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Abstract. 
Necessary and sufficient conditions for output reachability and null output controllability of positive linear discrete systems with delays in state, input, and output are established. It is also shown that output reachability and null output controllability together imply output controllability. 



1. Introduction
The research devoted to controllability was started by Kalman in the 1960s [1] and refers to linear dynamical systems. Controllability is one of the fundamental concepts in the modern mathematical control theory ([2–4],…) and continually appears as a necessary condition for the existence of solutions to many control problems, for example, stabilization of unstable system by feedback and optimal control. Basically a system is controllable if it is possible to transfer it around its entire configuration space using only certain admissible controls. There exist many definitions of controllability that depends on the framework or the class of models applied. The following are examples of variations of controllability notions which have been introduced in the control literature: asymptotic controllability [5], relative controllability [6], constrained controllability [7], complete controllability [8], approximate controllability [9], small controllability [10], output controllability [11, 12], and so on.
In most engineering applications, it is needed to direct the output toward some desired value. In fact, having control over the output of the system has a significant importance if not more than the states. For example, the control of a multilink cable-driven manipulator, where the task is typically defined in terms of end effector pose, rather than the joint positions and velocities which can define the system’s state [13], also, controlling the output of fixed-speed wind turbines in the electrical network, which can directly affect the behavior of power systems [14]. Output controllability is a property of the impulse response matrix of a linear invariant-time system which reflects the dominant ability of an external input to move the output from any initial condition to any final condition in a finite time [2]. In general, the output controllability means that the system’s output can be directed regardless of its state [15]. The necessary and sufficient criterion for output controllability of linear time-invariant systems is addressed in, for example, [12].
Positive systems are a wide class of systems in which state variables and outputs are constrained to be positive, or at least nonnegative for all time whenever the initial conditions and inputs are nonnegative. Since the state variables and outputs of many real-world processes represent quantities that may not have meaning unless they are nonnegative because they measure concentrations, numbers, populations, and so on, positive systems arise frequently in mathematical modeling of engineering problems, management sciences, economics, social sciences, chemistry, biology, ecology, pharmacology, medicine, and so forth.
An excellent survey of positive systems with an emphasis on their applications in the areas of management and social sciences is given by Luenberger in [16]. The more recent monographs by Farina and Rinaldi in [17] and Kaczorek in [18] are devoted entirely to positive linear systems and some of their applications. Since positive systems are confined within a cone located in the positive orthant rather than in the whole space [19, 20], their analysis and synthesis are more complicated and more challenging.
The state controllability of positive linear discrete systems is largely studied by several authors since late 1980s [21–26], the problem of controllability of linear positive discrete systems with delays in state or control was discussed in [27]. The problem of output reachability of positive linear discrete systems is addressed in [28]. The output reachability of positive discrete linear systems with state delay has been studied in [29].
In this paper we examine the issue of output reachability, null output controllability, and output controllability for positive linear systems with multiple delays in state, input, and output. These concepts are equivalent for unconstrained systems. The output reachability of discrete positive linear systems are characterized and proven by a simple algebraic proof. The criteria for the null output controllability will be established. We show that these properties are not equivalent for positive systems. In addition we prove that the positive system is output controllable only if it is output reachable and null output controllable.
The structure of the paper is as follows. In the next section some mathematical preliminaries of positive linear discrete systems with delays are presented. We investigate the output reachability and null output controllability of positive linear discrete systems with delays in state, input, and output, respectively, in Sections 3 and 4. In Section 5, necessary and sufficient conditions for the output controllability of positive delay systems are provided. Numerical examples will be presented in Section 6.
2. Preliminaries
First we introduce some notations.  is the set of nonnegative integers,  the set of positive integers,  the finite subset of  with ,  the set of real vectors with  components, and  the set of vectors in  with nonnegative components; that is, where  denotes the transpose,  the set of real matrices of order ,  the identity matrix in , and  the inverse of 
In this work, we consider the discrete linear delay system with the output equation where  is the system state,  is the input (or control),  are the matrices of the state,  are the matrices of the input,  are the matrices of the output and  are the matrices of the feedthrough (or feedforward), and ,  and , and  are the nonnegative integer maximal values of delays on state, input, and output, respectively.
Definition 1.  The system modeled by (2) and (3) is said to be positive if the state  and the output , for any initial states  and for any initial inputs  and all inputs 
The mathematical theory of positive linear systems is based on the theory of nonnegative matrix developed by Perron and Frobenius (see [16, 30]).
Definition 2.  A matrix  in  is said to be nonnegative and denoted by , if all of its elements are nonnegative; that is,  for all .
Remark 3.   if and only if  for all  Indeed, suppose one of the elements of , is negative. Then, for the nonnegative vector  with the one in the th component, the th component of  would be , which is negative. It is also easy to verify the converse.
The following proposition provides a necessary and sufficient conditions for positivity of system (2) and (3).
Proposition 4.  System (2) and (3) is positive if and only if 
Proof.    
Sufficiency. If the condition (4) is satisfied, thensince  and  Assume that  for . From (2) we havesince (4) holds and , , and  Hence  for any . Consequently, if condition (5) is satisfied, we get that  for every  since ,  , and 
Necessity. Assuming that system (2) and (3) is positive, let  for . Then from (2) and (3), for , we havewithHence by Remark 3, we have ; that is,  and ; that is,  since  and  are arbitrary. Now, assume that  for , and for , we obtainwithwhich implies that ; that is,  and , that is,  since  and  are arbitrary. This completes the proof.
In all the sequel, we assume that system (2) and (3) is positive.
In the next proposition, we will present the explicit solution of system (2).
Proposition 5.  The general solution to (2) is given by where the transition matrix  is determined by the recurrence relationwith the assumption
Proof.  The proof is given in [31].
We pose , and thenand, for all , we pose with  for 
Moreover, for , we pose with , for 
Clearly by (15), (16), and (17), the solution of (2) is given by the following new formula:
In the following and without loss of generality, we assume that . Indeed, for example, if  we can set  for .
Now, we introduce the matrices sequence as follows:
For , the output equation (3) can be rewritten as
Hence withwhere
For , we haveThen, we get the linear algebraic equationwith
The following lemmas will be needed in the sequel.
Lemma 6.  For any , we have
Proof.  First, for , we have  and (28) holds. Secondly, suppose that (28) holds for . We prove that it holds for 
For , we haveFor , we haveThus, (28) is satisfied in step . Hence, (28) holds for any .
Lemma 7.  For all , we have
Proof.  For , we haveLet . For , we havethen by Lemma 6, we get For , we haveAnd for , we haveSimilarly, we prove that (32) holds.
Lemma 8.  We haveAnd for all , we have
Proof.  Let . For , we havefor , we haveand, for , we haveFor , with , we haveand, for , we haveSimilarly, we prove that (40) holds.
3. Output Reachability
In this section we will present necessary and sufficient conditions for output reachability of system (2) and (3). By generalization of definition given in [29] we obtain the following definitions.
Definition 9.  The system modeled by (2) and (3) is said to be output reachable in  steps if, for any nonnegative final output , there exists a nonnegative input sequence , which steers the output of the system from  to , with  for ; that is, 
Definition 10.  The system modeled by (2) and (3) is said to be output reachable if there exists a positive integer  such that the system is output reachable in  steps.
Now, we present a class of nonnegative matrices, called the monomial matrices [18, 30]. The utility of such a matrix will be highlighted in the study of the output reachability of positive linear systems.
A vector  with exactly one of its components being nonzero and all the others being zero is called monomial vector or -monomial if the nonzero component is in the th position.
Definition 11.  A square matrix  is said to be monomial if it contains  linearly independent monomial columns.
An important property of monomial matrices is given by the following result.
Lemma 12 (see [18]).  Let . Then  exists and is nonnegative if and only if  is a monomial matrix. Furthermore,  is also a monomial matrix.
The characterization of the output reachability is given by the following proposition.
Proposition 13.  The system modeled by (2) and (3) is output reachable if and only if, for some , the output reachability matrix  includes a monomial submatrix of order .
Proof.    
Sufficiency. Let  be the final output to be reached. From (21) or (25), we have With , this givesThe matrix  includes a monomial submatrix of order , and without loss of generality, we can assume that such that  is a monomial matrix and  Hence, by Lemma 12, we have . Thus, for we getthat is, system (2) and (3) is output reachable.
Necessity. Assume that system (2) and (3) is output reachable for some . Thus, for every  there exists an input  such that with  and . In particular, for , with  being the first column of , we haveand for , we haveSo by (52), there exists  such that , and consequently by equation (53) we have  for all . Hence, if , then the th column of  is monomial. If , then the th column of  is null, which implies thatThe same reasoning gives the existence of a -monomial column or another null column of . Since the columns of  are not all null, then  has at least one -monomial column.
The same reasoning for , , leads to the existence of a -monomial column. Hence by Definition 11, the matrix  contains a monomial submatrix of order . The proposition is proved.
Remark 14.  If system (2) and (3) is output reachable andthen the nonnegative input  which steers the output of the system from , to any desired nonnegative final output , with  for , can be computed by the formula 
4. Null Output Controllability
By generalization of definition given in [11] the precise definitions of the null output controllability of system (2) and (3) are given as follows.
Definition 15.  The system modeled by (2) and (3) is said to be null output controllable in  steps if, for any nonnegative initial state sequence  and any nonnegative initial input sequence , there exists a nonnegative input sequence , which steers the output of the system from  to zero; that is, 
Definition 16.  The system modeled by (2) and (3) is said to be null output controllable if there exists a positive integer  such that the system is null output controllable in  steps.
The characterization of the null output controllability is given by the following proposition.
Proposition 17.  The system modeled by (2) and (3) is null output controllable if and only if, for some , the null output controllability matrix  is null.
Proof.    
Sufficiency. From (21) or (25), at the step , we havesince , then, for , we have ; that is, system (2) and (3) is null output controllable.
Necessity. If system (2) and (3) is null output controllable, then, for some , there exists an input  such thatSince  and , then , which ensures that  because  by Definition 15, is arbitrary. This finishes the proof.
System (2) and (3) describes the evolution of the state and output of a system in the nonnegative orthant with delays in the state, input, and output. However, we can rewrite this system in such a way that these delays disappear from the state equation. Let  be the solution of (2) and define a new state variable  for  by
It is readily verified that the state  satisfies and the output  satisfies wherewhere
Then we have the following result.
Proposition 18.  The system modeled by (2) and (3) is null output controllable if and only if there exists  such that  In particular, if  is nilpotent, then system (2) and (3) is null output controllable.
Proof.    
Sufficiency. The general solution of (60) is given by For , we have , this implies that since . Hence system (2) and (3) is null output controllable.
Necessity. System (2) and (3) is null output controllable, according to Proposition 17,  for some  For , we haveOn the other hand, we have ; then  since  is arbitrary. This completes the proof.
In the remainder of this section and without loss of generality, we assume that . Indeed, if  we can set  for .
Lemma 19.  For all , we have
Proof.  Let  for  Then, according to (64), we have On the other hand, from (18), for all  we haveHence by identification between (68) and (69), we get that (67) holds.
Proposition 20.  If, for some  is injective, that is, , then system (2) and (3) is null output controllable implying that  is a nilpotent matrix.
Proof.  System (2) and (3) is null output controllable; then by Proposition 17, for some , we have . If , then ,  and ,  Then  and . Since  is injective, then  is invertible, which implies that  and . By Lemma 7, for  we get  and . According to Lemma 19, we have , that is,  is nilpotent. Similarly, we prove that  is nilpotent if  This finishes the proof.
5. Output Controllability
By generalization of definition given in [11] we shall formulate the fundamental definitions for output controllability of system (2) and (3) as follows.
Definition 21.  The system modeled by (2) and (3) is said to be output controllable in  steps if for any nonnegative initial state sequence  and any nonnegative initial input sequence , there exists a nonnegative input sequence , which steers the output of the system from  to any desired nonnegative final output , i.e., 
Definition 22.  The system modeled by (2) and (3) is said to be output controllable if there exists a positive integer  such that the system is output controllable in  steps.
The characterization of the output controllability is given by the following proposition.
Proposition 23.  The system modeled by (2) and (3) is output controllable if and only if it is output reachable and null output controllable.
Proof.    
Necessity. It is evident.
Sufficiency. Since system (2) and (3) is output reachable, then, according to Proposition 13,  for some  includes a monomial submatrix of order . On the other hand, system (2) and (3) is null output controllable; hence, according to Proposition 17,  for some  Then, for , the matrix contains a monomial submatrix of order , with . Hence, by proof of Proposition 13, for any , there exists a nonnegative input  such that And by Lemma 8, we have . Then for every  we get thatthat is, system (2) and (3) is output controllable. The proposition is proved.
6. Numerical Examples
Example 1 (output reachability).  Suppose that we are given system (2) and (3) with  and matricesThe conditions of Proposition 13 are satisfied because the output reachability matrix in five stepscontains a monomial submatrix of order 
By simple calculation, we getThen the nonnegative input sequence that permitted to transfer the output from the zero initial conditions to the final output  according to (56) is Table 1 gives the values of the output at each step. We see that the final output has been reached within a number of steps of the input data sequence greater than 
Table 1: Values of the outputs in the transfer steps.
	

	 					
	

	 					
	



This comes up to be a particularity of discrete delay systems. This is not satisfied in the case of discrete systems without delay where the steps to reach the final output  are always less than or equal to . This results from the Cayley-Hamilton theorem.
The next two examples study, respectively, the conditions of the null output controllability and output controllability.
Example 2 (null output controllability).  Consider the system modeled by (2) and (3) with matricesSystem (2) and (3) is null output controllable because the null output controllability matrix in four stepsis null.
System (2), (3) in this example is null output controllable for any  because the matrix  is nilpotent with index ; that is,  and 
Example 3 (output controllability).  Consider the system modeled by (2) and (3) with matricesSystem (2) and (3) is output reachable because the output reachability matrix in tree stepscontains a monomial submatrix of order 
The conditions of Proposition 17 are satisfied because the null output controllability matrix in four stepsis null, so by proof of Proposition 23, the system is output controllable in four steps.
7. Conclusion
The output controllability of positive discrete linear systems with delays in state, control, and output has been considered. Necessary and sufficient conditions for the positivity of discrete systems have been established (Proposition 4). Criteria for output reachability (Proposition 13) and null output controllability (Proposition 17) of the positive discrete systems have been also proved. It has been shown that output reachability and null output controllability together imply output controllability (Proposition 23). Numerical examples were given to illustrate the results.
We think that the techniques used in this paper can be useful to investigate the output reachability, null output controllability, and output controllability problems for different positive dynamical systems such as switched systems, fractional systems with different orders, and fractional switched systems.
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