpha_i-1} y(s) ds + I_i (u(t_i)) \\
&+ \sum_{k=1}^{p} \lambda_k (t_k - t_i)^{\beta_i} (t_k - t_i) \\
&\times \left[\frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i^* (u(t_i))}{\Gamma(\alpha_i - 1)} \right] \\
&+ \sum_{k=1}^{p} \frac{\lambda_k (t_k - t_i)^{\beta_i + 1}}{\Gamma(\beta_i + 2)} \\
&\times \left[\frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i^* (u(t_i))}{\Gamma(\alpha_i - 1)} \right].
\end{align*}
\]

(16)

Applying the boundary condition \(u(0) = \sum_{k=0}^{p} \lambda_k f_{\tau_k^\beta} u(t_k)\), then

\[
-c_i = \left(1 - \sum_{k=0}^{p} \frac{\lambda_k (t_k - t_i)^{\beta_i}}{\Gamma(\beta_i + 1)} \right)^{-1}
\]

\[
\times \left[\sum_{k=1}^{p} \frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i+\beta_i-1} y(s) ds}{\Gamma(\alpha_i + \beta_i)} \frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i (u(t_i))}{\Gamma(\alpha_i - 1)} \right] \\
+ \sum_{k=1}^{p} \frac{\lambda_k (t_k - t_i)^{\beta_i}}{\Gamma(\beta_i + 1)} \\
\times \left[\frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i^* (u(t_i))}{\Gamma(\alpha_i - 1)} \right] \\
+ \sum_{k=1}^{p} \frac{\lambda_k (t_k - t_i)^{\beta_i + 1}}{\Gamma(\beta_i + 2)} \\
\times \left[\frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i^* (u(t_i))}{\Gamma(\alpha_i - 1)} \right].
\]

(17)

Substituting the value of \(c_i\) \((i = 1, 2)\) in (8) and (15), we obtain (6). Conversely, assume that \(u\) is a solution of the impulsive fractional integral equation (6); then by a direct computation, it follows that the solution given by (6) satisfies (5). This completes the proof. □

3. Main Results

Define an operator \(\mathcal{S} : PC(J, \mathbb{R}) \rightarrow PC(J, \mathbb{R})\) by

\[
\mathcal{S} u(t) = \int_{t_i}^{t} \frac{(t - s)^{\alpha_i-1}}{\Gamma(\alpha_i - 1)} f(s, u(s), u(\theta(s))) ds \\
+ \sum_{i=1}^{k} \frac{(t_k - t_i)}{\Gamma(\beta_i + 1)} \\
\times \left[\frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i^* (u(t_i))}{\Gamma(\alpha_i - 1)} \right] \\
+ \sum_{i=1}^{k} \frac{\lambda_k (t_k - t_i)^{\beta_i}}{\Gamma(\beta_i + 1)} \\
\times \left[\frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i^* (u(t_i))}{\Gamma(\alpha_i - 1)} \right].
\]

3. Main Results

Define an operator \(\mathcal{S} : PC(J, \mathbb{R}) \rightarrow PC(J, \mathbb{R})\) by

\[
\mathcal{S} u(t) = \int_{t_i}^{t} \frac{(t - s)^{\alpha_i-1}}{\Gamma(\alpha_i - 1)} f(s, u(s), u(\theta(s))) ds \\
+ \sum_{i=1}^{k} \frac{(t_k - t_i)}{\Gamma(\beta_i + 1)} \\
\times \left[\frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i^* (u(t_i))}{\Gamma(\alpha_i - 1)} \right] \\
+ \sum_{i=1}^{k} \frac{\lambda_k (t_k - t_i)^{\beta_i}}{\Gamma(\beta_i + 1)} \\
\times \left[\frac{\int_{t_i}^{t_k} (t_i-s)^{\alpha_i-2} y(s) ds + I_i^* (u(t_i))}{\Gamma(\alpha_i - 1)} \right].
\]
Notice that problem (1) has a solution if and only if the operator \(\mathcal{S} \) has a fixed point.

For convenience, we will give some notations:

\[
T^* = \max_{\alpha \in [0, p]} \{ T^\alpha \}, \quad \Gamma^* = \min_{\alpha \in [0, p]} \{ \Gamma(\alpha) \},
\]

\[
\Lambda_1 = \sum_{k=0}^{p} \frac{\lambda_k T^{\alpha_k + \beta_k}}{\Gamma(\alpha_k + \beta_k + 1)}, \quad \Lambda_2 = \sum_{k=1}^{p} \frac{\lambda_k T^\beta_k}{\Gamma(\beta_k + 1)},
\]

\[
\Lambda_3 = \sum_{k=1}^{p} \frac{\lambda_k T^\beta_k}{\Gamma(\beta_k + 2)} + \Delta \left[\Lambda_1 + \frac{(2p-1)T^* - 1}{\Gamma^*} \Lambda_2 + \frac{pT^* - 1}{\Gamma^*} \Lambda_3 \right],
\]

\[
\mu(\alpha) = \frac{\|x\|}{pL_2 \alpha + \alpha} \left[(p-1)T\Lambda_2 + pT\Lambda_3 \right] L_3.
\]

Theorem 4. Assume the following.

H1 There exists a nonnegative function \(a(t) \in L(0, T) \) such that

\[
|f(t, u, v)| \leq a(t) + \xi_1 |u|^p + \xi_2 |v|^q, \quad 0 < p, q < 1,
\]

where \(\xi_1, \xi_2 \) are nonnegative constants.

H2 There exist positive constants \(L_2 \) and \(L_3 \) such that

\[
|I_k(u)| \leq L_2 \quad \text{and} \quad |I_k^*(u)| \leq L_3 \quad \text{for} \quad t \in J, \quad u \in \mathbb{R}, \quad k = 1, 2, \ldots, p.
\]

Then problem (1) has at least one solution.

Proof. Firstly, we will prove that \(\mathcal{S} : PC(J, \mathbb{R}) \rightarrow PC(J, \mathbb{R}) \) is a completely continuous operator. Obviously, the continuity of functions \(f, I_k, \) and \(I_k^* \) ensures the continuity of operator \(\mathcal{S} \).

Let \(\Omega \subset PC(J, \mathbb{R}) \) be bounded. Then, there exist positive constants \(L_i > 0 \) \((i = 1, 2, 3)\) such that \(|f(t, u)| \leq L_1, \)

\[
|I_k(u)| \leq L_2 \quad \text{and} \quad |I_k^*(u)| \leq L_3 \quad \text{for all} \quad u \in \Omega. \quad \text{Thus, for any} \quad u \in \Omega, \quad \text{we have}
\]

\[
\mathcal{S}u(t) \leq \int_{t_i}^{t} \frac{(t-s)^{\alpha_i-1}}{\Gamma(\alpha_i-1)} f(s, u(s), u(\theta(s))) ds
\]

\[
+ \sum_{i=1}^{k} \int_{t_{i-1}}^{t_i} \frac{(t_i-s)^{\alpha_i-1}}{\Gamma(\alpha_i-1)} f(s, u(s), u(\theta(s))) ds
\]

\[
+ |I_j(u(t_j))| \]
Abstract and Applied Analysis

\[+ \sum_{k=0}^{p-1} \frac{\lambda_k (\eta_k - t_k)^{\beta_k}}{\Gamma (\beta_k + 1)} \]

\[\times \left[\int_{t_{k-1}}^{t_k} (t - s)^{\alpha_k - 2} \left(f(s, u(s), u(\theta(s))) \right) ds \right] \]

\[+ |u'(t_k)| \]
Abstract and Applied Analysis

\[\leq L_1 \int_{t_i}^t (t-s)^\alpha_i^{-2} ds + \sum_{i=1}^p \left[L_1 \int_{t_{i-1}}^{t_i} (t_i-s)^\alpha_i^{-2} ds + L_3 \right] \]

\[\leq L_1 T_{x_k}^{-1} + p \left[L_1 \max_{0 \leq s \leq p} T_{x_k}^{-1} \Gamma(\alpha_i) + L_3 \right] \]

\[\leq (p+1) L_1 T_{x_k}^* + pL_3 := \mathcal{Q} \text{ (constant).} \]

(24)

Hence, for \(t_1, t_2 \in J_k \) with \(t_1 \leq t_2 \) and \(0 \leq k \leq p \), we have

\[|(G u)(t_2) - (G u)(t_1)| \leq \int_{t_1}^{t_2} |(G u)'(s)| ds \leq \mathcal{Q} (t_2 - t_1). \]

(25)

This implies that \(G u \) is equicontinuous on all \(J_k, k = 0, 1, 2, \ldots, p \). Consequently, Arzela-Ascoli theorem ensures the operator \(G : PC(J, \mathbb{R}) \rightarrow PC(J, \mathbb{R}) \) is a completely continuous operator.

Next, we will show that the operator \(G \) maps \(\mathcal{B} \) into \(\mathcal{B} \). For that, let us choose \(R \geq \max\{3\mu, (3Y_1)^{1/(1-\rho)}\}, (3Y_2)^{1/(1-\rho)} \} \) and define a ball \(\mathcal{B} = \{ u \in PC(J, \mathbb{R}) : \| u \| \leq R \} \). For any \(u \in \mathcal{B} \), by the conditions (H1) and (H2), we have

\[|G u(t)| \]

\[\leq \int_{t_k}^t (t-s)^\alpha_i^{-1} \left[a(s) + \xi_1|u(s)|^\rho + \xi_2|u(\theta(s))|^{\gamma} \right] ds \]

\[+ \sum_{i=1}^k \int_{t_{i-1}}^{t_i} (t_i-s)^\alpha_i^{-1} \left[\frac{\lambda_k(\eta_k-t^\rho)\beta_k}{\Gamma(\alpha_k+1)} \right] \times \left[a(s) + \xi_1|u(s)|^\rho + \xi_2|u(\theta(s))|^{\gamma} \right] ds \]

\[+ |I_i^* (u(t_i))| \]

\[+ \sum_{i=1}^{k-1} (t_k-t_i) \left[\frac{\lambda_k(\eta_k-t^\rho)\beta_k}{\Gamma(\alpha_k+1)} \right] \times \left[a(s) + \xi_1|u(s)|^\rho + \xi_2|u(\theta(s))|^{\gamma} \right] ds \]

\[+ |I_i^* (u(t_i))| \]

\[\leq R \left[\| a \| + \xi_1 \| u \|^{\rho} + \xi_2 \| u \|^{\gamma} \right] \left(t-t_k \right)^{\alpha_i} \]

\[+ \sum_{i=1}^k \left[\| a \| + \xi_1 \| u \|^{\rho} + \xi_2 \| u \|^{\gamma} \right] \left(t_i-t_{i-1} \right)^{\alpha_i} \]

\[+ \sum_{i=1}^{k-1} (t_k-t_i) \left[\| a \| + \xi_1 \| u \|^{\rho} + \xi_2 \| u \|^{\gamma} \right] \]

\[\times \left(t_i-t_{i-1} \right)^{\alpha_i} \]

\[\leq L_1 (t-t_k)^{\alpha_i} \]

\[+ \sum_{i=1}^k \left[\| a \| + \xi_1 \| u \|^{\rho} + \xi_2 \| u \|^{\gamma} \right] \left(t_i-t_{i-1} \right)^{\alpha_i} + L_2 \]

\[+ \sum_{i=1}^{k-1} (t_k-t_i) \left[\| a \| + \xi_1 \| u \|^{\rho} + \xi_2 \| u \|^{\gamma} \right] \]

\[\times \left(t_i-t_{i-1} \right)^{\alpha_i} \]
Abstract and Applied Analysis

\[\sum_{i=1}^{k} (t - t_k) \left[\alpha_i - 1 \right] \Gamma(\alpha_i - 1) + L_3 \]
\[+ \Delta \left\{ \left[\|u\| + \xi_1 \|u\|^p + \xi_2 \|u\|^q \right] \times \frac{(t_i - t_{i-1})^{\alpha_i - 1}}{\Gamma(\alpha_i - 1)} + L_3 \right\} \]
\[+ \sum_{k=1}^{p} \frac{k \lambda_k (\eta_k - t_k)^{\beta_k}}{\Gamma(\beta_k + 1)} \]
\[\sum_{k=1}^{p} \frac{k \lambda_k (\eta_k - t_k)^{\beta_k}}{\Gamma(\beta_k + 1)} \times \left[\left[\|u\| + \xi_1 \|u\|^p + \xi_2 \|u\|^q \right] \times \frac{(t_i - t_{i-1})^{\alpha_i - 1}}{\Gamma(\alpha_i - 1)} + L_3 \right] \]
\[+ \sum_{k=1}^{p} \frac{k \lambda_k (\eta_k - t_k)^{\beta_k}}{\Gamma(\beta_k + 1)} \times \left[\left[\|u\| + \xi_1 \|u\|^p + \xi_2 \|u\|^q \right] \times \frac{(t_i - t_{i-1})^{\alpha_i - 1}}{\Gamma(\alpha_i - 1)} + L_3 \right] \]
\[\leq \mu (\alpha) + \mu (\beta) \|u\|^p + \mu (\gamma) \|u\|^q. \]

Thus,
\[\|Su\| \leq \mu (\alpha) + \mu (\beta) \|u\|^p + \mu (\gamma) \|u\|^q. \]

This implies \(G : \mathcal{B} \to \mathcal{B} \). Hence, we conclude that \(G : \mathcal{B} \to \mathcal{B} \) is completely continuous. It follows from the Schauder fixed point theorem that the operator \(G \) has at least one fixed point. That is, problem (1) has at least one solution in \(\mathcal{B} \). \(\square \)

Theorem 5. Suppose that there exist a nonnegative function \(M \in C(J, \mathbb{R}^+) \) and nonnegative constants \(N, K \) such that
\[|f(t, u) - f(t, v)| \leq M(t) |u - v|, \]
\[|I_k(u) - I_k(v)| \leq N |u - v|, \]
\[|I^*_k(u) - I^*_k(v)| \leq K |u - v|, \]

for \(t \in J, u, v \in \mathbb{R} \) and \(k = 1, 2, \ldots, p \). Furthermore, the assumption \(\mu(M) < 1 \) holds. Then problem (1) has a unique solution.

Proof. For \(u, v \in PC(J, \mathbb{R}) \), we have
\[||G(u) - (G \circ v)|| \]
\[\leq \int_{t_k}^{t} \frac{(t - s)^{\alpha_i - 1}}{\Gamma(\alpha_i - 1)} \times \left[\left[\|u\| + \xi_1 \|u\|^p + \xi_2 \|u\|^q \right] \times \frac{(t_i - t_{i-1})^{\alpha_i - 1}}{\Gamma(\alpha_i - 1)} + L_3 \right] \]
\[+ \sum_{k=1}^{p} \frac{k \lambda_k (\eta_k - t_k)^{\beta_k}}{\Gamma(\beta_k + 1)} \times \left[\left[\|u\| + \xi_1 \|u\|^p + \xi_2 \|u\|^q \right] \times \frac{(t_i - t_{i-1})^{\alpha_i - 1}}{\Gamma(\alpha_i - 1)} + L_3 \right] \]
\[\leq \mu (\alpha) + \mu (\beta) \|u\|^p + \mu (\gamma) \|u\|^q. \]

Thus,
\[||G(u) - (G \circ v)|| \leq \mu (\alpha) + \mu (\beta) \|u\|^p + \mu (\gamma) \|u\|^q. \]

(26)

(27)
Example 6. For $\alpha_0 = 5/4, \alpha_1 = 8/5, \beta_0 = 1/2, \beta_1 = 5/3, \lambda_0 = 2/5, \lambda_1 = 3/7, \eta_0 = 1/2, \eta_1 = 4/5, 0 < \rho, \zeta < 1$, and $t_0 = 3/4$, we consider the following impulsive multi-orders fractional differential equation:

$$C_{D^\alpha_1}^{\beta_1} u(t) = \frac{\cos(2t + 5)}{\sqrt{3 + u^2(t)}} |u(t)|^p + \frac{\arctan^2 u(t)}{3} |u(t^3)|^q$$

$$0 < t < 1, \quad t \neq \frac{3}{4}, \quad k = 0, 1,$$

\[\Delta u \left(\frac{3}{4} \right) = 11 \sin^2 u \left(\frac{3}{4} \right), \quad \Delta u' \left(\frac{3}{4} \right) = \frac{|u(3/4)|}{2 (1 + |u(3/4)|)} \]

$$u(0) = \sum_{k=0}^{\infty} \lambda_k \beta_1^k u(\eta_k) + \frac{1}{2} \quad u'(0) = 0.$$

(30)

Observe that

$$|f(t, u, v)| = \left\{ \begin{array}{ll}
\frac{e^t \sin^2 \left[3u + e^{(1/2)u(t)} \right]}{2 + u^4} + \frac{\cos(2t + 5)}{\sqrt{3 + u^2}} |u|^p \\
\frac{\arctan^2 u(t)}{3} |v|^q
\end{array} \right. \leq \frac{e^t}{2} + 3 |u|^p + \frac{\pi}{12} |v|^q. $$

Clearly, $a(t) = e^{t/2}, \xi_1 = 1/\sqrt{3}, \xi_2 = \pi/12, L_3 = 11$, and $L_3 = 1/2$ and the conditions of Theorem 4 hold. Thus, by Theorem 4, the impulsive multi-orders fractional boundary value problem (30) has at least one solution.

Conflict of Interests

The authors declare that they have no conflict of interests.

Authors’ Contribution

All authors have equal contributions.

Acknowledgments

This work is supported by the NNSF of China (no. 61373174) and the Natural Science Foundation for Young Scientists of Shanxi Province, China (no. 20120211002-3).

References

