Abstract and Applied Analysis
Volume 2015 (2015), Article ID 729894, 10 pages
http://dx.doi.org/10.1155/2015/729894
Research Article
A Fractional-Order Epidemic Model for Bovine Babesiosis Disease and Tick Populations
José Paulo Carvalho dos Santos,1 Lislaine Cristina Cardoso,1 Evandro Monteiro,1 and Nelson H. T. Lemes2
1Instituto de Ciências Exatas, Universidade Federal de Alfenas, 37130-000 Alfenas, MG, Brazil
2Instituto de Química, Universidade Federal de Alfenas, 37130-000 Alfenas, MG, Brazil
Received 7 April 2015; Revised 19 June 2015; Accepted 23 June 2015
Academic Editor: Jinde Cao 
Copyright © 2015 José Paulo Carvalho dos Santos  et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
This paper  shows that the epidemic model, previously proposed under ordinary differential equation theory, can be generalized to fractional order on a consistent framework of biological behavior. The domain set for the model in which all variables are restricted is established. Moreover, the existence and stability of equilibrium points are studied. We present the proof that endemic equilibrium point when reproduction number  is locally asymptotically stable. This result is achieved using the linearization theorem for fractional differential equations. The global asymptotic stability of disease-free point, when , is also proven by comparison theory for fractional differential equations. The numeric simulations for different scenarios are carried out and data obtained are in good agreement with theoretical results, showing important insight about the use of the fractional coupled differential equations set to model babesiosis disease and tick populations.



1. Introduction
Bovine babesiosis is transmitted by the sting of ticks and is the most important disease to attack bovine populations in tropical regions. In warm and hot regions there is great economic loss due to bovine death by bovine babesiosis, with decrease of bovine products and by-products. Moreover, the climate conditions in those regions favor the survival and reproduction of ticks and, consequently, bovines have a permanent contact with these vectors [1]. Furthermore, the vertical transmission in bovines and ticks is possible provided that the ovaries of the female ticks are infected by parasites [1]. The behavior dynamics of diseases has been studied for a long time and is an important issue in the real world. The most important model that can be used to interpret the disease characteristic of epidemics is a susceptible-infected-recuperated model (SIR) that was developed by Kermack and McKendrick [2], and various types of diseases are studied by this type of ordinary differential equation system. Aranda et al. [3] introduced the epidemiological model for bovine babesiosis and tick populations disease. In this work the qualitative dynamics behavior is determined by the basic reproduction number, . If the threshold parameter, , is proved by LaSalle-Lyapunov theorem then the solution converges to the disease free equilibrium point. However, if , the convergence is to the endemic equilibrium point by numerical simulations. In recent years, the theory of networks in epidemiological model has been introduced in the literature. The purpose of this modification is to have better understanding and prediction of epidemic patterns and intervention measures. For more details see [4–6].
The notion of fractional calculus was introduced by Leibniz, one of the founders of standard calculus, in a letter written in 1695. In recent decades, fractional differential equations are one of the most important topics in mathematics and have received attention due to the possibility of describing nonlinear systems, thus attracting much attention and increasing interest due to its potential applications in physics, control theory, and engineering (see [7–15]). The advantage of fractional-order differential equation systems is that they allow greater degrees of freedom and incorporate the memory effect in the model. Due to this fact, they have been introduced in epidemiological modeling systems. In [16], a fractional order for the dynamics of A(H1N1) influenza disease is studied by numerical simulations. Pooseh et al. [17] and Diethelm [18] have introduced fractional dengue models. In this paper the parameters of the equations obtained in the field research do not reproduce well the evolution of the disease in the case of entire order model. However, when we consider the fractional system, with the same parameters obtained in the field, the data are better adjusted which shows an advantage of the fractional system. In [11] the parameter  is associated with a memory effect. In [19], the authors attribute to  the memory information of the dengue disease’s. In this paper, we consider the fractional-order system associated with the evolution of bovine babesiosis disease and tick populations. We introduce a generalization of the classical model presented by Aranda et al. [3]. The generalization is obtained by changing the ordinary derivative by fractional Caputo derivative. It is easy to see that when  we return to the classical model. For the construction of this model by Aranda et al. [3], the compartments of populations and the biological hypothesis are used. This argument is well established in the disease transmission theory. In Aranda et al., theorems well established in the literature for ordinary differential systems are used. To prove our results, it is necessary to use different tools to those used for the integer order. This is due to the fact that the versions of La-Salle invariance theorem used by Aranda et al. are not found in the literature for fractional-order systems. Therefore, we emphasize that the work presents a collaboration in this direction as when using the comparison theory for fractional-order systems to prove the global stability of the equilibrium free point of the disease by introducing a new type of results in the literature. On the other hand, we also have a test on the local asymptotic stability of endemic equilibrium point, a result that is just enunciated in Aranda et al. [3]. We obtain a generalization of all results in [3]. Our simulation shows that the fractional model has great potential to describe the real problem without the need for adjustment of parameters obtained in field research. This is due to a greater flexibility of adjustment obtained with the introduction of the new parameter. This paper is organized in four sections. Introduction is the first section. In Section 2, we mention a few results and notations related to the theory of fractional differential equations; in Section 3, we consider the fractional-order model associated with the dynamics of bovine babesiosis and ticks populations. Qualitative dynamics of the model is determined by the basic reproduction number. We give a detailed analysis for the global asymptotical stability of disease-free equilibrium point and the local asymptotical stability of the endemic equilibrium point. Finally, in Section 4, numerical simulations are presented to verify the main results.


2. Preliminaries
For many years, there have been several definitions that fit the concept of fractional derivatives [10, 20]. In this paper the Riemann-Liouville fractional derivative and Caputo fractional derivative definitions are presented. Firstly, we introduce the definition of Riemann-Liouville fractional integralwhere , , and  is the Gamma function.
The Riemann-Liouville derivative is given by The Caputo fractional derivative is given as follows:where  is the first integer which is not less than .
The Laplace transform of the Caputo fractional derivative is given by
The Mittag-Leffler function is defined by the following infinite power series:The Laplace transform of the functions is
Let  and , and the Mittag-Leffler functions satisfy the equality given by Theorem  in [10]
Definition 1. A function  is Hölder-continuous if there are nonnegative constants ,  such that for all ,  in the domain of  and  is the Hölder exponent. We represent the space of Hölder-continuous functions by .
We develop a generalized inequality, wherein the underlying comparison system is a vector fractional-order system.
A nonnegative (resp., positive) vector  means that every component of  is nonnegative (resp., positive). We denote a nonnegative (resp., positive) vector by  (resp., .
Consider the fractional-order system:where , , , ,  is an open set, , and  is continuous in  and satisfies the Lipschitz condition:for all , where  is a Lipschitz constant.
Theorem 2 (see [15]).  Let , , be the solution of system (9). If there exists a vector function  such that  and If , then 
Now, we will introduce a Theorem of stability for linear systems of fractional order. Let , and we define the linear system homogeneous equation:
Definition 3. We say that linear system (12) is stable if for all ,  exists such that ; then , for all ; linear system (12) is asymptotically stable if .
The next result establishes the stability of the fractional linear system similarly to the theory of ordinary differential equation.
Theorem 4 (see [21]).  System (12) origin is asymptotically stable if and only if  is satisfied for all eigenvalues of the matrix  Moreover, this system is stable if and only if  is satisfied for all eigenvalues of the matrix , and the eigenvalues satisfying  have geometric multiplicity equal to one.
Let , ; we consider the following system of fractional order:
Definition 5. We say that  is an equilibrium point for (13), if and only if 
Remark 6. When , the fractional system  has the same equilibrium points as the system 
Definition 7. The equilibrium point  of autonomous system (13) is said to be stable if for all ,  exists such that if , then , ; the equilibrium point  of autonomous system (13) is said to be asymptotically stable if .
Theorem 8 (see [12]).  The equilibrium points of system (13) are locally asymptotically stable if all eigenvalues  of Jacobian matrix , calculated in the equilibrium points, satisfy 
3. Mathematical Model
In this section, we introduce the fractional model for the babesiosis disease in bovine and tick populations. We use the assumptions in Aranda et al. [3] and introduce the following hypotheses. (i)The total of bovine population  is divided into three subpopulations:(a)bovines that may become infected (susceptible );(b)bovines infected by Babesia parasite (infected );(c)bovines that have been treated for the babesiosis (controlled ). (ii)The parameter  is the birth rate of bovine. The birth rate  is assumed to be equal to the natural death. (iii)The total population of ticks  is divided into two subpopulations:(a)ticks which may become infected by the disease ;(b)ticks infected by the Babesia parasite . (iv)The parameter  is the birth rate of the ticks and it is assumed to be equal to the death rate. (v)A susceptible bovine can transit to the infected subpopulation  because of an effective transmission due to a sting of an infected tick at a rate . (vi)A susceptible tick can be infected if there exists an effective transmission when it stings an infected bovine, at rate . (vii)We assumed a hundred percent vertical transmission in the bovine populations  In the tick populations it occurs with probability , where  is the probability that a susceptible tick was born from an infected one. (viii)A fraction  of the infected bovine is controlled, that is, treated against Babesia parasite. (ix)A fraction  of the controlled bovine may return to the susceptible state. (x)Homogeneous mixing is assumed; that is, all susceptible bovines have the same probability to be infected and all susceptible ticks have the same probability to be infected.
Under the above assumptions, the transmission dynamics of babesiosis disease to bovine and tick population can be modeled by the following system nonlinear ordinary differential equations [3]:
In recent years, a considerable interest in the fractional calculus has been shown, which allows us to consider integration and differentiation of any order. To a large extent this is due to the applications of the fractional calculus to problems in different areas of research. The advantage of fractional-order differential equation systems is that they allow greater degrees of freedom and incorporate memory effect in the model. Now we describe the new system of fractional differential equations to model the babesiosis disease in bovine and tick populations, and in this system, :Simplifying the system (15) and using the bovine populations constant equal  and tick populations is  and introducing the proportionswe obtain the following fractional system that describes the dynamics of the proportion of bovines in each class:defined in the region  Next, we show all variables of the babesiosis model living in  for all time  To establish our first result we introduce the following lemma.
Lemma 9 (see [22]).  Let the function  and its fractional derivative  for , and ; then one has for all , where 
Thus, considering the interval  for any , this theorem implies that the function  is nonincreasing on  if  for all  and nondecreasing on  if  for all 
Proposition 10.  The region  is a positive invariant set for system (17).
Proof. By Theorem  and Remark  in [23] we obtain the global existence and uniqueness of the solutions of (17).
We denote by  and . If -axis  (with the same form we define -axis and -axis). The vector field from (17) confined in -axis assumes the form , by the Laplace transform properties (6), and we obtain the solutionBy the same argument, if -axis we obtain and if -axis, we have This proves that axes , , and  are solutions and positive invariants sets.
Now, we will prove that  is a positive invariant set. By way of contradiction, suppose there exists a solution  such that  and the solution  to escape of  From the previous argument and by the unicity of solutions  do not cross the axis. From the previous conclusion we have three possibilities.  (i)If the solution  escapes by the plane , then there exists  such that ,  and  and for all  sufficiently near  we have  On the other hand,  From Lemma 9, we obtain  for all  sufficiently near , and this is absurd. (ii)If the solution  escape by , then there exists  such that , , and  and for all  sufficiently near  we have  Again,  From Lemma 9, we obtain  for all  sufficiently near , and this is a contradiction. (iii)If the solution  escape by , then there exists  such that ,  and  and for all  sufficiently near  we have  We obtain  and by Lemma 9, we have  for all  sufficiently near , and this is false. Therefore, we obtain ,  and , for all 
If , from the two first equations of system (17), we getApplying the Laplace transform in the previous inequality, we have that can be written asFrom the Laplace transform properties (6) and equality (7) we infer Therefore, we have that 
On the other hand, if , from system (17), we obtain The proof of  is similar to the previous case. Finally, we conclude that  is a positive invariant set.
In the following result we study the existence and stability of the equilibrium points of system (17). Motivated by Aranda et al. [3], we will use the following threshold parameter. For more details on the threshold parameter, see [24, 25]:
The next result is similar to Proposition  in [3], and so we omit its proofs.
Theorem 11.  System (17) has the disease-free equilibrium point: for all the values of the parameters in this system, whereas only if , there is (unique) endemic equilibrium point: where in the interior of .
Computing the Jacobian matrix of system (17) evaluated at the disease-free point, one gets and consequently, the eigenvalues of  are where . It is easy to see that  and  are negative numbers. If  we observe We infer that Therefore, ; then we have that all eigenvalues of the Jacobian matrix at  are negative: that is, , , and from Theorem 8, we have that disease-free equilibrium point  is locally asymptotically stable. Consequently, we have the following Theorem.
Theorem 12.  If , then the disease-free point  is locally asymptotically stable.
In the next result we prove the global asymptotical stability of the disease-free equilibrium point.
Theorem 13.  If , then the disease-free point  is globally asymptotically stable.
Proof. Suppose that  is the solution of system (17). Making the change of variables  we obtain the new system:It is easy to see thatFrom the above, it follows that the solutions  of system (35) satisfy the differential inequality:Moreover, motivated by (37), let  be the solution of fractional linear system:with initial conditions 
The eigenvalues of system (38) are given by Similar to the proof of Theorem 12, we infer that all the eigenvalues are negatives; thus, , , and from Theorem 4, we can conclude that , , and 
From the previous discussion and the comparison principle, Theorem 2, we have This implies , and it follows that  converge to the disease-free equilibrium point , when  This ends the proof.
Now we show the local stability of the endemic equilibrium point , and we give the definition of an additive compound matrix. For more details see [26, 27].
Definition 14. Let  be any  matrix of real and complex numbers, and let  be the minor of  determined by the rows  and the columns  The kth multiplicative compound matrix of  of  is the  matrix whose entries, written in a lexicographic order, are . When  is a  matrix with columns  is the exterior product 
Definition 15. If  is a  matrix, its th additive compound  of the  is the  matrix given by , where  is a differentiation with respect to  For any integers , let  be the th member in the lexicographic ordering of all -tuples of integers such that  Then
Remark 16. For , the matrices  are as follows: 
The next lemma is stated and proved in [28].
Lemma 17.  Let  be a  real matrix. If , , and  are all negative, then all eigenvalues of  have negative real part.
Theorem 18.  If , , and , then endemic equilibrium point  is locally asymptotically stable.
Proof. The Jacobian matrix of systems (17) in the endemic equilibrium point is given byFrom , we have 
To show the , we will make a simplification into system (17), where it comes fromSubstituting (44) in the matrix (43), we obtain Then Therefore, as all are constant positive parameters, it follows that 
Let  be the additive compound matrix: where  and  From the hypothesis , we get Analyzing the terms of equality above, we have Then  and from Lemma 17, the endemic equilibrium point  is locally asymptotically stable. This concludes the proof.
4. Numerical Simulations
In this section, we simulate different possible scenarios to check the effect that some values of fractional exponent  have on the dynamics of bovine babesiosis disease and tick populations. For comparison purposes, we will use the same parameters as Aranda et al. [3]. To solve a nonlinear differential equation set with fractional order, a method based on the classical Adams-Bashforth-Moulton approach was used, as presented in [29]: in which , and  represents population number: , , and , respectively. The time is defined as  in which  and , with  equal to the final time. The fractional integral is determined by modified trapezoidal rule as in which , , and , 
In this work  and  More details about the numerical integration algorithm can be found in [29, 30].
Figure 1 shows the dynamics of the bovine babesiosis disease and tick populations, with initial condition of , , and , and reproduction number . As can be seen, following the course of the disease, the system evolves to the endemic equilibrium point with population number of , , and , as determined by (30). The convergence to the equilibrium point, when , is predicted by Theorem 18. The variables , , and  drop to less than  of the equilibrium values above 6280 years, when a veterinary intervention was simulated making  less than 1 (). This new  value was obtained with  equal to 1/10 of the initial value. Now the system gets out of endemic equilibrium point and evolves to the disease-free equilibrium point , as predicted by Theorems 12 and 13. The control parameters of differential equation set are presented in Table 1.
Table 1: The control parameters.
	

	Parameter 	 Value
	

		 0.0002999
		 0.001
		 0.006
		 0.000265
		 0.00048
		 0.001609
		 0.1
	







	
	
		
		
			
		
			
		
		
			
		
		
			
		
		
		
		
			
		
		
		
		
			
		
		
		
		
			
		
		
		
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
		
			
		
		
		
		
			
		
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
				
					
		
	


Figure 1: Dynamic of the bovine babesiosis disease.  (continuous line) together with  (dashed line) and  (dotted line) were shown as function of the time.


A comparison between two different values of the fractional order is shown in Figure 2, with the same control parameter shown in Table 1. Figure 2 shows a different behavior for  and , with a maximum value of  and a minimum value of , that does not appear when . For both cases, the disease evolves to the endemic equilibrium point; however, it is slower when .




	
	
		
		
		
			
		
			
		
		
			
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
			
				
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
		
			
		
			
	


Figure 2: Dynamic of the bovine babesiosis disease, with  (continuous line) and  (dotted line).


Table 2 shows the time  in which variables drop to less than  of the equilibrium values. These times were obtained with different values of . As we can see, the time  increases when  decreases. The time  as function  was adjusted by two linear equations,  and . The first case is consistent with exponential behavior and the second case with power law . After the statistical analysis based on the correlation coefficient, 0.90013 against 0.98018, one concludes that the system decays to equilibrium condition like power law . This result was previously proven under theoretical assumptions [21].
Table 2: Relaxation time.
	

		/years
	

	 1 	 5120
	0.975 	 8640
	0.95 	 15200
	0.925 	 26720
	0.9 	 42840
	0.875 	 49560
	0.85 	 65840
	0.825 	 70880
	0.8 	 96680
	



5. Conclusions
We did not find global stability results for fractional differential order equations in the literature. This way, we obtain a new result for global asymptotical stability of disease-free equilibrium using comparison theory of fractional differential equations since , and therefore the proof that endemic equilibrium point, when , , and , is locally asymptotically stable was achieved using the linearization theorem for fractional differential equations. Therefore, if  so the system evolves to endemic equilibrium point. To return to disease-free status, the  value should be greater than 1. The  is achieved when parameters  and  are very small or when parameters , , and  are very large. Therefore, biological strategy to combat babesiosis disease would have to focus on one of these parameters. These results were confirmed by numerical simulations using the extension of Adams-Bashforth-Moulton algorithm.
Numeric simulations of improved epidemic model with arbitrary order have shown that fractional order is related to relaxation time, in other words, the time taken to reach equilibrium. Numerical simulations with different order show that the system decays to equilibrium condition like power law , as previously established in [21]. This result provides an important insight about the use of fractional order to model the dynamics of babesiosis disease and tick population. The proof shown here should be used as a guide in the study of equilibrium conditions in similar problems, such as tuberculosis [28], malaria [31], or toxoplasmosis disease [32].
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