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Abstract. 
We provide an Itô formula for stochastic dynamical equation on general time scales. Based on this Itô’s formula we give a closed-form expression for stochastic exponential on general time scales. We then demonstrate Girsanov’s change of measure formula in the case of general time scales. Our result is being applied to a Brownian motion on the quantum time scale (-time scale).



1. Introduction
The theory of dynamical equation on time scales ([1]) has attracted many researches recently. In particular, attempts of extension to stochastic dynamical equations and stochastic analysis on general time scales have been made in several previous works ([2–6]). In the work [3] the authors mainly work with a discrete time scale; in [2] the authors introduce an extension of a function and define the stochastic as well as deterministic integrals as the usual integrals for the extended function; in [4] the authors make use of their results on the quadratic variation of a Brownian motion ([7]) on time scales and, based on this, they define the stochastic integral via a generalized version of the Itô isometry; in [6] the authors introduce the so-called -stochastic integral via the backward jump operator and they also derive an Itô formula based on this definition of the stochastic integral. We notice that different previous works adopt different notions of the stochastic integral and there lacks a uniform and coherent theory of a stochastic calculus on general time scales.
The purpose of the present article is to fill in this gap. We will be mainly working under the framework of [2], in that we define our stochastic integral using the definition given in [2]. We then present a general Itô’s formula for stochastic dynamical equations under the framework of [2]. Our Itô formula works for general time scales and thus fills the gap left in [3], which deals with only discrete time scales. By making use of Itô’s formula we obtain a closed-form expression for the stochastic exponential on general time scales. We will then demonstrate a change of measure (Girsanov’s) theorem for stochastic dynamical equation on time scales.
We would like to point out that our change of measure formula is different from the continuous process case in that the density function is not given by the stochastic exponential but rather is found by the fact that the process on the time scale can be extended to a continuous process simply by linear extension.
It is also worth mentioning that our construction is different from [8] in that we are working with the case that the time parameter of the process is running on a time scale, whereas in [8] and related works (e.g., [9–11]) the authors are working with the case that the state space of the process is a time scale.
We note that stochastic calculus on the so-called -Brownian motion has been considered in [12–14]. As an application, we will also work our Itô formula for a Brownian motion on the quantum time scale (-time scale) case at the last section of the paper.
The paper is organized as follows. In Section 2 we discuss some basic set-up for time scales calculus. In Section 3 we will briefly review the results in [2] and define the stochastic integral and stochastic dynamical equation on time scales. In Section 4 we present and prove our Itô formula. In Section 5 we discuss the formula for stochastic exponential. In Section 6 we prove the change of measure (Girsanov’s) formula. Finally in Section 7 we consider an example of Brownian motion on a quantum time scale.
2. Set-Up: Basics of Time Scales Calculus
A time scale   is an arbitrary nonempty closed subset of the real numbers , where we assume that  has the topology that it inherits from the real numbers  with the standard topology.
We define the forward jump operator byand the backward jump operator by
Let . If , then  is called right-scattered. If , then  is called right-dense. If , then  is called left-scattered. If , then  is called left-dense. Moreover, the sets  and  are derived from  as follows: if  has a left-scattered maximum, then  is the set  without that left-scattered maximum; otherwise, . If  has a right-scattered minimum, then  is the set  without that right-scattered minimum; otherwise, . The graininess function is defined by  for all .
Notice that since  is closed, for any , the points  and  are belonging to .
For a set  we denote the set .
Given a time scale  and a function , the delta (or Hilger) derivative  of  at  is defined as follows ([1, Definition ]).
Definition 1. Assume  is a function and let . Then we define  to be the number (provided that it exists) with the property that, given any , there is a neighborhood  of  (i.e.,  for some ) such that 
The delta derivative is characterized by the following theorem [1, Theorem ].
Theorem 2.  Assume that  is a function and let . Then one has the following: (i)if  is differentiable at , then  is continuous at .(ii)if  is continuous at  and  is right-scattered, then  is differentiable at  with(iii)If  is right-dense, then  is differentiable at  if and only if the limit exists as a finite number. In this case (iv)If  is differentiable at , then
3. Stochastic Integrals and Stochastic Differential Equations on Time Scales
We will adopt the definitions introduced in [2] as our definition of a Brownian motion and Itô’s stochastic integral on time scales. In the next section we will derive an Itô formula corresponding to the stochastic integral defined in such a way.
Definition 3. A Brownian motion indexed by a time scale  is an adapted stochastic process  on a filtered probability space  such that(1);(2)if  and , then the increment  is independent of  and is normally distributed with mean  and variance ;(3)the process  is almost surely continuous on .
Note that property (3) is proved in the work [5].
For a random function  we define the extension  byfor all .
We shall make use of the definitions given in [2] for the classical Lebesgue and Riemann integral. For any random function  and  we define its -Riemann (Lebesgue) integral as where the integral on the right-hand side of the above equation is interpreted as a standard Riemann (Lebesgue) integral. In a similar way, the work [2] defines a stochastic integral for an -progressively measurable random function  aswhere again the right-hand side of the above equation is interpreted as a standard Itô stochastic integral. Note that the way (8) in which we define the extension guarantees that the function  is progressively measurable.
In [2] the authors then defined the solution of the -stochastic differential equation indicated by the notationas the process  such that with the deterministic and stochastic integrals on the right-hand side of the above equality interpreted as was just mentioned. Under the condition of continuity in the -variable and uniform Lipschitz continuity in the -variable of the functions  and , together with being no worse than linear growth in -variable, existence and pathwise uniqueness of strong solution to (11) are proved in [2].
4. Itô’s Formula for Stochastic Integrals on Time Scales
We will make use of the following fact that is simple to prove.
Proposition 4.  The set of all left-scattered or right-scattered points of  is at most countable.
Proof. If  is a right-scattered point, then  is an open interval such that . Similarly, if  is a left-scattered point, then  is an open interval such that . Suppose  and . We then distinguish four different cases.
Case 1 (both  and  are right-scattered). We argue that in this case we have . Suppose this is not the case, then we must have . But we see that  and . So we must have . We arrive at a contradiction.
Case 2 (both  and  are left-scattered). This case is similar to Case 1 and we conclude that .
Case 3 ( is left-scattered;  is right-scattered). In this case we see that  and , as well as . This implies that .
Case 4 ( is right-scattered;  is left-scattered). In this case  and . If , then . If , then we see that  so that . That implies further that  and ; that is, .
Thus we see that for all points  being left- or right-scattered, the set of all open intervals of the form  are disjoint subsets of . Henceforth there are at most countably many such intervals. Each such interval corresponds to one or two endpoints in  that are either left- or right-scattered. Thus the total number of left- or right-scattered points in  is at most countably many.
Let  be the (at most) countable set of all left-scattered or right-scattered points of . As we have already seen in the proof of the previous proposition, the set  corresponds to at most countably many open intervals  such that (1) for any , ; (2) either the left-endpoint or right-endpoint or both endpoints of any of the ’s are in  and are left- or right-scattered; (3)  for any ; (4) any point in  is a left- or right-endpoint of one of the ’s.
We will denote . Since, for any , the points  and  are in , we further infer that, for any such interval , we have the fact that  and  are in , so that  is right-scattered and  is left-scattered.
We then establish the following Itô formula.
For any two points , , and any open interval , such that , we have . This is because if that is not the case, then  or  will belong to , contradictory to the fact that . We conclude that 
Let us consider a function . Let ,  be the first- and second-order delta (Hilger) derivatives of  with respect to time variable  at  and let  and  be the first- and second-order partial derivatives of  with respect to space variable  at .
Theorem 5 (Itô’s formula).  Let any function  be such that , , , , , and  are continuous on . Set any , ; then we have
Proof. We will make use of the following classical version (Peano form) of Taylor’s theorem: for any function  such that  and  are continuous on , and any  and , we havewhereand  is an increasing function with .
We will also make use of the time scale Taylor formula (see [1, Theorem ] as well as [15]) applied to  up to first order in : for any  and ; we have wherewith  as before.
Combining (15) and (17) we see that we havewith for another function  increasing with .
Consider a partition , such that (1) each ; (2)  for . Notice that by definition , so that we can always find  so that  is sufficiently small.
Let the sets  and  be defined as before. Let us fix a partition , and consider a classification of its corresponding intervals . We will classify all intervals  such that for all  we have  as class ; and we classify all intervals  such that there exist some  with  as class . For an interval  in class , since for all  we have , we see that , because otherwise  will be one of the ’s. Thus in this case we have . For an interval  in class , since both  and  are in , we see that we have in fact . In this case either , or . If the latter happens, then  is one of the ’s and . We also see from the above analysis that all ’s are contained in intervals  that belong to class . On the other hand, either each interval  is entirely one of the ’s, or it contains an interval  that is one of the ’s. For the latter case, that is, when , the set of intervals of the form  are disjoint open intervals such thatNow we haveWe apply (19) term by term in part  of (22), and we getWe have the following four convergence results.
Convergence Result 1.1. By Lemma 6 ((35) and (36)) established below we haveConvergence Result 1.2. By Lemma 7, (43), and Lemma 6, (35), established below we haveConvergence Result 2. We have, with probability one, thatas .
In fact, by the Kolmogorov–Čentsov theorem proved in Theorem 3.1 of [5] we know that for almost all trajectories of  on , for each fixed trajectory , there exists an  such that for all , for a partition  with a classification of its intervals  into classes  and  as above,  for some fixed  and . From here we can estimate that is,Convergence Result 3. LetWe claim that we have In fact, from the analysis that leads to estimate (17) we see that we can write  asHereFrom (21), the Kolmogorov–Čentsov theorem proved in Theorem 3.1 of [5], as well as the assumptions about function , we see thatFrom here we immediately see the claim (30).
Note that for any interval  we have ; therefore we see thatCombining the convergence results (24), (25), (28), and (30), together with (22) and (23) and (34), we establish (14).
The next two lemmas are used in the above proof of Itô’s formula, but they are also of independent interest.
Lemma 6 (convergence of -deterministic and stochastic integrals).  Given a time scale  and , ; a probability space ; a Brownian motion  on the time scale , for any progressively measurable random function  that is continuous on , viewed as a -progressively measurable random function  on , and the families of partitions , , , one has 
Proof. As we have seen in the proof of Itô’s formula, for a given partition , such that  for , and , we can classify all intervals of the form  into two classes  and : class  is those open intervals  such that it does not contain any open intervals ; class  is those open intervals  such that it contains at least one open interval , the latter of which has endpoints that are left- or right-scattered.
Let us form a family of partitions , so that the partition  is the partition  together with all points in  that are of the form  for some  in the partition . Note that under this construction we have . In fact, for any interval  in , there is an identical interval  in the partition  corresponding to it; for any interval  in , there are two intervals  and  corresponding to it, so that . And by (21) we know thatNote that the number  depends on  and the partition . In particular  as . For simplicity we will suppress this dependence later in our proof.
Let us recall the definition of deterministic and stochastic -integrals as defined in Section 2. Let  be the extension of  that we have in (8): for any ,Note that if  is such that , then ; otherwise if  is such that , then . Thus we see that So it suffices to prove that In fact, for any interval  in class , there exist an interval  identical to the interval , so thatFor any open interval  in class , there are two corresponding intervals  and  such that , , and . In this caseFrom the above calculations and the fact that we have (21) and that  is continuous on , together with the fact that , , we see the claim as follows.
Lemma 7 (convergence of quadratic variation of Brownian motion on time scale).  Given a time scale  and , ; a probability space ; a Brownian motion  on the time scale , let any -progressively measurable random function  on  be defined such that  is uniformly bounded on . Consider the families of partitions , , . One classifies all the intervals  into two classes  and  as before. Then one has 
Proof. We notice that for all intervals  we have  and thus . Let us denote that Since  is progressively measurable, we see that  is independent of . ThusFurthermoreIf , then  is independent of , so we have . Similarly, for  we also have . This implies thatas . This together with the fact that  for any  implies claim (43) of the lemma.
The argument above leads us to an Itô formula for . Making use of the same methods, one can derive a more general Itô formula for the solution  to the -stochastic differential equation (11). We will not repeat the proof, but we will claim the following theorem.
Theorem 8 (general Itô’s formula).  Let  be the solution to the -stochastic differential equation (11). Let any function  be such that , , , , , and  are continuous on . For any ,  one has
5. The Stochastic Exponential on Time Scales
Our target in this section is to establish a closed-form formula for the stochastic exponential in the case of general time scales .
Definition 9. One says an adapted stochastic process  defined on the filtered probability space  is stochastic regressive with respect to the Brownian motion  on the time scale  if and only if for any right-scattered point  one has The set of stochastic regressive processes will be denoted by .
The following definition of a stochastic exponential was also introduced in [3].
Definition 10 (stochastic exponential). Let  and ; then the unique solution of the -stochastic differential equationis called the stochastic exponential and is denoted by 
We note that  as a solution to (50) can be written into an integral equationWe will be making use of the set-up we have in Section 4 about Itô’s formula. Let  and . Let the sets  and  be defined as in Section 4 corresponding to the interval . Let  and . We note that , . Let
We define
Theorem 11 (stochastic exponential on time scales).  The stochastic exponential has the closed-form expression 
Proof. Consider the processLet us introduce another function  such that We see now that the process  is a solution to the -stochastic differential equation Notice that  for any . Taking this into account, as well as the fact that  whenever , we can apply the general Itô formula (48) to the function  and we will getThus or in other wordsLet us now consider the function . We claim thatNotice that that is,Using this fact, the above claimed identity (62) can be written asIn fact, with respect to the partition  that we have been using, we haveHereWe can apply the previous arguments and classify the intervals  into classes  and . Notice that, on each interval , the function  remains constant and the function  has a jump, and on each interval  in class  the function  is a constant. This observation and similar arguments (which we leave to the reader) as in the previous section will enable us to prove that, with probability one, as , we will have So we proved (65) and thus (62).
6. Change of Measure and Girsanov’s Theorem on Time Scales
We demonstrate in this section a change of measure formula (Girsanov’s formula) for Brownian motion on time scales. Our analysis is based on the method of extension that was introduced in Section 3 (originally from [2]).
Let us consider two processes: the standard Brownian motion  on  on the time scale  and the process on the time scale .
Let us consider an extension of the (probably random) function  as in (8). Let us define the so obtained extension function to be . Recall that (8) implies that Let  be a standard Brownian motion on . If we define then the process  agrees with  for any time point .
For any , , let
It is easy to see that the function  is the standard Girsanov’s density function for the process  with respect to the standard Brownian motion . Since  and  have the same distributions as  and  on the time scale , we conclude with the following two Theorems.
Theorem 12 (Novikov’s condition on time scales).  If for every  one hasthen for every  one has
Let (73) be satisfied. Let  and pick , . Consider a new measure  on , defining by it Radon–Nikodym derivative with respect to , as 
Theorem 13 (Girsanov’s change of measure on time scales).  Under the measure  the process , , is a standard Brownian motion on .
7. Application to Brownian Motion on a Quantum Time Scale
In this section we are going to apply our result to a quantum time scale (-time scale, see [1, Example ]). Let  and
The quantum time scale (-time scale) is defined by . Given the quantum time scale , one can then construct a Brownian motion  on  according to Definition 3.
We haveif  and obviously . So we obtain and consequently 
Here  is a right-dense minimum and every other point in  is isolated. For a function  we have provided the limit exists.
The open intervals  that we have constructed in Section 4 have the form  where . For any two points , , if , then  and  for two integers . In this case we can apply (14) and we get
Since  is a discrete time scale, we have 
Moreover, we have 
Therefore (81) becomeswhich is a trivial telescoping identity. This justifies (14) in the case away from .
Let us consider now the case when  and  for some . In this case we have, according to (14), that
One can justify that in this case we have
Moreover, we have
Therefore (81) becomeswhich is also a telescoping identity. This justifies (14) in the case including .
Making use of Theorem 11, it is easy to write down the stochastic exponential for the quantum time scale: 
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