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Abstract. 
The authors discuss multiple
solutions for the nth-order singular boundary value problems of
nonlinear integrodifferential equations in Banach spaces by means
of the fixed point theorem of cone expansion and compression. An
example for infinite system of scalar third-order singular nonlinear
integrodifferential equations is offered.



1. Introduction 
Singular nonlinear boundary value problems of the ordinary differential equations appeared frequently in applications. With Taliaferro [1] treating the general problem, Callegari and Nachman [2] considered existence questions in boundary layer theory, and Luning and Perry [3] obtained constructive results for generalized Emden-Fowler problems. Results have also been obtained for singular boundary value problems arising in reaction-diffusion theory and in non-Newtonian fluid theory [4]. Singular nonlinear boundary value problems of the ordinary differential equations have made great progress in recent years (please see [5–8]).
In the above papers, singular problems are studied in scalar case. In Chen [9], the boundary value problems of a class of th-order nonlinear integrodifferential equations of mixed type in Banach space are considered, and the existence of three solutions is obtained by using the fixed point index theory. But such equations do not have singular nonlinear terms. As much as we know, there are a few papers ([10–18]) to consider the singular problems in abstract Banach spaces. In Liu [10], the following singular problems in Banach spaces were investigated by constructing a special convex closed set and using Mönch fixed point theorem, where  denotes the zero element of . In [10], (1) under certain conditions, there is at least one solution. And, in the methods, under normal circumstances, to investigate the singular problems, at first, one needs to consider the approximation problems which have no singularities. However, in the study of integrodifferential equations in infinite dimensional Banach space, this method is very complicated and difficult.
In this paper, not considering approximative problems, informed by the characteristic of nonlinear term, we construct a new cone, and through the cone we create a new special cone. Moreover, through finding the relations from  to  ( belongs to the special cone), we triumphantly overcome the singularity and use the fixed point theorem of cone expansion and compression directly to obtain the existence of multiple solutions for singular boundary value problems of nonlinear integrodifferential equations in Banach spaces. Finally, an example of scalar third-order singular nonlinear integrodifferential equations for an infinite system is offered. With the previous methods, one can not get the results in this paper.
Let  be a cone in Banach space  which defines a partial ordering in  by  if and only if . Let .  is said to be normal if there exists a positive constant  such that  implies , where  denotes the zero element of , and the smallest  is called the normal constant of . For convenience, in the following, we set  as a normal cone and . Let , in which  and . Obviously,  is a normal cone of , and the normal constant of  also is 1. Cone  is the key to overcome the singular nonlinear term (please see the last example).
We consider the following singular boundary value problem (SBVP for short) for an th-order nonlinear integrodifferential equations in Banach spaces : where , , with  ( denotes the set of all nonnegative real numbers).
 is singular at , , andor  if , , 
Let . A map  is called a solution of SBVP (2) if it satisfies (2).
2. Preliminaries and Several Lemmas
Denote  is a map from  into  and  is continuous on . The norm of  is defined by whereObviously  is a Banach space.
Let Obviously,  is a cone of . For , we write  and .
Let  be continuous. We call the abstract generalized integral  convergence if  exists. Analogously, we can define the convergence of other kinds of abstract generalized integrals.
We will use  to denote the Kuratowski measure of noncompactness of set in space . For details of the Kuratowski measure of noncompactness, please see [19].
Lemma 1 (see [19]).  Let  be a bounded set of  Suppose that  is equicontinuous. Then, where 
Lemma 2 (see [19]).  If  is bounded and equicontinuous, then  is continuous on . Moreover, 
Lemma 3 (see [19]).  Let  be a bounded set of  Then, where    is defined by Lemma 1.
Lemma 4 (the fixed point theorem of cone expansion and compression [see [20]]).   is a cone of real Banach space . Let Suppose that  is a strict set contraction such that one of the following two conditions is satisfied: (i),  and , ;(ii),  and , .Then,  has at least a fixed point in .
3. Main Results and an Example
To continue, let us formulate some conditions.
 There exist , , , and , , such thatwhere  is nonincreasing and  and  are nondecreasing.
 For any , And, there exists a  such that where ,   ,   , and    are defined as in condition , and
 For any , ,  is uniformly continuous on and there exist , such that
Remark 5. Obviously, condition  is satisfied automatically when  is finite dimensional.
 There exist , and    denotes the dual cone of  such that  for . At the same time, one of the  conditions is satisfied uniformly in , with .
Remark 6. Because  is singular at , condition  is easy to be satisfied. And only one of the  conditions is satisfied.
 There exist , and    denotes the dual cone of  such that  for . At the same time, one of the following  conditions is satisfied: uniformly in , with .
Remark 7. In condition , only one of the  conditions is satisfied.
To avoid singularity, let Obviously,  is a normal cone in , and the normal constant of  is 1.
Lemma 8.  Suppose . Then, 
Proof. For any , that is, , Therefore, which implies that Because of , and the normal characters of , it is easy to get Hence,It follows from (28) and (29) and the normal characters of  that By (27) and (30), the conclusion holds.
Remark 9. Formula (23) implies that the norm of  is decided by th-order derivative .
Remark 10. Inequality (24) implies that  controls distance between  and . This is one of the keys to apart from the singularities of the nonlinear term .
Lemma 11.  For , the following conclusion holds: where 
Proof. In fact, for ,  , we get ConsiderIt follows from (33) and (34) that that is,On the other hand, for , it is easy to get It follows from (36) and (37) that Since for  (38) holds, we get (31).
Lemma 12.  Suppose conditions  and  are satisfied. Then, for any , , in which the operator  is defined by where 
Proof. At first, we show that the operator  defined by (39) is reasonable for  with any . In fact, for  with , by  and , which implies that  defined by (39) is reasonable for .
Next, we show that . For ,which implies  and . This together withgives Therefore,  holds.
Finally, by Lemma 11 and (39) and (40), one can see It follows from (44) and (45) that .
Lemma 13.  Let cone  be normal and let conditions  and  be satisfied. Then,  is a fixed point of operator  if and only if  is a solution for SBVP (2).
Proof. By Lemma 12, . For , Taylor’s formula with the integral remainder term gives Substituting into (46), we get Let  be the solution of SBVP (2). Then, (48) implies Comparing this with (39) and (40), we have , which means  is the fixed point of the operator  in .
On the other hand, let  be the fixed point of the operator . By (39) and (40), where . It follows by taking  and  in (50) that that is,Then, (51)-(52) imply that  is the solution for SBVP (2) in .
Lemma 14.  Suppose conditions  are satisfied. Let with , . Then, with .
Proof. Apart from the singularities, let By conditions  and , for any , , one can see thatBy virtue of absolute continuity of the Lebesgue integrable function and (56), it is easy to see that in which  denotes the Hausdorff distance between  and . Therefore, Now, we check that For , it is easy to see that  is bounded, which implies that  are bounded. Sincewe havewhere ,   , , and . Take , , such that Obviously,  and ; moreover, both of them are equacontinuous on . It follows from (62), , and Lemmas 1 and 2 that Analogously, it is easy to get It follows from , (61), (63), and (64) that Hence, by (58), we know (59) is true, and the conclusion holds.
Lemma 15.  Let conditions , , and  be satisfied. Suppose that , in which . Then,  is a strict set contraction from  into .
Proof. By Lemma 12, , and , it is easy to see that  and  is a bounded operator. We check that  is continuous. In fact, let , . For , it is easy to get For , by (31) and (50), By (66) and conditions  and , it is easy to get From (67), by Lebesgue dominated convergence theorem, combined with the equicontinuity of  and the continuity of , we have uniformly for . Therefore, Combining this with (23), we get Hence,  is continuous.
Let  be bounded, so  is bounded. It is easy to prove that  is bounded, so  is equicontinuous. By Lemma 1, where ( is fixed,  On account of Lemmas 14 and 3, it is easy to see that Similarly,Thus, we get  by (72), (73), and (74). Since  is bounded and continuous and , the conclusion holds.
Theorem 16.  Suppose that the conditions , , , , and  are satisfied. Then, SBVP (2) has at least two solutions  and  in , satisfying 
Proof. Suppose that the conditions , , and  are satisfied. For a , , let . There is a , such that Now, for any , we show that in which  is partial ordering defined by . In fact, suppose that there is a , , such that  Then, for , , we have By (76) and (78), one can see that Hence, Then, it follows from ,  and (80) that Since , by (24), we get which implies It contradicts . Thus, (77) holds.
On the other hand, by conditions , , and , for , , let There exists  such that Set We show that In fact, by (24), if there is ,  such that , then It is easy to see by (86) and (88) that In the same way, similar to the proof of (77), (87) holds.
Finally, by condition , one can see In fact, if there is ,  such that , then Hence, This is a contradiction. Therefore, (90) is true.
Above all, we set , . By , , , and Lemma 15, we know that  is a strict set contraction. By virtue of (77), (87), and (90), applying Lemma 4 twice, we obtain that operator  has at least one fixed point in  and , respectively. By Lemma 13, SBVP (2) has at least two solutions  and  satisfying .
An application of Theorem 16 is as follows.
Example 17. Consider SBVP of infinite system for scalar nonlinear third-order singular integrodifferential equations: 
Conclusion 18. Infinite system (93) has at least two solutions: such that 
Proof. Let ,  with norm , and . Obviously  is a normal cone in  and the normal constant . Let . Then, it is easy to see , , and . Infinite system (93) can be regarded as SBVP of the form (2) in . In this situation, , with Obviously, for , it is easy to see that which implies that Since , , , , as , one can see that , as  That is, . Obviously, . By (99), we can see On the other hand, it follows from (97) and (98) that It is easy to get It follows from (100), (101), and (102) that So,  and  is singular at , , and/or . Thus, by (100), condition  holds for For any , by (100), we have, with  and , On the other hand, taking , by (105), we haveBy (105) and (106), condition  is satisfied.
For any , , it is clear that  is uniformly continuous on Let , with where For any by (99) and (109), we get So, the relative compactness of  in  follows directly from a known result (see [21]): a bounded set  of  is relatively compact if and only if Hence, By (109), it is easy to get Combining this with (109), (113), and (114), one can see Therefore, condition  holds.
For any , define  by . It is easy to see , . Let , for and it is easy to see ,  Thus, (97), (101), and (102) imply that The conditions  and  follow from (118) and (119). It is easy to see that forTherefore, by Theorem 16, our conclusion holds.
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