Research Article

On Solvability Theorems of Second-Order Ordinary Differential Equations with Delay

Nai-Sher Yeh

Department of Mathematics, Fu Jen Catholic University, Xinzhuang District, New Taipei City 24205, Taiwan

Correspondence should be addressed to Nai-Sher Yeh; 038300@mail.fju.edu.tw

Received 24 October 2017; Accepted 28 January 2018; Published 1 April 2018

Academic Editor: Chun-Lei Tang

Copyright © 2018 Nai-Sher Yeh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For each \(x_0 \in [0,2\pi) \) and \(k \in \mathbb{N} \), we obtain some existence theorems of periodic solutions to the two-point boundary value problem

\[
\begin{align*}
\ddot{u}(x) + k^2 u(x-x_0) + g(x, u(x-x_0)) &= h(x) \quad \text{in} \quad (0,2\pi), \\
u(0) - u(2\pi) &= u'(0) - u'(2\pi) = 0,
\end{align*}
\]

(1)

where \(h \in L^1(0,2\pi) \) is given and \(g : (0,2\pi) \times \mathbb{R} \to \mathbb{R} \) is a Carathéodory function which grows linearly in \(u \) as \(|u| \to \infty \), and \(h \in L^1(0,2\pi) \) may satisfy a generalized Landesman-Lazer condition

\[
(1+\text{sign}(\beta)) \int_0^{2\pi} h(x) v(x) dx < \int_{(x_0)\in[0,2\pi]} g^+(x)|v(x)|^{1-\beta} dx + \int_{(x_0)\in[0,2\pi]} g^-(x)|v(x)|^{1-\beta} dx \quad \forall v \in N(L) \setminus \{0\}.
\]

Here \(N(L) \) denotes the subspace of \(L^1(0,2\pi) \) spanned by \(\sin kx \) and \(\cos kx \), \(-1 < \beta \leq 0 \), \(g^+(x) = \liminf_{u\to\infty} (g(x,u)u/|u|^{1-\beta}) \), and \(g^-(x) = \liminf_{u\to-\infty} (g(x,u)u/|u|^{1-\beta}) \).

1. Introduction

Let \(x_0 \in [0,2\pi) \) and \(k \in \mathbb{N} \) be fixed. We consider the following two-point boundary value problems:

\[
\begin{align*}
\ddot{u}(x) + k^2 u(x-x_0) + g(x, u(x-x_0)) &= h(x) \quad \text{in} \quad (0,2\pi), \\
u(0) - u(2\pi) &= u'(0) - u'(2\pi) = 0,
\end{align*}
\]

(1)

where \(h \in L^1(0,2\pi) \) is given and \(g : (0,2\pi) \times \mathbb{R} \to \mathbb{R} \) is a Carathéodory function; that is, \(g(x,u) \) is continuous in \(u \in \mathbb{R} \), for a.e. \(x \in (0,2\pi) \), and satisfies, for each \(r > 0 \), the fact that there exists an \(a_r \in L^1(0,2\pi) \) such that

\[
|g(x,u)| \leq a_r(x)
\]

(3)

for a.e. \(x \in (0,2\pi) \) and all \(|u| \leq r \). Concerning the growth condition of the nonlinear term \(g \) to (1) and (2), we assume that

(H) there exist constants \(-1 < \beta \leq 0, r_0 > 0, \) and \(a,b,c,d \in L^1(0,2\pi), \) \(a,b \geq 0 \) and \(a(x) \leq 2k + 1 \) for a.e. \(x \in (0,2\pi) \) with strict inequality on a positive measurable subset of \((0,2\pi) \), such that for a.e. \(x \in (0,2\pi) \) and all \(u \geq r_0 \)

\[
c(x)|u|^{-\beta} \leq g(x,u) \leq a(x)|u| + b(x);
\]

(4)

and for a.e. \(x \in (0,2\pi) \) and all \(u \leq -r_0 \)

\[
-a(x)|u| - b(x) \leq g(x,u) \leq d(x)|u|^{-\beta};
\]

(5)

(G) there exist constants \(-1 < \beta \leq 0, r_0 > 0, \) and \(a,b,c,d \in L^1(0,2\pi), \) \(a,b \geq 0 \) and \(a(x) \leq 2k - 1 \) for a.e. \(x \in (0,2\pi) \) with strict inequality on a positive measurable subset of \((0,2\pi) \), such that for a.e. \(x \in (0,2\pi) \) and all \(u \geq r_0 \)

\[
c(x)|u|^{-\beta} \leq g(x,u) \leq a(x)|u| + b(x);
\]

(6)

and for a.e. \(x \in (0,2\pi) \) and all \(u \leq -r_0 \)

\[
-a(x)|u| - b(x) \leq g(x,u) \leq d(x)|u|^{-\beta};
\]

(7)
respectively, and a generalized Landesman–Lazer condition
\begin{equation}
0 < \int_{x(\gamma)>0} g_\beta^+(x) |v(x)|^{1-\beta} \, dx + \int_{x(\gamma)<0} g_\beta^-(x) |v(x)|^{1-\beta} \, dx,
\end{equation}
for all \(v \in N(L) \setminus \{0\} \), may be satisfied. Here \(N(L) \) denotes the subspace of \(L^1(0, 2\pi) \) spanned by \(\sin kx \) and \(\cos kx \), \(\beta \in \mathbb{R} \), \(g^\beta(x) = \lim_{\gamma \to -\infty} g(x, u)/|u|^{1-\beta} \), and \(g_\beta(x) = \lim_{\gamma \to -\infty} \mathcal{L}(g(x, u) u/|u|^{1-\beta}) \). Under assumptions and either with or without the Landesman–Lazer condition
\begin{equation}
\int_0^{2\pi} h(x) \, v(x) \, dx < \int_{x(\gamma)>0} g_\beta^+(x) |v(x)|^{1-\beta} \, dx + \int_{x(\gamma)<0} g_\beta^-(x) |v(x)|^{1-\beta} \, dx,
\end{equation}
for all \(v \in N(L) \setminus \{0\} \), the solvability of the problem (1) has been extensively studied if the nonlinearity \(g(x, u) \) has at most linear growth in \(u \) as \(|u| \to \infty \) (see [1–13] for the case \(x_0 = 0 \) and [14–16] for the general case) or grows superlinearly in \(u \) in one of directions \(u \to \infty \) and \(u \to -\infty \) and may be bounded in the other (see [8, 17] for the case \(x_0 = 0 \) and [14] for the general case when \(k = 0 \)). Based on the well-known Leray-Schauder continuation method (see [18, 19]), we obtain solvability theorems to (1) (resp., (2)) when \(g(x, u) \) satisfies \((H)\) (resp., \((G)\)) and either (8) with \(-1 < \beta < 0\) or (9) with \(\beta = 0 \) is satisfied, which extends the results of [15] for the nonresonance case, and has been established in [9] for the case \(x_0 = 0 \) and \(g(x, u) \) grows sublinearly in \(u \) as \(|u| \to \infty \) with \(-1 < \beta \leq 1 \). Unfortunately, it is still unknown when \(k \in \mathbb{N} \), \(g(x, u) \) grows linearly in \(u \) as \(|u| \to \infty \) and the assumption of (8) is replaced by
\begin{equation}
\int_0^{2\pi} h(x) \, v(x) \, dx = 0
\end{equation}
for all \(v \in N(L) \setminus \{0\} \) with \(\beta > 0 \). In the following we will make use of real Banach spaces \(L^p(0, 2\pi) \), \(C[0, 2\pi] \) and Sobolev spaces \(W^{k, p}(0, 2\pi) \) and \(H^1(0, 2\pi) \). The norms of \(L^p(0, 2\pi) \), \(C[0, 2\pi] \) and \(H^1(0, 2\pi) \) are denoted by \(\|u\|_{L^p}, \|u\|_{C[0, 2\pi]} \) and \(\|u\|_{H^1} \), respectively. By a solution of (1), we mean a periodic function \(u : \mathbb{R} \to \mathbb{R} \) of period \(2\pi \) which belongs to \(W^{k, p}(0, 2\pi) \) and satisfies the differential equation in (1) a.e. \(x \in (0, 2\pi) \).

2. Existence Theorems

For each \(v \in W^{2, 1}(0, 2\pi) \) with \(v(0) - v(2\pi) = v'(0) - v'(2\pi) = 0 \) and \(k \in \mathbb{N} \), we write \(\overline{v} = \sum_{0 \leq j \neq k} P_j v, \overline{v} = \sum_{j \neq k} P_j v, \) and \(\bar{v} = \sum_{0 \leq j \neq k} P_j v \). Here \(P_j v \) denotes the projection of \(v \) on the eigenspace of \(d^2/dx^2 \) spanned by \(\sin jx \) and \(\cos jx \) for \(j \in \mathbb{N} \cup \{0\} \). Just as an application of [11, Lemma 2] or [1, Lemma 2.2], we can modify slightly the proof of [15, Lemma 1] to obtain the next lemma.

Lemma 1. Let \(k \in \mathbb{N} \cup \{0\} \) and \(\Gamma \) be a nonnegative \(L^1(0, 2\pi) \)-function such that for a.e. \(x \in (0, 2\pi) \), \(\Gamma(x) \leq 2k+1 \) with strict inequality on a positive measurable subset of \((0, 2\pi)\). Then there exists a constant \(K_1 > 0 \) such that
\begin{equation}
\int_0^{2\pi} (\bar{u}(x) - u(x)) \cdot \left(u''(x) + k^2 u(x) - \Gamma(x) \right) \, dx
\end{equation}
whenever \(p \in L^1(0, 2\pi) \) with \(0 \leq p(x) \leq \Gamma(x) \) for a.e. \(x \in (0, 2\pi) \) and \(u \in W^{2, 1}(0, 2\pi) \) is a periodic function of period \(2\pi \) with \(u(0) - u(2\pi) = u'(0) - u'(2\pi) = 0 \).

Proof. Just as in [20, Lemma 1], we can modify slightly the proof of [11, Lemma 2] or [1, Lemma 2.2] to obtain the fact that there exists a constant \(K_1 > 0 \) such that
\begin{equation}
\int_0^{2\pi} (\bar{u}'(x))^2 - \left(k^2 + p(x) \right) (\bar{u}(x))^2 \, dx
\end{equation}
\begin{equation}
\int_0^{2\pi} (\bar{u}'(x))^2 - \left(k^2 + p(x) \right) (\bar{u}(x))^2 \, dx
\end{equation}
whenever \(p \in L^1(0, 2\pi) \) with \(0 \leq p(x) \leq \Gamma(x) \) for a.e. \(x \in (0, 2\pi) \) and \(u \in W^{2, 1}(0, 2\pi) \) with \(u(0) - u(2\pi) = u'(0) - u'(2\pi) = 0 \). Let us extend \(u(x) \) and \(p(x) \) \(2\pi \) periodically in \(x \) to all of \(\mathbb{R} \) and then use the same notations for the periodic extensions as for the original functions. In this case, we have
\begin{equation}
\int_0^{2\pi} (\bar{u}'(x))^2 \, dx = \int_0^{2\pi} (\bar{u}'(x))^2 \, dx
\end{equation}
and
\begin{equation}
\int_0^{2\pi} \left[u''(x) + \left(k^2 + p(x) \right) u(x) \right] \left(\bar{u}(x) - u(x) \right) \, dx
\end{equation}
\begin{equation}
\int_0^{2\pi} \left[u''(x) + \left(k^2 + p(x) \right) u(x) \right] \left(\bar{u}(x) - u(x) \right) \, dx
\end{equation}

\[
\begin{align*}
&\geq \int_{0}^{2\pi} (\bar{u}'(x))^2 \, dx - \frac{1}{2} \int_{0}^{2\pi} (\bar{w}'(x))^2 \, dx \\
&+ (\bar{u}'(x-x_0))^2 \, dx + \frac{1}{2} \int_{0}^{2\pi} (k^2 + p(x)) \\
&\cdot [\bar{u}(x-x_0)^2 - (\bar{u}(x))^2 - (\bar{u}(x-x_0))^2] \, dx \\
&+ \frac{1}{2} \int_{0}^{2\pi} (k^2 + p(x)) \\
&\cdot [\bar{u}(x-x_0) + \bar{u}(x-x_0) - \bar{u}(x)]^2 \, dx \quad \geq \frac{1}{2} \\
&\left(k^2 + p(x) \right) (\bar{u}(x)) \, dx + \frac{1}{2} \\
&\left(k^2 + p(x) \right) (\bar{u}(x-x_0)) \, dx - \frac{1}{2} \\
&\left(k^2 + p(x) \right) (\bar{u}(x-x_0)) \, dx + \frac{1}{2} \\
&\left[\bar{u}(x-x_0) + \bar{u}(x-x_0) - \bar{u}(x) \right]^2 \, dx.
\end{align*}
\]

Combining (12) with (13), we have
\[
\begin{align*}
\int_{0}^{2\pi} (\bar{u}(x-x_0) - \bar{u}(x)) \\
\cdot (u''(x) + k^2 u(x-x_0) + p(x) u(x-x_0)) \, dx \\
\geq \frac{1}{2} \int_{0}^{2\pi} (\bar{u}'(x-x_0))^2 - (k^2 + p(x)) \\
\cdot (\bar{u}(x-x_0))^2 + \frac{1}{2} \int_{0}^{2\pi} (k^2 + p(x)) \\
\cdot (\bar{u}(x-x_0))^2 - (\bar{u}'(x-x_0))^2 \, dx \\
\geq K_1 \| u \|_{H^1(\theta)}^2 + K_1 \| u \|_{H^1}^2.
\end{align*}
\]

\textbf{Lemma 2.} Let \(k \in \mathbb{N} \) and \(\Gamma \) be a nonnegative \(L^1(0, 2\pi) \)-function such that for a.e. \(x \in (0, 2\pi) \), \(\Gamma(x) \leq 2k - 1 \) with strict inequality on a positive measurable subset of \((0, 2\pi) \). Then there exists a constant \(K_2 > 0 \) such that
\[
\begin{align*}
\int_{0}^{2\pi} (\bar{u}(x-x_0) - \bar{u}(x)) \\
\cdot (u''(x) + k^2 u(x-x_0) + p(x) u(x-x_0)) \, dx \\
\geq K_2 \| u \|_{H^1}^2.
\end{align*}
\]

Whenever \(p \in L^1(0, 2\pi) \) with \(0 \leq p(x) \leq \Gamma(x) \) for a.e. \(x \in (0, 2\pi) \) and \(u \in W^{2,1}(0, 2\pi) \) with \(\nu(0) - \nu(2\pi) = 0 \), we have \(\int_{0}^{2\pi} (\bar{u}'(x))^2 - (k^2 + p(x)) (\bar{u}(x))^2 \, dx \geq 0 \) and
\[
\begin{align*}
\left(k^2 + p(x) \right) (\bar{u}(x)) \, dx + \frac{1}{2} \\
\left(k^2 + p(x) \right) (\bar{u}(x-x_0)) \, dx - \frac{1}{2} \\
\left(k^2 + p(x) \right) (\bar{u}(x-x_0)) \, dx + \frac{1}{2} \\
\left[\bar{u}(x-x_0) + \bar{u}(x-x_0) - \bar{u}(x) \right]^2 \, dx.
\end{align*}
\]

\textbf{Theorem 3.} Let \(k \in \mathbb{N} \cup \{0\} \) and \(g : (0, 2\pi) \times \mathbb{R} \to \mathbb{R} \) be a Carathéodory function satisfying (H). Then for each \(h \in L^1(0, 2\pi) \) problem (1) has a solution \(u \), provided that either (8) with \(-1 < \beta < 0 \) or (9) with \(\beta = 0 \) holds.

\textbf{Proof.} Let \(\alpha \in \mathbb{R} \) be fixed and \(0 < \alpha < 2k + 1 \). We consider the boundary value problems
\[
u''(x) + k^2 \nu(x-x_0) + (1-t) \alpha \nu(x-x_0)
+ t g(x, \nu(x-x_0)) = th(x) \quad \text{in} \ (0, 2\pi),
\]
\[
u(0) - \nu(2\pi) = u'(0) - u'(2\pi) = 0
\]
for \(0 \leq t \leq 1 \), which becomes the original problem when \(t = 1 \). Since \(0 < \alpha < 2k + 1 \), we observe from Lemma 1 that (17) has only a trivial solution when \(t = 0 \). To apply the Leray-Schauder continuation method, it suffices to show that solutions to (17) for \(0 < t < 1 \) have an a priori bound in \(H^1(0, 2\pi) \). To this end, let \(\theta : \mathbb{R} \to \mathbb{R} \) be a continuous function.
such that \(0 \leq \theta \leq 1, \) \(\theta(u) = 0 \) for \(|u| \leq r_0, \) and \(\theta(u) = 1 \) for \(|u| \geq 2r_0. \) We define \(c(x) = \max[a_0(x), b(x), c(x)], |d(x)|, \)

\[g_1(x, u) \]

\[= \begin{cases}
\min \{ g(x, u) + e(x) |u|^{-\beta}, \ a(x) u \theta(u) \} & \text{if } u \geq 0 \\
\max \{ g(x, u) - e(x) |u|^{-\beta}, \ a(x) u \theta(u) \} & \text{if } u \leq 0,
\end{cases} \tag{18} \]

and \(g_2(x, u) = g(x, u) - g_1(x, u). \) Then \(g_1, g_2 : (0, 2\pi) \times \mathbb{R} \rightarrow \mathbb{R} \) are Carathéodory functions, such that for a.e. \(x \in (0, 2\pi) \) and \(u \in \mathbb{R}, \ u \neq 0 \)

\[0 \leq \frac{g_1(x, u)}{u} \leq a(x), \tag{19} \]

\[|g_2(x, u)| \leq e(x) |u|^{-\beta} + e(x). \tag{20} \]

If \(u \) is a possible solution to (17) for some \(0 < t < 1, \) then using (19), (20), and Lemma 1, we have

\[
0 = \int_0^{2\pi} \left(\bar{u}(x) - \bar{u}(x - x_0) \right) \left[u''(x) + k^2 u(x - x_0) \right.
\]

\[+ (1-t) a u(x - x_0) \]

\[+ t g_1(x, u(x - x_0) - t h(x) \right) dx \]

\[
\geq K_1 \left[\| u \|^2_{L^1} - \left(\| e \|^2_{L^2} + \| e \|^2_{C^0} + \| h \|^2_{L^1} \right) (\| u \|^2_{L^1} + \| u \|^2_{C^0} + \| u \|^2_{C^0}) \right.
\]

\[+ \| u \|^2_{C^0} \]

\[\geq K_1 \left[\| u \|^2_{L^1} - C_1 (\| u \|^2_{C^0} + 1) (\| u \|^2_{L^1} + \| u \|^2_{C^0}) \right.
\]

\[+ \| u \|^2_{C^0} \]

\[= \left. \frac{C_1}{K_1} \left(\| u \|^2_{C^0} + 1 \right) \left(\| u \|^2_{L^1} + \| u \|^2_{C^0} \right) \right. \tag{21} \]

which implies that

\[
\left\| u \right\|^2_{L^1} \leq \frac{C_1}{K_1} \left(\| u \|^2_{C^0} + 1 \right) \left(\| u \|^2_{L^1} + \| u \|^2_{C^0} \right)
\]

\[
\leq C_2 \left(\| u \|^2_{L^1} + \| u \|^2_{C^0} \right) \tag{22} \]

for some constants \(C_1, C_2 > 0 \) independent of \(u. \) It remains to show that solutions to (17) for \(0 < t < 1 \) have an a priori bound in \(H^1(0, 2\pi). \) We argue by contradiction and suppose that there exists a sequence \(\{ u_n \} \) of periodic functions with period \(2\pi \) and a corresponding sequence \(\{ t_n \} \) in \((0, 1) \) such that \(u_n \) is a solution to (17) with \(t = t_n \) and \(\| u_n \|_{H^1} \geq n \) for all \(n. \) Let \(v_n = u_n/\| u_n \|_{H^1} ; \) then \(\| v_n \|_{H^1} = 1 \) for all \(n \in \mathbb{N}, \) and by (22) we have \(\| v_n \|_{H^1} \rightarrow 0 \) as \(n \rightarrow \infty. \) Since \(\| v_n \|_{H^1} = 1 \) and \(\| P_k v_n \|_{H^1} \leq \| v_n \|_{H^1} + \| v_n \|_{C^0} \| P_k \|_{C^0} \| v_n \|_{C^0} \) for all \(n \in \mathbb{N}, \) we have a bounded sequence \(\{ P_k v_n \} \) in \(H^1(0, 2\pi). \) For simplicity, we may assume that \(v_n \) converges to \(v \in H^1(0, 2\pi) \) for some \(v \in N(L) \) with \(\| v \|_{H^1} = 1. \) In particular, \(v_n \rightarrow v \) in \(C[0, 2\pi]. \) Clearly, \(v(x - x_0) \in N(L) \) and \(\| v(x - x_0) \|_{L^1} = \| v \|_{L^1}. \) It follows that \(u_n(x) \rightarrow \infty \) for each \(x \in \mathbb{R} \) with \(v(x) > 0, \) and \(u_n(x) \rightarrow -\infty \) for each \(x \in \mathbb{R} \) with \(v(x) < 0. \) Since \(\int_0^{2\pi} u_n''(x) P_k u_n(x - x_0)dx + \int_0^{2\pi} k^2 u_n(x) P_k u_n(x - x_0)dx = 0 \) and \(\| P_k u_n \|_{L^2}^2 = \| P_k u_n(x - x_0) \|_{L^2}^2, \) we have

\[
\int_0^{2\pi} u_n''(x) P_k u_n(x - x_0)dx + \int_0^{2\pi} k^2 u_n(x) P_k u_n(x - x_0)dx
\]

\[
\cdot P_k u_n(x - x_0)dx = \int_0^{2\pi} u_n''(x) dx
\]

\[
\cdot \cdot \cdot P_k u_n(x - x_0)dx + \int_0^{2\pi} k^2 u_n(x) P_k u_n(x - x_0)dx
\]

\[
+ \int_0^{2\pi} k^2 \left[u_n(x - x_0) - u_n(x) \right] dx
\]

\[
\cdot P_k u_n(x - x_0)dx
\]

\[
= \int_0^{2\pi} k^2 \left[u_n(x - x_0) - u_n(x) \right] dx
\]

\[
= \int_0^{2\pi} k^2 \left[P_k u_n(x - x_0) - P_k u_n(x) \right] dx
\]

\[
\cdot P_k u_n(x - x_0)dx \geq 0.
\]

Multiplying each side of (17) by \(P_k v_n(x - x_0), \) and then integrating them over \([0, 2\pi]\) when \(u = u_n \) and \(t = t_n, \) we get

\[
t_n \int_0^{2\pi} g(x, u_n(x - x_0)) P_k v_n(x - x_0)dx
\]

\[
\leq (1 - t_n) \alpha \int_0^{2\pi} u_n(x - x_0) P_k v_n(x - x_0)dx
\]

\[
+ t_n \int_0^{2\pi} g(x, u_n(x - x_0)) P_k v_n(x - x_0)dx
\]

\[
\leq t_n \int_0^{2\pi} h(x) P_k v_n(x - x_0)dx.
\]

By (19) and the assumption of \(-1 < \beta \leq 0, \) we have

\[
g_1(x, u_n(x - x_0)) P_k v_n(x - x_0) \| u_n \|^2_{H^1}
\]

\[
= \frac{g_1(x, u_n(x - x_0))}{u_n(x - x_0)} u_n(x - x_0) P_k v_n(x - x_0)
\]

\[
\cdot \| u_n \|^2_{H^1} \geq \frac{g_1(x, u_n(x - x_0))}{u_n(x - x_0)} u_n(x - x_0)
\]

\[
\cdot \| u_n \|^2_{H^1} \geq \frac{1}{2} \left[u_n(x - x_0) - P_k u_n(x - x_0) \right]^2 \| u_n \|^2_{H^1}
\]

\[
\cdot \cdot \cdot a \left(u_n^2(x - x_0) \right)^2 \| u_n \|^2_{H^1}
\]

for a.e. \(x \in (0, 2\pi). \) Combining (22) with (25), we get that \(g_1(x, u_n(x - x_0)) P_k v_n(x - x_0) \| u_n \|^2_{H^1} \) is bounded from below
by an $L^1(0,2\pi)$-function independent of n. By (20) and the assumption of $-1 < \beta \leq 0$, we have

$$
\begin{align*}
|g_2(x, u_n(x - x_0)) P_k v_n(x - x_0) - (u_n(x - x_0))|^{1-\beta} & \leq |e(x)| |u_n(x - x_0)|^{1-\beta} + e(x) \left| P_k v_n(x - x_0) \right|
\cdot \|u_n\|^\beta_{L^\beta} \\
\cdot \|P_k v_n\|_{L^\beta} & \leq \left[e(x) \right] |v_n(x - x_0)|^{1-\beta} + e(x)
\cdot \|P_k v_n(x - x_0)\|
\end{align*}
$$

(26)

for a.e. $x \in (0, 2\pi)$. In particular, $g_2(x, u_n(x - x_0)) P_k v_n(x - x_0)\|u_n\|^\beta_{L^\beta}$ is bounded from below by an $L^1(0,2\pi)$-function independent of n, which implies that $g(x, u_n(x - x_0)) P_k v_n(x - x_0\|u_n\|^\beta_{L^\beta}$ is also so,

$$
\int_{(x-x_0)} \liminf_{n \to \infty} g(x, u_n(x - x_0)) P_k v_n(x - x_0\|u_n\|^\beta_{L^\beta} dx = 0,
$$

and

$$
\begin{align*}
g(x, u_n(x - x_0)) P_k v_n(x - x_0) \|u_n\|^\beta_{L^\beta} & =
\frac{g(x, u_n(x - x_0)) u_n(x - x_0) |v_n(x - x_0)|^{1-\beta}}{|u_n(x - x_0)|^{1-\beta}} \\
\cdot \liminf_{n \to \infty} g(x, u_n(x - x_0)) P_k v_n(x - x_0\|u_n\|^\beta_{L^\beta} dx
\end{align*}
$$

(27)

for all $n \in \mathbb{N}$ with $u_n(x - x_0) \neq 0$. Here $\text{sign}(\omega) = 1$ if $\omega > 0$, $\text{sign}(\omega) = 0$ if $\omega = 0$, and $\text{sign}(\omega) = -1$ if $\omega < 0$. Applying Fatou's lemma to the integral $\int_0^{2\pi} g(x, u_n(x - x_0)) P_k v_n(x - x_0\|u_n\|^\beta_{L^\beta} dx$, we have

$$
\begin{align*}
& \int_{(x-x_0)} \liminf_{n \to \infty} g(x, u_n(x - x_0)) u_n(x - x_0) |v_n(x - x_0)|^{1-\beta} dx \\
& + \int_{(x-x_0)} \liminf_{n \to \infty} g(x, u_n(x - x_0)) u_n(x - x_0) |v_n(x - x_0)|^{1-\beta} dx
\end{align*}
$$

which is a contradiction when either (8) with $-1 < \beta < 0$ or (9) with $\beta = 0$ is satisfied. Hence, the proof of this theorem is complete.

By slightly modifying the proof of Theorem 3, we can apply Lemma 2 to obtain an existence theorem to (2) when condition (H) is replaced by (G) and either (8) with $-1 < \beta < 0$ or (9) with $\beta = 0$ is satisfied, which has been established in [20] for the case $x_0 = 0$ when (9) with $\beta = 0$ is satisfied and in [9] for the case $x_0 = 0$ when (8) with $\beta = -1$ is satisfied.

Theorem 4. Let $k \in \mathbb{N}$ and $g : (0, 2\pi) \times \mathbb{R} \to \mathbb{R}$ be a Caratheodory function satisfying (G). Then for each $h \in L^1(0, 2\pi)$ problem (2) has a solution u, provided that either (8) with $-1 < \beta < 0$ or (9) with $\beta = 0$ holds.

Conflicts of Interest

There are no conflicts of interest involved.

References

