It is a hot topic that circulant type matrices are applied to networks engineering. The determinants and inverses of Tribonacci circulant type matrices are discussed in the paper. Firstly, Tribonacci circulant matrix is defined. In addition, we show the invertibility of Tribonacci circulant matrix and present the determinant and the inverse matrix based on constructing the transformation matrices. By utilizing the relation between left circulant, g-circulant matrices, and circulant matrix, the invertibility of Tribonacci left circulant and Tribonacci g-circulant matrices is also discussed. Finally, the determinants and inverse matrices of these matrices are given, respectively.

1. Introduction
Circulant type matrices have important applications in various networks engineering. Exploiting the circulant structure of the channel matrices, Eghbali et al. [1] analysed the realistic near fast fading scenarios with circulant frequency selective channels. The optimum sampling in the one- and two-dimensional (1D and 2D) wireless sensor networks (WSNs) with spatial temporally correlated data was studied with circulant matrices in [2]. The repeat space theory (RST) was extended to apply to carbon nanotubes and related molecular networks, where the corresponding matrices are pseudocirculant in [3]. Preconditioners obtained by circulant approximations of stochastic automata networks were considered in [4]. In [5], circulant mutation whose differential equations obtained neither are of repliator-type nor can they be transformed straightway into a linear equation was introduced into autocatalytic reaction networks. Jing and Jafarkhani [6] proposed distributed differential space-time codes that work for networks with any number of relays using circulant matrices. Wang and Cheng [7] studied the existence of doubly periodic travelling waves in cellular networks involving the discontinuous Heaviside step function by circulant matrix. Pais et al. [8] proved conditions for the existence of stable limit cycles arising from multiple distinct Hopf bifurcations of the dynamics in the case of circulant fitness matrices.
Circulant type matrices have been put on the firm basis with the work in [9, 10] and so on. Furthermore, the g-circulant matrices are focused on by many researchers; for the details please refer to [11–13] and the references therein.

Lately, some scholars gave the explicit determinant and inverse of the circulant and skew-circulant involving famous numbers. Jiang et al. [14] discussed the invertibility of circulant type matrices with the sum and product of Fibonacci and Lucas numbers and presented the determinants and the inverses of these matrices. Jiang et al. [15] considered circulant type matrices with the k-Fibonacci and k-Lucas numbers and presented the explicit determinant and inverse matrix by constructing the transformation matrices. Jiang and Hong [16] gave exact form determinants of the RSFPLR circulant matrices and the RSLPFL circulant matrices involving Perrin, Padovan, Tribonacci, and the generalized Lucas number by the inverse factorization of polynomials. Bozkurt and Tam gave determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas numbers in [17]. Cambini presented an explicit form of the inverse of a particular circulant matrix in [18]. Shen et al. considered circulant matrices
with Fibonacci and Lucas numbers and presented their explicit determinants and inverses in [19].

The Tribonacci sequences are defined by the following recurrence relations \([20–22]\), respectively:

\[
T_n = T_{n-1} + T_{n-2} + T_{n-3},
\]

(1)

where \(T_0 = 0, T_1 = 1, T_2 = 1, n \geq 3\).

The first few values of the sequences are given by the following table:

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>24</td>
<td>44</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

(2)

Let \(t_1, t_2, \) and \(t_3\) be the roots of the characteristic equation \(x^3 - x^2 - x - 1 = 0\) and then we have

\[
t_1 + t_2 + t_3 = 1, \quad t_1 t_2 + t_1 t_3 + t_2 t_3 = -1, \quad t_1 t_2 t_3 = 1.
\]

Hence the Binet formulas of the sequences \(\{T_n\}\) have the form

\[
T_n = b_1 t_1^n + b_2 t_2^n + b_3 t_3^n,
\]

(4)

where \(b_i\) is the \(i\)th root of the polynomial \(44y^3 - 2y - 1\) for \(i = 1, 2, 3\).

In this paper, we consider circulant type matrices, including the circulant and left circulant and \(g\)-circulant matrices. If we suppose \(T_n\) is the \(n\)th Tribonacci number, then we define a Tribonacci circulant matrix which is an \(n \times n\) matrix with the following form:

\[
\text{Circ} \left(T_1, T_2, \cdots, T_n \right) = \begin{bmatrix}
T_1 & T_2 & \cdots & T_n \\
T_n & T_1 & \cdots & T_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
T_2 & T_3 & \cdots & T_1
\end{bmatrix}
\]

(5)

Besides, a Tribonacci left circulant matrix is given by

\[
\text{LCirc} \left(T_1, T_2, \cdots, T_n \right) = \begin{bmatrix}
T_1 & T_2 & \cdots & T_n \\
T_2 & T_3 & \cdots & T_1 \\
\vdots & \vdots & \ddots & \vdots \\
T_n & T_1 & \cdots & T_{n-1}
\end{bmatrix}
\]

(6)

where each row is a cyclic shift of the row above to the left.

A Tribonacci \(g\)-circulant matrix is an \(n \times n\) matrix with the following form:

\[
A_{g,n} = \begin{pmatrix}
T_1 & T_2 & \cdots & T_n \\
T_{n-g+1} & T_{n-g+2} & \cdots & T_{n-g} \\
\vdots & \vdots & \ddots & \vdots \\
T_{g+1} & T_{g+2} & \cdots & T_g
\end{pmatrix}
\]

(7)

where \(g\) is a nonnegative integer and each of the subscripts is understood to be reduced modulo \(n\). The first row of \(A_{g,n}\) is \((T_1, T_2, \ldots, T_n)\), and its \((j+1)\)th row is obtained by giving its \(j\)th row a right circular shift by \(g\) positions (equivalently, \(g \mod n\) positions). Note that \(g = 1\) or \(g = n + 1\) yields standard Tribonacci circulant matrix. If \(g = n - 1\), then we obtain Tribonacci left circulant matrix.

Lemma 1. The \(n \times n\) tridiagonal matrix is given by

\[
A_n = \begin{pmatrix}
\tau_2 & \tau_3 & \cdots & 0 \\
\tau_3 & \tau_2 & \cdots & \tau_1 \\
\vdots & \vdots & \ddots & \vdots \\
\tau_3 & \tau_2 & \cdots & \tau_1
\end{pmatrix}
\]

(8)

then

\[
\det A_n = \left(\frac{\left(\tau_2 + \sqrt{\tau_2^2 - 4\tau_1 \tau_3} \right)/2}{\left(\tau_2 - \sqrt{\tau_2^2 - 4\tau_1 \tau_3} \right)/2} \right)^{n+1}, \quad \tau_2 \neq 4\tau_1 \tau_3,
\]

\[
= \left(\frac{(n+1) \tau_2}{\sqrt{\tau_2^2 - 4\tau_1 \tau_3}} \right)^n, \quad \tau_2^2 = 4\tau_1 \tau_3.
\]

(9)

Proof. \(\det A_n = \tau_2 \cdot \det A_{n-1} - \tau_1 \tau_3 \cdot \det A_{n-2};\) let \(x + y = \tau_2, xy = \tau_1 \tau_3\) and then let \(x, y\) be the roots of the equation \(x^2 - \tau_2 x + \tau_1 \tau_3 = 0\).

We have

\[
\det A_n = y^n + xy^{n-1} + \cdots + x^{n-1} y + x^n = \begin{cases}
\frac{x^{n+1} - y^{n+1}}{x - y}, & x \neq y, \\
(n+1)x^n, & x = y,
\end{cases}
\]

(10)

where \(x = \left(\frac{\tau_2 + \sqrt{\tau_2^2 - 4\tau_1 \tau_3}}{2} \right)\) and \(y = \left(\frac{\tau_2 - \sqrt{\tau_2^2 - 4\tau_1 \tau_3}}{2} \right)\).

Hence,

\[
\det A_n = \left(\frac{\left(\tau_2 + \sqrt{\tau_2^2 - 4\tau_1 \tau_3} \right)/2}{\left(\tau_2 - \sqrt{\tau_2^2 - 4\tau_1 \tau_3} \right)/2} \right)^{n+1}, \quad \tau_2 \neq 4\tau_1 \tau_3,
\]

\[
= \left(\frac{(n+1) \tau_2}{\sqrt{\tau_2^2 - 4\tau_1 \tau_3}} \right)^n, \quad \tau_2^2 = 4\tau_1 \tau_3.
\]

(11)
Lemma 2. Let

\[
B_n = \begin{pmatrix}
 a_1 & a_2 & a_3 & \cdots & a_{n-2} & a_{n-1} & a_n \\
 \tau_2 & \tau_1 & \tau_2 & \cdots & \tau_2 & \tau_1 & \tau_2 \\
 \tau_3 & \tau_2 & \tau_1 & \tau_2 & \cdots & \tau_2 & \tau_1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 \tau_3 & \tau_2 & \tau_1 & \tau_2 & \cdots & \tau_2 & \tau_1 \\
\end{pmatrix}
\]

be an \(n \times n \) matrix; one has

\[
\det B_n = \sum_{i=1}^{n} (-1)^{i+1} \tau_1^{n-i} a_i \cdot \det A_{i-1},
\]

where

\[
\det A_{i-1} = \left(\frac{(b + \sqrt{b^2 - 4ac})/2}{\sqrt{b^2 - 4ac}} \right)^{i} \cdot \left(\frac{(b - \sqrt{b^2 - 4ac})/2}{\sqrt{b^2 - 4ac}} \right)^{i},
\]

\[
\left(\frac{b}{2} \right)^{i-1}, \quad \tau_1^2 = 4 \tau_1 \tau_2.
\]

Specifically, \(\det A_0 = 1 \).

Proof. According to the last column determinant expansion and Lemma 1, we obtain

\[
\det B_n = \tau_1 \cdot \det B_{n-1} + (-1)^{n+1} a_n \cdot \det A_{n-1}
\]

\[
= \tau_1 \left(\tau_2 \cdot \det B_{n-2} + (-1)^n a_{n-1} \cdot \det A_{n-2} \right)
\]

\[
+ (-1)^{n+1} a_n \cdot \det A_{n-1}
\]

\[
= \tau_1^{n-1} \cdot \det B_1 + (-1)^{n+1} \tau_1^{n-2} a_2 \cdot \det A_1
\]

\[
+ (-1)^{n+1} \tau_1^{n-3} a_3 \cdot \det A_2
\]

\[
+ \cdots + (-1)^{n+1} a_n \cdot \det A_{n-1}
\]

\[
= \sum_{i=1}^{n} (-1)^{i+1} \tau_1^{n-i} a_i \cdot \det A_{i-1}.
\]

\[\square\]

2. Determinant and Inverse of Tribonacci Circulant Matrix

In this section, let \(D_n = \text{Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci circulant matrix. Firstly, we give the determinant of the matrix \(D_n \). Afterwards, we discuss the invertibility of the matrix \(D_n \), and we find the inverse of the matrix \(D_n \).
be two \(n \times n \) matrices and then we have
\[
\Gamma_1 D_n \Pi_1 = \begin{pmatrix}
T_1 & p_1 & T_{n-1} & T_{n-2} & \cdots & T_3 & T_2 \\
0 & p_2 & \phi_3 & \phi_4 & \cdots & \phi_{n-1} & \phi_n \\
0 & p_3 & \phi_2 & T_{n-3} & \cdots & T_2 & T_1 \\
0 & 0 & b & a & \cdots & c & b & a \\
0 & 0 & c & b & a & \cdots & c & b & a \\
\end{pmatrix},
\]
(19)
where
\[
p_1 = \sum_{i=1}^{n-1} T_{i+1} \Delta^{n-(i+1)},
\]
\[
p_2 = T_1 - T_n + \sum_{i=1}^{n-2} \Delta^i (T_{n-i+1} - T_{n-i}),
\]
\[
p_3 = -T_n + \Delta (T_1 - T_n) + \sum_{i=1}^{n-3} \Delta^{i+1} T_{n-i-2},
\]
\[
\phi_i = T_{n+3-i} - T_{n+2-i}, \quad (i = 3, \ldots, n),
\]
\[
\phi = T_1 - T_n - T_{n-1},
\]
\[
\Delta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},
\]
\[
a = T_1 - T_{n+1}, \quad b = -T_n - T_{n-1}, \quad c = -T_n.
\]
We obtain
\[
\det \Gamma_1 \det D_n \det \Pi_1
\]
\[
= T_1 \cdot (p_2 \delta_1 - p_3 \delta_2)
\]
\[
= \left[T_1 - T_n + \sum_{i=1}^{n-2} \Delta^i (T_{n-i+1} - T_{n-i}) \right] \delta_1
\]
\[
- \left[-T_n + \Delta (T_1 - T_n) + \sum_{i=1}^{n-3} \Delta^{i+1} T_{n-i-2} \right] \delta_2,
\]
(21)
where
\[
\delta_1 = (T_1 - T_n - T_{n-1}) (T_1 - T_{n+1})^{n-3} + \sum_{i=2}^{n-2} (-1)^{i+1} (T_1 - T_{n+1})^{n-i-2} \cdot T_{n-i-1} \cdot \det A_{i-1},
\]
\[
\delta_2 = \sum_{i=1}^{n-2} (-1)^{i+1} (T_1 - T_{n+1})^{n-i-2} (T_{n-i+1} - T_{n-i}) \cdot \det A_{i-1}.
\]
(22)

Let
\[
\mathcal{B}_n = \begin{pmatrix}
\phi & T_{n-3} & \cdots & T_3 & T_2 & T_1 \\
b & a & \cdots & c & b & a \\
\end{pmatrix},
\]
(23)
\[
\mathcal{C}_n = \begin{pmatrix}
\phi_3 & \phi_4 & \cdots & \phi_{n-2} & \phi_{n-1} & \phi_n \\
c & b & a & \cdots & c & b & a \\
\end{pmatrix}
\]
be two \((n - 2) \times (n - 2)\) matrices, and \(\delta_1 = \det \mathcal{B}_n\), and \(\delta_2 = \det \mathcal{C}_n\).

According to Lemma 2, thus
\[
\delta_1 = (T_1 - T_n - T_{n-1}) (T_1 - T_{n+1})^{n-3} + \sum_{i=2}^{n-2} (-1)^{i+1} (T_1 - T_{n+1})^{n-i-2} \cdot T_{n-i-1} \cdot \det A_{i-1},
\]
\[
\delta_2 = \sum_{i=1}^{n-2} (-1)^{i+1} (T_1 - T_{n+1})^{n-i-2} (T_{n-i+1} - T_{n-i}) \cdot \det A_{i-1}.
\]
(24)

While
\[
\det \Gamma_1 = \det \Pi_1 = (-1)^{(n-1)(n-2)/2},
\]
(25)
we have
\[
\det D_n = \left[T_1 - T_n + \sum_{i=1}^{n-2} \Delta (T_{n-i+1} - T_{n-i}) \right] \delta_1
\]
\[
- \left[-T_n + \Delta (T_1 - T_n) + \sum_{i=1}^{n-3} \Delta^{i+1} T_{n-i-2} \right] \delta_2,
\]
(26)

Theorem 4. Let \(D_n = \text{Circ}(T_1, T_2, \ldots, T_n)\) be a Tribonacci circulant matrix; if \(n \neq 2\) and \(n \neq 2k\pi(\text{arctan}(\pm \sqrt{4ac - b^2} / -b))^{-1}\) \((k = 1, 2, \ldots, n - 1)\), then \(D_n\) is not an invertible matrix.

Proof. When \(n = 2\) in Theorem 3, then we have \(\det D_2 = 0\). Hence, \(D_2\) is not invertible.

In the case where \(n > 2\), since \(T_n = b_1 t_1^n + b_2 t_2^n + b_3 t_3^n\), where \(t_i\) is the \(i\)th root of the polynomial \(44y^3 - 2y - 1\), we have
\[
f(\omega^k) = \sum_{j=1}^{n} (b_1 t_1^j + b_2 t_2^j + b_3 t_3^j) (\omega^k)^{j-1}
\]
\[
= \sum_{j=1}^{n} (b_1 t_1^j + b_2 t_2^j + b_3 t_3^j) (\omega^k)^{j-1}
\]
Abstract and Applied Analysis

If there exists ω^l ($l = 1, 2, \ldots, n - 1$) such that $f(\omega^l) = 0$, we obtain $1 - T_{n+1} + (-T_n - T_{n-1}) \omega^k - T_n \omega^{2k} = 0$ for $1 - \omega^k - \omega^{2k} - \omega^{3k} \neq 0$. Thus, $\omega^l = (T_n + T_{n-1} \pm \sqrt{(-T_n - T_{n-1})^2 + 4T_n(T_1 - T_{n+1})})/2T_n$.

Let $a = T_1 - T_{n+1}, b = -T_n - T_{n-1},$ and $c = -T_n$; if $b^2 - 4ac \geq 0$, we have ω^l is a real number.

While

$$\omega^l = \exp \left(\frac{2l\pi}{n} \right) = \cos \left(\frac{2l\pi}{n} \right) + i \sin \left(\frac{2l\pi}{n} \right),$$

we obtain $n = 2k\pi (\arctan(\pm \sqrt{4ac - b^2} - b))^{-1}$, such that $f(\omega^l) = 0$. If $1 - \omega^k - \omega^{2k} - \omega^{3k} = 0$, we have $\omega^k = -1$ and if n is an even number, then $f(\omega^k) = \sum_{j=1}^{n-1} T_j(\omega^k)^{j-1} = T_1 - T_2 + \cdots - T_n < 0$. By Lemma 1 in [15], the proof is completed.

Lemma 5. Let $\Phi = (\begin{smallmatrix} u & v \\ v^* & w \end{smallmatrix})$ be an $n \times n$ matrix; then

$$
\Phi^{-1} = \begin{pmatrix}
\frac{1}{\ell} & -\frac{1}{\ell} V A^{-1} \\
-\frac{1}{\ell} V A^{-1} & \frac{1}{\ell} A^{-1} V A^{-1}
\end{pmatrix},
$$

where $\ell = a - V A^{-1}U, \ V$ is a row vector, and U is a column vector.

Proof. Consider

$$(a \ V) \begin{pmatrix}
\frac{1}{\ell} & -\frac{1}{\ell} V A^{-1} \\
-\frac{1}{\ell} V A^{-1} & \frac{1}{\ell} A^{-1} V A^{-1}
\end{pmatrix} \begin{pmatrix}
1 \\
0
\end{pmatrix} = I_n.$$

Lemma 6. Let the matrix $G = [g_{i,j}]_{i,j=1}^{n-3}$ be of the form

$$
g_{i,j} = \begin{cases}
T_1 - T_{n+1}, & i = j, \\
-T_n - T_{n-1}, & i = j + 1, \\
-T_n, & i = j + 2, \\
0, & \text{otherwise},
\end{cases}$$

then the inverse $G^{-1} = [g'_{i,j}]_{i,j=1}^{n-3}$ of the matrix G is equal to

$$g'_{i,j} = \begin{cases}
\frac{1}{T_1 - T_{n+1}} (\beta^{i-j+1} - \alpha^{i-j+1})/\beta - \alpha, & i \geq j, \\
0, & i < j,
\end{cases}$$

where

$$\alpha = -(-T_n - T_{n-1} + \sqrt{(-T_n - T_{n-1})^2 + 4T_n(T_1 - T_{n+1})})/2(T_1 - T_{n+1}),$$

$$\beta = -(-T_n - T_{n-1} - \sqrt{(-T_n - T_{n-1})^2 + 4T_n(T_1 - T_{n+1})})/2(T_1 - T_{n+1}).$$

Proof. Let $c_{i,j} = \sum_{k=1}^{n-3} g_{i,k} g'_{k,j}$. Obviously, $c_{i,j} = 0$ for $i < j$. In the case where $i = j$, we obtain

$$c_{i,j} = g_{i,j} g'_{i,j} = (T_1 - T_{n+1}) \cdot \frac{1}{T_1 - T_{n+1}} = 1.$$

$$\sum_{k=1}^{n-3} g_{i,k} g'_{k,j} = \sum_{k=1}^{n-3} \frac{\beta^{j-k+1} - \alpha^{j-k+1}}{\beta - \alpha} = (T_1 - T_{n+1}) \cdot \frac{1}{T_1 - T_{n+1}} = 1.$$
For $i \geq j + 1$, we obtain
\[
\begin{align*}
c_{i,j} &= \sum_{k=1}^{n-3} g_{i,k} g_{k,j}^t \\
&= g_{i,i-2} g_{i-2,j}^t + g_{i,i-1} g_{i-1,j}^t + g_{i,i} g_{i,j} \\
&= -T_n \cdot \frac{1}{T_1 - T_{n+1}} \left(\frac{\beta^{i-j-1} - \alpha^{i-j-1}}{\beta - \alpha} \right) \\
&\quad + (-T_n - T_{n-1}) \cdot \frac{1}{T_1 - T_{n+1}} \left(\frac{\beta^{i-j} - \alpha^{i-j}}{\beta - \alpha} \right) \\
&\quad + (T_1 - T_{n+1}) \cdot \frac{1}{T_1 - T_{n+1}} \left(\frac{\beta^{i-j+1} - \alpha^{i-j+1}}{\beta - \alpha} \right) \\
&= 0.
\end{align*}
\]

Hence, we verify $G^G^{-1} = I_{n-3}$, where I_{n-3} is $(n-3) \times (n-3)$ identity matrix. Similarly, we can verify $G^{-1} G = I_{n-3}$. Thus, the proof is completed.

Theorem 7. Let $D_n = \text{Circ}(T_1, T_2, \ldots, T_n)$ be an invertible Tribonacci circulant matrix; then one has
\[
D_n^{-1} = \text{Circ} \left(x'_{2} + \left(-1 + \frac{p_{3}}{p_{2}} \right) x'_{3} - x'_{4} - x'_{5}, \right.
\]
\[
- x'_{2} + \left(-1 + \frac{p_{3}}{p_{2}} \right) x'_{3} - x'_{4} - x'_{5} - x'_{6},
\]
\[
x'_{n-2} - x'_{n-1} - x'_{n}, \ldots, x'_{3} - x'_{4} - x'_{5} - x'_{6},
\]
\[
= 0.
\]

where
\[
p_{2} = T_{1} - T_{n} + \sum_{i=1}^{n-2} \Delta^i (T_{n-i+1} - T_{n-i-1}),
\]
\[
p_{3} = -T_{n} + \Delta (T_{1} - T_{n} - T_{n-1}) + \sum_{i=1}^{n-3} \Delta^{i+1} T_{n-i-2},
\]
\[
x'_{1} = 0,
\]
\[
x'_{2} = \frac{1}{p_{2}},
\]
\[
x'_{3} = \frac{\gamma_{3}}{\ell} + \frac{(T_{1} - T_{n+1}) \sum_{i=2}^{n-2} g_{i} Y_{i+2}}{\ell},
\]
\[
x'_{4} = -\frac{\gamma_{3} \sum_{i=2}^{n-3} g_{i} Y_{i+3}}{\ell} + \frac{p_{3}}{p_{2}} \frac{g_{i} Y_{i+3}}{\ell},
\]
\[
= \left(\frac{1}{\ell} - \frac{\ell}{G^{-1} U} \right) F^{-1} \left(\frac{\ell}{G^{-1} U} + \frac{UV G^{-1}}{\ell} \right).
\]
where
\[
\rho_3 = T_1 - T_n - T_{n-1} - \frac{p_3}{p_2} (T_n - T_{n-1}),
\]
\[
U = (-T_n - T_{n-1}, -T_n, 0, \ldots, 0)^T,
\]
\[
V = (\rho_4, \rho_5, \ldots, \rho_n),
\]
\[
\ell = \rho_3 - b \sum_{i=1}^{n-3} \rho_i \rho_{i+3} - c \sum_{i=1}^{n-4} \rho_i + 4.
\]

Let
\[
\Pi_2 = \begin{pmatrix}
1 & -p_1 & T_{n-1} + \frac{p_1 \varphi_3}{p_2} & \cdots & -T_2 + \frac{p_1 \varphi_n}{p_2} \\
0 & 1 & \frac{\varphi_3}{p_2} & \cdots & \frac{\varphi_n}{p_2} \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix},
\]
\[
(46)
\]

where
\[
p_1 = \sum_{i=1}^{n-1} T_{i+1} \Delta^{n-(i+1)},
\]
\[
p_2 = T_1 - T_n + \sum_{i=1}^{n-2} \Delta_i (T_{n-i+1} - T_{n-i}),
\]
\[
\varphi_i = T_{n+i-3} - T_{n+i-2}, \quad (i = 3, \ldots, n),
\]
\[
\Delta = -b \pm \sqrt{b^2 - 4ac}/2a,
\]
\[
a = T_1 - T_{n+1}, \quad b = -T_n - T_{n-1}, \quad c = -T_n.
\]

We have
\[
\Gamma_1 \Gamma_1 \Gamma_2 \Pi_1 \Pi_2 = \mathcal{D}_1 \oplus F,
\]
\[
(48)
\]

where \(\mathcal{D}_1 = \text{diag}(T_1, p_2)\) is a diagonal matrix and \(\mathcal{D}_1 \oplus F\) is the direct sum of \(\mathcal{D}_1\) and \(F\). If we denote \(\Gamma = \Gamma_1 \Gamma_1^*\) and \(\Pi = \Pi_1 \Pi_2\), we obtain
\[
D_n^{-1} = \Pi \left(\mathcal{D}_1^{-1} \oplus F^{-1} \right) \Gamma.
\]
\[
(49)
\]

Since the last row elements of the matrix \(\Pi\) are 0, 1, \((T_{n-1} - T_n)/p_2, (T_{n-2} - T_{n-1})/p_2, \ldots, (T_3 - T_2)/p_2, (T_2 - T_3)/p_2\), then the elements of last row of \(\Pi(\mathcal{D}_1^{-1} \oplus F^{-1})\) are given by the following equations:
\[
x_1' = 0,
\]
\[
x_2' = \frac{1}{p_2},
\]
\[
x_3' = \frac{y_3}{\ell} + \frac{(T_1 - T_{n+1}) \sum_{i=2}^{n-2} g_i y_{i+2}}{\ell},
\]
\[
x_4' = \frac{y_3}{\ell} \sum_{i=2}^{n-3} g_i y_{i+3} + \sum_{i=1}^{n-3} g_i y_{i+3} - \frac{(T_1 - T_{n+1}) \sum_{i=2}^{n-2} g_i y_{i+2}}{\ell},
\]
\[
(50)
\]

where
\[
y_i' = \frac{T_{n+i+2} - T_{n+i+3}}{p_2}, \quad (i = 3, 4, \ldots, n),
\]
\[
\rho_3 = T_1 - T_n - T_{n-1} - \frac{p_3}{p_2} (T_n - T_{n-1}),
\]
\[
(51)
\]

By Lemma 6, if \(D_n^{-1} = \text{Circ}(x_1, x_2, \ldots, x_n)\), then its last row elements are given by the following equations:
\[
x_2 = -x_2' + \left(1 - \frac{p_1}{p_2}\right) x_3' - x_4',
\]
\[
x_3 = x_n',
\]
\[
x_4 = x_{n-1}' - x_n',
\]
\[
x_5 = x_{n-2}' - x_{n-1}' - x_n',
\]
\[
\vdots
\]
\[
x_k = x_{n-k+3}' - x_{n-k+4}' - x_{n-k+5}' - x_{n-k+6}' - x_{n-k+2}'
\]
\[
(5 < k \leq n),
\]
\[
(52)
\]

Hence, the proof is completed. \(\square\)
3. Determinant and Inverse of Tribonacci Left Circulant Matrix

In this section, let \(D'_n = L\text{Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci left circulant matrix. By using the obtained conclusions, we give a determinant formula for the matrix \(D'_n \). Afterwards, we discuss the invertibility of the matrix \(D'_n \). The inverse of the matrix \(D'_n \) is also presented. According to Lemma 2 in [15] and Theorems 3, 4, and 7, we can obtain the following theorems.

Theorem 8. Let \(D'_n = L\text{Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci left circulant matrix; then one has

\[
\det D'_n = (-1)^{(n-1)(n-2)/2} \times \left[T_1 - T_n + \sum_{i=1}^{n-2} \Delta^i (T_{n-i+1} - T_{n-i}) \right] \delta_1 \\
- \left[-T_n + \Delta (T_1 - T_n - T_{n-1}) \right] \delta_2 ,
\]

where \(T_n \) is the nth Tribonacci number.

Theorem 9. Let \(D'_n = L\text{Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci left circulant matrix. If \(n \neq 2 \) and \(n \neq 2k\pi(\arctan(\pm \sqrt{4ac-b^2}/b))^{-1} (k = 1, 2, \ldots, n-1) \), then \(D'_n \) is an invertible matrix.

Theorem 10. Let \(D'_n = L\text{Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci left circulant matrix. If \(D_n \) is an invertible matrix, then we have

\[
D'^{-1}_n = \text{Circ}\left(x'_2 + \frac{p_3}{p_2} \right) x'_3 - x'_4 - x'_5, \\
x'_3 - x'_4 - x'_5 - x'_6, \ldots, x'_{n-2} - x'_{n-1} - x'_n, \\
x'_1 - x'_3 - x'_4 - x'_5, \ldots, x'_{n-1} - x'_n + \left(-1 + \frac{p_3}{p_2} \right) x'_3 - x'_4 ,
\]

where

\[
x'_1 = 0, \\
x'_2 = \frac{1}{p_2}, \\
x'_3 = \frac{y_3}{\ell} + \frac{(T_1 - T_{n+1}) \sum_{i=2}^{n-2} g_{i+1}}{\ell} y_{i+2}, \\
x'_4 = \frac{y_3}{\ell} \sum_{i=2}^{n-3} g_{i+1} + \frac{n-3}{\ell} g_{i+1} y_{i+3}.
\]

4. Determinant and Inverse of Tribonacci \(g \)-Circulant Matrix

In this section, let \(D_{gn} = g\text{-Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci \(g \)-circulant matrix. By using the obtained conclusions, we give a determinant formula for the matrix \(D_{gn} \). Afterwards, we discuss the invertibility of the matrix \(D_{gn} \). The inverse of the matrix \(D_{gn} \) is also presented. From Lemmas 3 and 4 in [15] and Theorems 3, 4, and 7, we deduce the following results.

Theorem 11. Let \(D_{gn} = g\text{-Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci \(g \)-circulant matrix and \((n, g) = 1 \); then one has

\[
\det D_{gn} = \det Q_g \cdot \left[T_1 - T_n + \sum_{i=1}^{n-2} \Delta^i (T_{n-i+1} - T_{n-i}) \right] \delta_1 \\
- \left[-T_n + \Delta (T_1 - T_n - T_{n-1}) \right] \delta_2 ,
\]

where \(T_n \) is the nth Tribonacci number.

Theorem 12. Let \(D_{gn} = g\text{-Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci \(g \)-circulant matrix and \((n, g) = 1 \). If \(n \neq 2 \) and \(n \neq 2k\pi(\arctan(\pm \sqrt{4ac-b^2}/b))^{-1} (k = 1, 2, \ldots, n-1) \), then \(D_{gn} \) is an invertible matrix.

Theorem 13. Let \(D_{gn} = g\text{-Circ}(T_1, T_2, \ldots, T_n) \) be a Tribonacci \(g \)-circulant matrix and \((n, g) = 1 \). If \(D_{gn} \) is an invertible matrix, then one has

\[
D^{-1}_{gn} = \left[\text{Circ}\left(x'_2 + \frac{p_3}{p_2} \right) x'_3 - x'_4 - x'_5, \\
- x'_2 + \frac{p_3}{p_2} x'_3 - x'_4 - x'_5 - x'_6, \ldots, x'_{n-2} - x'_{n-1} - x'_n + \left(-1 + \frac{p_3}{p_2} \right) x'_3 - x'_4 ,
\]

where

\[
x'_1 = 0, \\
x'_2 = \frac{1}{p_2}, \\
x'_3 = \frac{y_3}{\ell} + \frac{(T_1 - T_{n+1}) \sum_{i=2}^{n-2} g_{i+1}}{\ell} y_{i+2}, \\
x'_4 = \frac{y_3}{\ell} \sum_{i=2}^{n-3} g_{i+1} + \frac{n-3}{\ell} g_{i+1} y_{i+3},
\]
where

\[x'_1 = 0, \]
\[x'_2 = \frac{1}{P_2}, \]
\[x'_3 = \frac{v_3}{\ell} + \frac{(T_1 - T_{n+1}) \sum_{i=2}^{n-2} g_1 Y_{i-2}}{\ell}, \]
\[x'_4 = -\frac{v_3 \sum_{i=2}^{n-2} g_1 Y_{i-2}}{\ell} + \frac{\sum_{i=1}^{n-3} g_1 Y_{i+3}}{\ell} - (T_1 - T_{n+1}) \sum_{i=1}^{n-3} g_1 Y_{i+3} \sum_{i=2}^{n-2} g_1 Y_{i+2}, \quad (58) \]
\[\vdots \]
\[x'_k = -\frac{v_3 \sum_{i=2}^{n-k+1} g_1 Y_{i+k-2}}{\ell} + \frac{\sum_{i=1}^{n-k+1} g_1 Y_{i+k-1}}{\ell} - (T_1 - T_{n+1}) \sum_{i=1}^{n-k+1} g_1 Y_{i+k-1} \sum_{i=2}^{n-k} g_1 Y_{i+k-2}, \quad (k \geq 4). \]

5. Conclusion

The related problem of Tribonacci circulant type matrices is studied in this paper. We not only discuss nonsingularity of Tribonacci circulant type matrices, but also give the explicit determinant and inverse of Tribonacci circulant matrix. Tribonacci left circulant matrix, and Tribonacci right circulant matrix. Furthermore, according to Theorem II in [23] and the result in Theorem 3 in the paper, identities can be easily obtained:

\[
\left(1 - T_{n+1}\right)^n - (e_n' + d_n') + (-T_n)^n = \left[T_1 - T_n + \sum_{i=1}^{n-2} \Delta(T_{n+i-1} - T_{n-i})\right] \delta_1
\]
\[
- \left[-T_n + \Delta(T_1 - T_n - T_{n-1}) + \sum_{i=1}^{n-3} \Delta^{i+1} T_{n-i-2}\right] \delta_2,
\]

(59)

where \(T_n \) is the \(n \)th Tribonacci number, \(L_n \) is the \(n \)th generalized Lucas number, and

\[
e_1 = \frac{(T_{n+2} - T_{n+1}) + \mu_1}{2},
\]
\[
d_1 = \frac{(T_{n+2} - T_{n+1}) - \mu_1}{2},
\]
\[
\mu_1 = \sqrt{(T_{n+2} - T_{n+1})^2 - 4T_n (T_{n+1} - 1)},
\]
\[
\Delta = \frac{-b + \sqrt{b^2 - 4ac}}{2a},
\]

\[
\delta_1 = (T_1 - T_n - T_{n-1})(T_1 - T_{n+1})^{n-3}
\]
\[
+ \sum_{i=2}^{n-2} (-1)^{i+1}(T_1 - T_{n+1})^{n-i-2} T_{n-i-1} \det A_{i-1}.
\]
\[
\delta_2 = \sum_{i=1}^{n-3} (-1)^{i+1}(T_1 - T_{n+1})^{n-i-2}(T_{n+i-1} - T_{n-i}) \det A_{i-1},
\]

\[
det A_{i-1} = \left[\left((b + \sqrt{b^2 - 4ac})/2\right)^i - \left((b - \sqrt{b^2 - 4ac})/2\right)^i\right]/\sqrt{b^2 - 4ac},
\]
\[
\left[\sqrt{b^2 - 4ac} \right]^{i-1}, \quad b^2 = 4ac.
\]
\[
a = T_1 - T_n, \quad b = -T_n - T_{n-1}, \quad c = -T_n.
\]

(60)

In addition, we will develop solving the problem in [24–26] by circulant matrices technology.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The research was supported by the Development Project of Science & Technology of Shandong Province (Grant no. 2012GGX10115) and the AMEP of Linyi University, China.

References

