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Abstract. 
We investigate a class of fuzzy neural networks with Hebbian-type unsupervised
learning on time scales. By using Lyapunov functional method, some new sufficient conditions are
derived to ensure learning dynamics and exponential stability of fuzzy networks on time scales. Our
results are general and can include continuous-time learning-based fuzzy networks and corresponding
discrete-time analogues. Moreover, our results reveal some new learning behavior of fuzzy synapses
on time scales which are seldom discussed in the literature.



1. Introduction
It is well known that many applications of neural networks exist in diverse areas such as optimization, signal and image processing, pattern recognition, and control system. These applications are based on stability of equilibrium points of the network models. Hence, stability criteria of equilibrium points of networks have been greatly investigated in the literature [1–4]. Meanwhile, more recently, there have been several publications on the theme of neural networks where fuzzy logic is used. Yang and Yang [2, 5] and Yang et al. [6] have proposed a fuzzy cellular neural network to include and analyze the ambiguity or vagueness inherent in the inputs and outputs of neural networks. Further analysis of this type of networks can be found in the works of Yuan et al. [4], Liu and Tang [7], Huang and Zhang [8], Huang [9, 10], Chen and Liao [11], and the references therein.
It is welknown that the theory of time scales has a tremendous potential for applications in some mathematical models of real processes and phenomena studied in physics, population dynamics, biotechnology, economics, and so on. Meanwhile, it is unsuitable to study the stability for continuous and discrete system, respectively. Therefore, it is meaningful to study that on time scales which can unify the continuous and discrete situations. Many authors incorporate time scales into stability analysis of neural network models; we can refer to [12–15].
Stimulated by [16], we consider a class of networks of somatically crisp neurons with fuzzy learnable synapses on time scales  described by
						
					where ,  denotes the state of neuron  at time ,  denotes the passive negative stabilizing feedback of neuron , , ,, , and  denote the synaptic weights of the various fuzzy and nonfuzzy synapses of neuron ,  are disposable constants, and  denotes a learnable synaptic weight of neuron when it is presented with a constant input signal vector ; the external bias to the network is denoted by the constant vector . The operators  and  denote, respectively, the “max” and “min” operators used in fuzzy logic. The learning equation is based on the Hebbian-type [16, 17] unsupervised algorithm modified by the introduction of a forgetting term as proposed by Amari [18]. By using auxiliary variables , one gets
						
					where , , . Equation (2) is quite general and it includes several well known neural networks [16] and its difference analogue is
						
					where  and  are the forward difference operators and , .
For convenience, we let , , , , and . Then, (2) reduces to
						
					Correspondingly, synaptic dynamic equation is as follows:
						
					where . In this paper, we will study learning-based fuzzy networks (4) on time scales. Without the learning component and , (4) will include fuzzy networks discussed by several authors recently (see [2, 4, 7, 9–11]). In the absence of fuzzy synapses, our model reduces to the most commonly studied Hopfield-type neural network. Moreover, by using the calculus theory on time scale to unify and generalize discrete-time and continuous-time learning-based fuzzy networks, we can establish new sufficient conditions to ensure existence and global exponential stability of equilibrium of (4).
The paper is organized as follows. In Section 2, we present some basic definitions concerning the calculus on time scales. In Section 3, we develop Lyapunov functions technique on time scale to give some sufficient conditions of global exponential stability for (4). In Section 4, an example is given to illustrate the effectiveness of our main results. Conclusions remarks are given in Section 5.
2. Preliminaries on Time Scales
The basic calculus theory on time scales was initiated by Hilger [19, 20], and Agarwal et al. summarize and organize much of relative results in monograph [21–23]. In this section, we will introduce some basic definitions and lemmas.
Definition 1. A time scale  is arbitrary nonempty closed subset of the real set  with the topology and ordering inherited from .
Definition 2. On any time scale , one defines the forward and backward jump operators by  and ; one puts  and , where  denotes the empty set. A point  is said to be left-dense if  and , right-dense if  and , left-scattered if , and right-scattered if . The graininess function  for a time scale  is defined by . If  has a left-scattered maximum , then one defined  to be . Otherwise, .
Definition 3. For a function  (the range  of  may be actually replaced by Banach space), the (delta) derivative is defined by
							
						if  is continuous at  and  is right-scattered. If  is not right-scattered then the derivative is defined by
							
						provided this limit exists.
Definition 4. A function  is called a delta-antiderivative of  provided  holds for all . In this case, one defines the integral of  by
							
						and one has the following formula:
							
Definition 5. A function  is called right-dense continuous provided it is continuous at right-dense points of  and the left sided limit exists (finite) at left-dense point of . The set of all right-dense continuous functions on  is defined by .
Definition 6. One says that a function  is regressive provided  for all . The set of all regressive functions on a time scale  forms an Abelian group under the addition  defined by . The additive inverse in this group is denoted by . One then defines subtraction  on the set of regressive functions by . It can be shown that . The set of all regressive and right-dense continuous functions will be denoted by .
Definition 7. One defines the set  of all positively regressive elements of  by  for all .
Next, we give the definition of the exponential function and list some of its properties.
Definition 8. If , one defines the generalized exponential function as
							
						where , , and .
Remark 9. The exponential function  is the unique solution of the IVP ,  for . As .
Lemma 10.  If , then (i) and ;(ii);(iii);(iv);(v), for ;(vi);(vii).
Lemma 11 (see [3]).  If  and , then
							
						If , then
							
Lemma 12 (see [22]).  Let  and . Then, , , implies
							
Lemma 13 (see [2, 5]).  Suppose ,  are any two vectors in :
							
Throughout this paper, we make the following basic assumptions:)The functions  are Lipschitz continuous on  with the Lipschitz constants  and , respectively; that is, , .
3. Main Results 
In this section, we study the global exponential stability of the unique equilibrium for (4) on time scale by using Lyapunov method.
Theorem 14.  Suppose that (4) satisfies ; if there exist positive constants , , and  such that ()where  and , , then there exists a unique equilibrium  of (4) which is globally exponentially stable; that is, every solution  of (4) satisfies
							
						where , , and
							
Proof. Similar to the proof of [16], we can prove (4) possesses a unique equilibrium . Let  and let ; then, we can rewrite (4) into
							
						Now, we construct the Lyapunov function , where
							
						By using , we can conclude that  which implies that  for .
Consider
							
						where , , , , and
							
						Observe that
							
						where . Due to Lemma 11, we get
							
						where  is a constant. This completes the proof.
Remark 15. It is well known that few works have been done to report learning dynamics of fuzzy networks in the literature. If the time scale , then  and (4) reduces to common fuzzy networks with learning behavior reported by [16]. Removing learning variables, (4) is a generation form of [2, 4, 7]. From Theorem 14, we can immediately obtain the following corollary which contains relative results in [16].
Corollary 16.  Suppose that (4) satisfies , , and if there exist constants ,  such that
							
						where , then there exists a unique equilibrium  of (4) which is globally exponentially stable. 
If the time scale , then  and (4) reduces to
							
						which includes discrete-time analogues of competitive networks [24] as its special case when there is no fuzzy terms. From Theorem 14, we have the following corollary.
Corollary 17.  Suppose that (25) satisfies  and if there exist constants ,  such that
							
						where , then there exists a unique equilibrium  of (25) which is globally exponentially stable.
Remark 18. The result of Theorem 14 unifies the previous literature on fuzzy networks of discrete-time and continuous-time and reveals the discrepancies of results of continuous-time () and discrete-time () fuzzy networks [1–4, 16].
Finally, we should briefly investigate learning convergence of fuzzy networks. Consider learning dynamics governed by (5):
							
						where  and . It follows from Theorem 14 that (4) has a unique equilibrium . Hence, (5) has a unique equilibrium satisfying
							
						By (23), there exists a  such that
							
						It follows from (5), (28), and (29) that we get
							
						Let . Since  is an increasing function defined on , we know  and
							
						Hence, for any given , there exists a  such that  as . From (30) and Lemma 13, one gets
							
						It follows from Lemma 11 that we have
							
						which leads to  as . That is, time-varying and learnable synaptic weights converge exponentially to stationary weights  encoding the signal vector  in the sense of (28).
4. An Example
In this section, an example is shown to verify the effectiveness of the result obtained in the previous section. Consider the following fuzzy networks with delays on time scale :
						
					for  and , where , , , , , and
						
					Choosing   , we can easily verify that the assumptions of Corollaries 16 and 17 are all satisfied, respectively. When , that is, ,
						
					When , that is, ,
						
					It follows from Corollaries 16 and 17 that (34) has a unique equilibrium point which is globally exponentially stable.
5. Conclusion 
By using the time scale calculus theory and the Lyapunov functional method, we derive some sufficient conditions to ensure the global exponential stability of learning-based fuzzy networks on time scales. The conditions possess highly important significance and can be easily checked in practice by simple algebraic method; the exponential convergence of the learning dynamics is also considered.
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