Research Article

On the Boundary of Self-Affine Sets

Qi-Rong Deng and Xiang-Yang Wang

Department of Mathematics, Fujian Normal University, Fuzhou 350117, China

School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, China

Correspondence should be addressed to Xiang-Yang Wang; mcswxy@mail.sysu.edu.cn

Received 20 January 2015; Accepted 16 February 2015

Abstract and Applied Analysis

Volume 2015, Article ID 573604, 3 pages
http://dx.doi.org/10.1155/2015/573604

1. Introduction

Let \((X, \rho)\) be a complete matric space. Recall that a map \(S : X \rightarrow X\) is contractive if there exists a constant \(0 < r < 1\) such that \(\rho(S(x), S(y)) \leq r \rho(x, y)\). We call a finite set of contractive maps \(\{S_j\}_{j=1}^m\) an iterated function system (IFS). It is well known [1] that there exists a unique nonempty compact subset \(K \subset X\) such that \(K = \bigcup_{j=1}^m S_j(K)\). We call \(K\) the invariant set or attractor of the IFS. Moreover, if we associate the IFS with a set of probability weights \(\{p_j > 0 : i = 1, \ldots, m\}\), then there exists a unique probability measure \(\mu\) supported on \(K\) satisfying the equation

\[
\mu(\cdot) = \sum_{j=1}^m p_j \mu(S_j^{-1}(\cdot)).
\]

(1)

We call \(\mu\) the invariant measure.

Let \(A\) be a \(d \times d\) expanding real matrix; that is, all its eigenvalues have modules larger than one. Let \(\lambda\) be the smallest absolute value of \(A\)'s eigenvalues, choose \(c \in (1, \lambda)\), and define \(\|x\|\) for each \(x \in \mathbb{R}^d\) as

\[
\|x\| = \sum_{n=1}^{\infty} c^n |A^{-n}x|,
\]

(2)

where \(|\cdot|\) is the Euclidian norm in \(\mathbb{R}^d\). Then \(\|\cdot\|\) is a norm in \(\mathbb{R}^d\). Let \(\rho(x, y) = \|x - y\|\) be the induced metric. It is easy to check that the map \(S(x) = A^{-1}(x + c)\) with \(x, c \in \mathbb{R}^d\) is contractive under the metric \(\rho\).

Let \(A\) be a \(d \times d\) expanding real matrix and \(D = \{d_1, d_2, \ldots, d_m\} \subset \mathbb{R}^d\). We call the family of maps on \(\mathbb{R}^d\)

\[
S_i(x) = A^{-1}(x + d_i), \quad i = 1, 2, \ldots, m
\]

(3)

a self-affine IFS. The corresponding invariant set \(K\) and invariant measure \(\mu\) are called a self-affine set and a self-affine measure of the IFS, respectively. Furthermore, if the matrix \(A\) in (3) is an orthonormal matrix multiple a constant, then such IFS is called self-similar, and the invariant set and invariant measure are called self-similar set and self-similar measure of the IFS, respectively.

Our main interests in this note are the structures and properties of the boundary \(\partial K\) of a self-affine set \(K\). For self-similar IFS, Lau and Xu [2] showed that \(\dim_H(\partial K) < d\) provided that the self-similar IFS satisfies the open set condition (OSC). He et al. [3] studied the calculation of \(\dim_H(\partial K)\) for integral self-similar IFS. Furthermore, the overlapping cases were considered by Lau and Ngai in [4]. For self-affine sets, however, less is known about \(K\) and \(\partial K\) (see [5–7]). There is no method to compute the Hausdorff dimension and the Lebesgue measure of \(\partial K\) for overlapping self-affine set.

Motivated by these results, we consider the Lebesgue measures of the boundaries of integral self-affine sets. We prove that they have Lebesgue measure zero.
Theorem 1. Let \(\{ \phi_j \}_{j=1}^m \) be a self-affine IFS defined on \(\mathbb{R}^d \). Assume that \(A \) and \(d_j \) are all integral. Let \(K \) be the self-affine set of the IFS; then \(\mathcal{L}(\partial K) = 0 \).

Consider two IFSs \(\{ S_j \}_{j=1}^n \) and \(\{ S_j \}_{j=1}^m \), \(m < n \) (they may not be self-affine). Let \(K_1 \) and \(K_2 \) be the invariant sets, respectively; then \(K_1 \subseteq K_2 \), so \(\dim(K_1) \leq \dim(K_2) \). We think about the natural question: what is the relationship between \(\partial K_1 \) and \(\partial K_2 \)?

We prove that any one case of \(\dim_{H}(\partial K_2) = \dim_{H}(\partial K_1) \), \(\dim_{H}(\partial K_2) < \dim_{H}(\partial K_1) \), and \(\dim_{H}(\partial K_2) > \dim_{H}(\partial K_1) \) may occur.

2. Proofs of Results

For an IFS \(\{ S_j \}_{j=1}^n \) on \(\mathbb{R}^d \), we use the following notations throughout the paper. Let \(\Sigma = \{ 1, \ldots, m \} \) (or \(\Sigma^* \) if there is no confusion), and \(\Sigma^* = \bigcup_{n \leq m} \Sigma^n \). For any \(i_1 i_2 \cdots i_k \in \Sigma^n \) and \(j = j_1 j_2 \cdots j_k \in \Sigma^k \), let \(I_j = i_1 i_2 \cdots i_k j_1 j_2 \cdots j_k \) and

\[
P_I = p_{i_1} p_{i_2} \cdots p_{i_k}, \quad S_I = S_{i_1} \circ S_{i_2} \cdots \circ S_{i_k},
\]

\[
d_i = d_{i_1} + Ad_{i_2} + \cdots + A^{i_k-1} d_{i_k},
\]

\[
\mathcal{D}_n = \mathcal{D} + AD + \cdots + A^{n-1} \mathcal{D}.
\]

Also, we use \(\mathcal{L}(E) \), \(E^0 \), and \(\partial E \) to denote the Lebesgue measure, the interior, and the boundary of a subset \(E \subset \mathbb{R}^d \), respectively.

Theorem 2. Let \(\{ \phi_j \}_{j=1}^m \) and \(\{ \psi_j \}_{j=1}^k \) be two contractive IFSs on \(\mathbb{R}^d \) under some norm \(\| \cdot \| \) with the invariant sets \(K_1 \) and \(K_2 \), respectively. If the invariant set \(K_1 \) contains interior points, then there exist \(a, n \in \mathbb{N} \) and \(\alpha \in \mathbb{Z}^d \) such that the IFS \(\mathcal{F} = \{ \phi_j : 1 \leq i \leq m \} \) and \(\mathcal{F} \cup \mathcal{G} \) generate the same attractor \(aK_1 + \alpha \), where \(\mathcal{G} = \{ \psi_j : 1 \leq j \leq k \} \) and \(\phi_j(x) = a \phi_j(a^{-1}(x - \alpha)) + \alpha \), \(j = 1, \ldots, m \).

Proof. Observe that

\[
\bigcup_{j=1}^m \phi_j(aK_1 + \alpha) = \bigcup_{j=1}^m (a \phi_j(K_1) + \alpha)
\]

\[
= a \left(\bigcup_{j=1}^m \phi_j(K_1) \right) + \alpha = aK_1 + \alpha.
\]

This means that \(aK_1 + \alpha \) is the invariant set of \(\{ \phi_j \}_{j=1}^m \) for any \(a > 0 \) and \(\alpha \in \mathbb{R}^d \). Hence it is also the invariant set of the IFS \(\mathcal{F} \). Now we need only to prove that \(aK_1 + \alpha \) is the invariant set of \(\mathcal{F} \cup \mathcal{G} \) for some \(a, n \in \mathbb{N} \) and \(\alpha \in \mathbb{Z}^d \).

Note that \(K_1 \) contains interior points; we can find a constant \(r > 0 \) and a point \(x_0 \in K_1 \) with rational entries such that \(B_2(x_0) \subset K_1 \). Hence \(B_{2r}(0) \subset aK_1 - ax_0 \) for all positive real number \(a > 0 \). Since \(\{ \psi_j \}_{j=1}^k \) are contractive in the norm \(\| \cdot \| \), we can choose integers \(a, n \in \mathbb{N} \) large enough such that \(K_2 \subset B_{2r}(0) \) and \(\| \psi_j(aK_1 + \alpha) \| < ar \) for all \(j \in \Sigma_k \) with \(|J| \geq n \), where \(|E| \) is the diameter of the set \(E \subset \mathbb{R}^d \) under the norm \(\| \cdot \| \). Also, we can assume that \(\alpha = -ax_0 \in \mathbb{Z}^d \). Noting \(K_2 \subseteq B_{2r}(0) \subseteq B_{2ar}(0) \subseteq aK_1 + \alpha \), \(\| \psi_{j_i-j_n}(aK_1 + \alpha) \| < ar \) and observing

\[
\psi_{j_i-j_n}(aK_1 + \alpha) \cap K_2 \supseteq \psi_{j_i-j_n}(K_2) \cap K_2 \neq \emptyset,
\]

we have

\[
\psi_{j_i-j_n}(aK_1 + \alpha) \subseteq aK_1 + \alpha.
\]

Therefore

\[
|\psi_{j_i-j_n}(K_2) \cap K_2| \geq \psi_{j_i-j_n}(K_2) \cap K_2 \neq \emptyset,
\]

we have

\[
\psi_{j_i-j_n}(aK_1 + \alpha) \subseteq aK_1 + \alpha.
\]

Therefore

\[
aK_1 + \alpha = \bigcup_{f \in \mathcal{F} \cup \mathcal{G}} f(aK_1 + \alpha) \subseteq \bigcup_{f \in \mathcal{F} \cup \mathcal{G}} f(aK_1 + \alpha) \subseteq aK_1 + \alpha.
\]

We see that \(aK_1 + \alpha \) is the invariant set of \(\mathcal{F} \cup \mathcal{G} \). This completes the proof.

In Theorem 2, IFS \(\mathcal{F} \) is a subset of IFS \(\mathcal{F} \cup \mathcal{G} \) and they have the same invariant set \(aK_1 + \alpha \). So do the same boundary of the invariant set. On the other hand, the invariant set of \(\mathcal{G} \) is \(K_2 \). Obviously, either \(\dim_{H}(\partial(aK_1 + \alpha)) < \dim_{H}(\partial K_2) \) or \(\dim_{H}(\partial(aK_1 + \alpha)) > \dim_{H}(\partial K_2) \) may occur.

In the following, we consider the Lebesgue measure of \(\partial K \) for the self-affine IFS (3). We will prove Theorem 1; that is, \(\mathcal{L}(\partial K) = 0 \) if \(A \) and \(d_j \) are all integral. For this, we first prove some lemmas.

Lemma 3. Let the IFS in (3) be integral; that is, all entries of \(A \) and \(d_j \) are integers. Assume that the self-affine set \(K \) has positive Lebesgue measure; then \(K^0 \neq \emptyset \).

Proof. Note that the fact that \(A \) and \(d_j \) are all integral implies that the IFS is uniformly discrete, and the assertion follows from [7, Theorem 3.1].

Lemma 4. Let the IFS in (3) be integral. Suppose that \(\{ d_j \}_{j=1}^m \) contains a complete set of residues (mod \(AZ^d \)). Then the self-affine measure \(\mu \) in (1) is absolutely continuous with respect to the Lebesgue measure provided that

\[
\sum_{j \in \{ d_i \}_{i=1}^m} p_j = \frac{1}{|\det(A)|}, \quad i = 1, \ldots, m.
\]

Proof. Without loss of generality, assume that \(\overline{A} = \{ d_i \}_{i=1}^m \) is a complete set of residues (mod \(AZ^d \)) with \(|\det(A)| = \ell \). Then \(\overline{A} := A \overline{A} + \cdots + A^{\ell-1} \overline{A} \) is a complete set of residues (mod \(AZ^d \)).

For each \(i \in \{ 1, \ldots, \ell \} \), let \(I_i = \{ j : 1 \leq j \leq m, (d_j - d_i) \in AZ^d \} \) and \(p_i = 1/\ell \# I_i \) if \(j \in I_i \); then we have

\[
\sum_{j \in I_i} p_j = \frac{1}{|\det(A)|}, \quad i = 1, \ldots, \ell.
\]

Hence such probability weights \(\{ p_j \}_{j=1}^m \) satisfying (9) always exist.
Abstract and Applied Analysis

To prove the absolute continuity of \(\mu \), by making use of [8, Theorem 3.5], we need only to show that

\[
\sum_{j \in \Sigma, d_j = z} p_j \leq |\det(A)|^{-n}, \quad \forall n > 0, \ z \in \mathbb{Z}^d.
\]

We will prove this by induction on \(n \). By (9), the inequality (11) holds for \(n = 1 \). Assume that (11) holds for \(n = k \). Let \(z = d_1 + A z_1 \) with \(d_1 \in \mathcal{D} \) and \(z_1 \in \mathbb{Z}^d \). If \(j \in \Sigma \), \(j \in \Sigma \), and \(d_{ij} = z_1 \), then \(d_j + Ad_j = d_1 + A z_1 \), so \((d_j - d_i) \in \mathbb{A}^d \), and let \(d_j = d_i + A e_j \) with \(e_j \in \mathbb{Z}^d \); we have \(e_j + d_i = z_1 \). Therefore

\[
\sum_{j \in \Sigma, d_j = z} p_j \leq \sum_{j \in \Sigma, d_j = z} p_j \sum_{j \in \Sigma, d_j = z} p_j \leq |\det(A)|^{-k} \sum_{j \in \Sigma, d_j = z} p_j \leq |\det(A)|^{-k+1}.
\]

Hence (11) is also true for \(n = k + 1 \). This completes the proof. \(\square \)

Remark. Lemma 4 gives a sufficient condition for the existence of \(L^1 \)-solutions of integral refinement equations:

\[
f(x) = |\det(A)| \sum_{j=1}^{m} p_j f(Ax - d_j)
\]

provided that \(\{d_1, \ldots, d_m\} \subset \mathbb{Z}^d \) contains a complete set of residues (mod \(A \mathbb{Z}^d \)). Condition (9) ensures that the refinement equation has a unique (up to a scalar multiple) bounded \(L^1 \)-solution with compact support if \(p_j \)'s satisfy (9). Condition (9) is an extension of the “sum role.”

Lemma 5. Let the IFS in (3) be integral. Suppose \(\{d_j\}_{j=1}^{m} \subset \mathbb{Z}^d \) contains a complete set of residues (mod \(A \mathbb{Z}^d \)); \(K \) is the corresponding self-affine set. Then \(\mathcal{L}(\partial K) = 0 \).

Proof. Lemma 4 implies that there exist probability weights \(\{p_j\}_{j=1}^{m} \) such that the corresponding self-affine measure \(\mu \) is absolutely continuous with respect to the Lebesgue measure and so \(\mathcal{L}(K) > 0 \).

Lemma 3 implies that \(K^o \neq \emptyset \), so \(K^o \) is a nonempty invariant open set (i.e., \(\bigcup_{n=1}^{m} S_n(K^o) \subset K^o \) and \(\mu(K^o) > 0 \)). Then [8, Theorem 4.13] implies that \(\mu(\partial K) = 0 \). On the other hand, [8, Theorem 3.12] implies that the Lebesgue measure restricted on \(K \) is also absolutely continuous with respect to \(\mu \). Hence \(\mathcal{L}(\partial K) = 0 \). \(\square \)

Now we can prove the main theorem of the paper.

Proof of Theorem 1. If \(K^o = \emptyset \), then \(\partial K = K \) and Lemma 3 implies that \(\mathcal{L}(\partial K) = 0 \).

Now we consider the case \(K^o \neq \emptyset \). Let \(\phi_i(x) = A^{-1}(x + d_i) \), \(\psi_j(x) = a \phi_i(a^{-1}(x - \alpha)) + \alpha = A^{-1}(x - \alpha + ad_j + A \alpha) \), \(j = 1, \ldots, m \), and \(\psi_i(x) = A^{-1}(x + z_i), i = 1, \ldots, k \), where \(\mathcal{L} = \{z_1 = 0, \ldots, z_k\} \) is a complete set of residues (mod \(A \mathbb{Z}^d \)). Making use of Theorem 2 and the notations there, exist \(a, n \in \mathbb{N} \) and \(\alpha \in \mathbb{Z}^d \) such that the IFSs \(\mathcal{T} \) and \(\mathcal{T} \cup \mathcal{G} \) have the same attractor \(aK + \alpha \). Let \(\mathcal{D} = a \mathcal{D} - \alpha + A \alpha \). Then \(\mathcal{T} \cup \mathcal{G} = \{A^{-n}(x + d) : d \in \mathcal{D} \cup \mathcal{L} \} \). Note that \(\mathcal{D} \cup \mathcal{L} \) contains a complete set \(\mathcal{L}_n \) of residues (mod \(A \mathbb{Z}^d \)).

Lemma 5 implies that \(\mathcal{L}(\partial K) = a^{-d} \mathcal{L}(\partial(aK + \alpha)) = 0 \). We complete the proof. \(\square \)

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The research is supported by NSFC (nos. 11371382 and 11471075).

References

Submit your manuscripts at
http://www.hindawi.com