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Abstract. 
We present two algorithms for finding a zero of the sum of two monotone operators and a fixed point of a nonexpansive operator in Hilbert spaces. We show that these two algorithms converge strongly to the minimum norm common element of the zero of the sum of two monotone operators and the fixed point of a nonexpansive operator.



1. Introduction
Throughout, we assume that  is a real Hilbert space with inner product  and norm , respectively. Let  be a nonempty closed convex set.
Definition 1. An operator  is said to be nonexpansive iffor all .
We denote by  the set of fixed points of .
Definition 2. An operator  is said to be -inverse strong monotone if for some  and for all .
It is known that if  is -inverse strong monotone, then  is -lipschitz, that is, for all . Furthermore,In particular, if , then  is nonexpansive.
Let  be a set-valued operator. The effective domain of  is denoted by , that is, .
Definition 3. A multivalued operator  is said to be a monotone on  if and only if for all , , and .
A monotone operator  on  is said to be maximal if and only if its graph is not strictly contained in the graph of any other monotone operator on . We denote by  the set of the zero points of , that is, .
For , we define a single-valued operator  which is called the resolvent of  for . It is known that the resolvent  is firmly nonexpansive, that is,for all  and  for all .
In the present paper, we consider the variational inclusion of finding a zero  of the sum of two monotone operators  and  such thatwhere  is a single-valued operator and  is a set-valued operator. The set of solutions of problem (8) is denoted by .
Special Cases. (i) If , then problem (8) becomes the generalized equation introduced by Robinson [1].
(ii) If , then problem (8) becomes the inclusion problem introduced by Rockafellar [2].
It is known that (8) provides a convenient framework for the unified study of optimal solutions in many optimization related areas including mathematical programming, complementarity, variational inequalities, optimal control, mathematical economics, equilibria, and game theory. Also various types of variational inclusions problems have been extended and generalized. For related work, please see [3–20].
Zhang et al. [21] introduced the following iterative algorithm for finding a common element of the set of solutions to the problem (8) and the set of fixed points of a nonexpansive operator:where  is a nonexpansive operator. Under some mild conditions, they prove that the sequence  converges strongly to .
Recently, Takahashi et al. [22] introduced another iterative algorithm for finding a zero of the sum of two monotone operators and a fixed point of a nonexpansive operatorfor all . Under some assumptions, they proved that the sequence  converges strongly to a point of .
Motivated and inspired by (9) and (10), in the present paper, we suggest two algorithmsIt is obvious that (12) is very different from (9) and (10). Furthermore, we prove that both (11) and (12) converge strongly to the minimum norm element in . It should be pointed out that we do not use the metric projection in (11) and (12).
2. Lemmas
In this section, we collect several useful lemmas for our next section.
First, the following resolvent equality is well known.
Lemma 4.  For  and , one has 
Lemma 5 (see [23]).  Let  be a closed convex set. Let  be a nonexpansive operator. Then  is a closed convex subset of  and the operator  is demiclosed at .
Lemma 6 (see [24]).  Let  be a Banach space. Let  and  be two bounded sequences. Let the sequence  satisfy . Suppose  for all  and . Then .
Lemma 7 (see [25]).  Let , , and  be three sequences satisfying  If  and  (or ), then .
3. Strong Convergence Results
Let  be a nonempty closed convex set. Let  be a -inverse strong monotone operator. Let  be a maximal monotone operator on  such that . Let  be a nonexpansive operator.
Pick up a constant . For any , we define an operator for all .
Since , , and  are nonexpansive, we havefor any . Hence  is a contraction on . We use  to denote the unique fixed point of  in . Thus,  satisfies the fixed point equationNext, we give the convergence analysis of (17).
Theorem 8.  Assume that . Then  defined by (17) converges strongly, as , to the minimum norm element in .
Proof. Choose any . It is obvious that  for all . So, we havefor all .
From (17), we haveHence, we getThus,  is bounded.
By (4) and (19), we deriveSo,Since  for all , we obtainUsing the firm nonexpansivity of , we haveNote thatThus,It follows thatHence,This together with (23) implies that So,By (19), we haveIt follows thatwhere  is some constant such thatNow we show that  is relatively norm-compact as . Assume  such that  as . Put . From (32), we haveSince  is bounded, without loss of generality, we may assume that . Hence,  because of  by (23). From (30), we haveBy Lemma 5 and (35), we deduce .
Next, we show that . Let . Note that  for all . Then, we haveSo,Since  is monotone, we have, for ,It follows thatSince, and , we have . We also observe that  and . Then, from (39), we deriveThat is, . Since  is maximal monotone, we have . This shows that . Hence, we have . Therefore, we can substitute  for  in (34) to getConsequently, the weak convergence of  to  actually implies that . This has proved the relative norm-compactness of the net  as .
From (34), we getThat is,It follows thatIt is obvious that  by (44). This denotes that the entire net  converges to . This completes the proof.
Next, we present another algorithm.
Algorithm 9. For given , define a sequence  iteratively bywhere , , and .
Theorem 10.  Suppose that . Assume that the following conditions are satisfied: (i) and ;(ii);(iii), where  and .Then  generated by (46) converges strongly to a point  which is the minimum norm element in .
Proof. Let . We have  for all . Since , , and  are nonexpansive, we haveThus,By induction, we haveTherefore,  is bounded.
From (4) and (47), we deriveSet  for all  Since  for all , we obtainFrom (46), we haveSet  for all . Then  for all . Next, we estimate . In fact, we haveSince  is nonexpansive for , we haveFrom (13), we have It follows thatSo,Then,Since ,  and , we obtain By Lemma 6, we getConsequently, we obtainFrom (51) and (52), we haveThen, we obtainSince , , and , we haveNext, we show . By using the firm nonexpansivity of , we haveObserve thatHence,It follows thatThis together with (52) implies thatHence,Since , , , and  (by (60)), we deduce This indicates thatCombining (60) and (72), we getPut , where  is the net defined by (17). We will finally show that .
Set  for all . Take  in (64) to get . First, we prove . We take a subsequence  of  such that It is clear that  is bounded due to the boundedness of  and . Then, there exists a subsequence  of  which converges weakly to some point . Hence,  and  also converge weakly to  because of  and . By the demiclosedness principle of the nonexpansive mapping (see Lemma 5) and (73), we deduce . Furthermore, by similar argument as that of Theorem 8, we can show that  is also in . Hence, we have . This implies thatNote that . Then, , . Therefore,From (46), we haveIt is clear that  andBy Lemma 7, we conclude that . This completes the proof.
Corollary 11.  Suppose that . Let  be a constant satisfying , where . For , let  be a net generated by Then the net  converges strongly, as , to a point  which is the minimum norm element in .
Corollary 12.  Suppose that . For given , let  be a sequence generated by for all , where , , and  satisfy (i) and ;(ii);(iii), where  and .Then  converges strongly to a point  which is the minimum norm element in .
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