Research Article

Initial Bounds for Certain Classes of Bi-Univalent Functions Defined by Horadam Polynomials

Chinnaswamy Abirami,1 Nanjundan Magesh,2 and Jagadeesan Yaminĩ3

1Faculty of Engineering and Technology, SRM University, Kattankulathur-603203, Tamilnadu, India
2Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India
3Department of Mathematics, Govt First Grade College, Vijayanagar, Bangalore-560104, Karnataka, India

Correspondence should be addressed to Nanjundan Magesh; nmagi_2000@yahoo.co.in

Received 9 June 2019; Revised 2 September 2019; Accepted 8 October 2019; Published 30 January 2020

A cademic E ditor: Kunquan Lan

Copyright © 2020 Chinnaswamy Abirami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main purpose of this article is to make use of the Horadam polynomials \(h_u(x) \) and the generating function \(\Pi(x, z) \), in order to introduce three new subclasses of the bi-univalent function class \(\sigma \). For functions belonging to the defined classes, we then derive coefficient inequalities and the Fekete–Szegö inequalities. Some interesting observations of the results presented here are also discussed. We also provide relevant connections of our results with those considered in earlier investigations.

1. Introduction

Let \(\mathbb{R} \) be the set of real numbers, \(\mathbb{C} \) be the set of complex numbers and

\[\mathbb{N} := \{1, 2, 3, \ldots \} \]

be the set of positive integers. Let \(\mathcal{A} \) denote the class of functions of the form

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n \]

which are analytic in the open unit disk \(\Delta = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \} \). Further, by \(\mathcal{S} \) we shall denote the class of all functions in \(\mathcal{A} \) which are univalent in \(\Delta \).

It is well known that every function \(f \in \mathcal{S} \) has an inverse \(f^{-1} \), defined by

\[f^{-1}(f(z)) = z \quad (z \in \Delta) \]

and

\[f(f^{-1}(w)) = w \quad \left(|w| < r_0(f); \ r_0(f) \geq \frac{1}{4} \right). \]

where

\[f^{-1}(w) = w - a_2 w^2 + \left(2a_2^2 - a_3 \right) w^3 - \left(5a_2^3 - 5a_2 a_3 + a_4 \right) w^4 + \cdots. \]

A function \(f \in \mathcal{A} \) is said to be bi-univalent in \(\Delta \) if both the function \(f \) and its inverse \(f^{-1} \) are univalent in \(\Delta \). Let \(\sigma \) denote the class of bi-univalent functions in \(\Delta \) given by (2).

In 2010, Srivastava et al. [1] revived the study of bi-univalent functions by their pioneering work on the study of coefficient problems. Various subclasses of the bi-univalent function class \(\sigma \) were introduced and nonsharp estimates on the first two coefficients \(|a_2| \) and \(|a_3| \) in the Taylor–Maclaurin series expansion (2) were found in the recent investigations (see, for example, [2–23]) and including the references therein. The afore-cited all these papers on the subject were actually motivated by the work of Srivastava et al. [1]. However, the problem to find the coefficient bounds on \(|a_n| \ (n = 3, 4, \ldots) \) for functions \(f \in \sigma \) is still open problem.

For analytic functions \(f \) and \(g \) in \(\Delta \), \(f \) is said to be subordinate to \(g \) if there exists an analytic function \(w \) such that

\[w(0) = 0, \ |w(z)| < 1 \text{ and } f(z) = g(w(z)) \quad (z \in \Delta). \]

This subordination will be denoted here by

\[(f \prec g) \quad (z \in \Delta). \]
or, conventionally, by
\[f(z) < g(z) \quad (z \in \Delta). \]
(8)

In particular, when \(g \) is univalent in \(\Delta \),
\[f < g \quad (z \in \Delta) \iff f(0) = g(0) \text{ and } f(\Delta) \subset g(\Delta). \]
(9)

The Horadam polynomials \(h_n(x, a, b; p, q) \), or briefly \(h_n(x) \)
are given by the following recurrence relation (see [22, 23]):
\[
\begin{aligned}
h_1(x) &= a, \quad h_2(x) = bx \quad \text{and} \\
h_n(x) &= p x h_{n-1}(x) + q h_{n-2}(x) \quad (n \geq 3)
\end{aligned}
\]
(10)

for some real constants \(a, b, p, \) and \(q \).

The generating function of the Horadam polynomials
\(h_n(x) \) (see [23]) is given by
\[
\Pi(x, z) := \sum_{n=0}^{\infty} h_n(x) z^{n-1} = \frac{a + (b - ap) x z}{1 - pxz - qz^2}.
\]
(11)

Here, and in what follows, the argument \(x \in \mathbb{R} \) is independent
of the argument \(z \in \mathbb{C} \); that is, \(x \neq \Re(z) \).

Note that for particular values of \(a, b, p, \) and \(q \), the Horadam
polynomial \(h_n(x) \) leads to various polynomials, among those,
we list a few cases here (see [22, 23] for more details):

(1) For \(a = b = p = q = 1 \), we have the Fibonacci
polynomials \(F_n(x) \).

(2) For \(a = 2 \) and \(b = p = q = 1 \), we obtain the Lucas
polynomials \(L_n(x) \).

(3) For \(a = q = 1 \) and \(b = p = 2 \), we get the Pell
polynomials \(P_n(x) \).

(4) For \(a = b = p = 2 \) and \(q = 1 \), we attain the Pell-Lucas
polynomials \(Q_n(x) \).

(5) For \(a = b = 1, p = 2 \) and \(q = -1 \), we have the
Chebyshev polynomials \(T_n(x) \) of the first kind.

(6) For \(a = 1, b = p = 2 \) and \(q = -1 \), we obtain the
Chebyshev polynomials \(U_n(x) \) of the second kind.

Recently, in literature, the coefficient estimates are found
for functions in the class of univalent and bi-univalent functions
associated with certain polynomials such as the Faber
polynomial [8], the Chebyshev polynomials [6], and
the Horadam polynomial [15]. Motivated in these lines, estimates
on initial coefficients of the Taylor–Maclaurin series expansion
(2) and Fekete–Szegö inequalities for certain classes of bi-univalent
functions defined by means of Horadam polynomials
are obtained. The classes introduced in this paper are motivated
by the corresponding classes investigated in [2, 10, 14, 15].

2. Coefficient Estimates and Fekete–Szegö
Inequalities

A function \(f \in \mathcal{A} \) of the form (2) belongs to the class \(\mathcal{S}_{\lambda}^\mu(\lambda, x) \)
for \(\lambda \geq 0 \) and \(z, w \in \Delta \), if the following conditions are satisfied:
\[
\frac{z f'(z)}{f(z)} + \lambda \frac{z^2 f''(z)}{f(z)} < \Pi(x, z) + 1 - a
\]
(12)
and for \(g(w) = f^{-1}(w) \)
\[
\frac{w g'(w)}{g(w)} + \lambda w^2 g''(w) < \Pi(x, w) + 1 - a
\]
(13)

where the real constant \(a \) is as in (10).

Note that \(\mathcal{S}_{\lambda}^\mu(\lambda, x) = \mathcal{S}_{\lambda}^\mu(0, x) \) was introduced and studied by Srivastava et al. [15].

Remark 1. When \(a = 1, b = p = 2, q = -1 \) and \(x = t \),
the generating function in (11) reduces to that of the Chebyshev
polynomial \(U_n(t) \) of the second kind, which is given explicitly by
\[
U_n(t) = (n + 1) F_{n+1}(-n, n + 2; t ; \frac{1 - t}{2}) = \frac{\sin(n + 1) \phi}{\sin \phi}, \quad (t = \cos \phi)
\]
(14)
in terms of the hypergeometric function \(_2F_1 \).

In view of Remark 1, the bi-univalent function class \(\mathcal{S}_{\lambda}^\mu(\lambda, x) \)
reduces to \(\mathcal{S}_{\lambda}^\mu(\lambda, x) \) and this class was studied earlier in [3, 12].

For functions in the class \(\mathcal{S}_{\lambda}^\mu(\lambda, x) \), the following coefficient
estimates and Fekete–Szegö inequality are obtained.

Theorem 1. Let \(f(z) = z + \sum_{n=1}^{\infty} a_n z^n \) be in the class \(\mathcal{S}_{\lambda}^\mu(\lambda, x) \).

Then
\[
|a_n| \leq \frac{|b_n|}{2 + 6 \lambda} \quad \text{and} \quad |a_n| \leq \frac{|b_n|}{2 + 6 \lambda} + \frac{b^2 x^2}{(1 + 2 \lambda)^2}
\]
(15)

and for \(v \in \mathbb{R} \)
\[
if \ |v - 1| \leq \frac{[(1 + 4 \lambda)b - p(1 + 2 \lambda)^2] b x^2 - q(a + 2 \lambda)^2}{2b^2 x^4(1 + 3 \lambda)}
\]
\[
if \ |v - 1| \geq \frac{[(1 + 4 \lambda)b - p(1 + 2 \lambda)^2] b x^2 - q(a + 2 \lambda)^2}{2b^2 x^4(1 + 3 \lambda)}
\]
(16)

and we can write
\[
\frac{zf'(z)}{f(z)} + \lambda \frac{z^2 f''(z)}{f(z)} = \Pi(x, u(z)) + 1 - a
\]
(18)
and
\[\frac{w^2f''(w)}{g(w)} + \lambda \frac{w^2g''(w)}{g(w)} = \Pi(x, v(w)) + 1 - a. \]
(19)

Equivalently,
\[\frac{zf'(z)}{f(z)} + \lambda \frac{z^2f''(z)}{f(z)} = 1 + h_1(x) - a + h_2(x)u(z) + h_3(x)[u(z)]^2 + \cdots \]
(20)

\[\frac{w^2f''(w)}{g(w)} + \lambda \frac{w^2g''(w)}{g(w)} = 1 + h_1(x) - a + h_2(x)u(w) + h_3(x)[v(w)]^2 + \cdots . \]
(21)

From (20) and (21) and in view of (11), we obtain
\[\frac{zf'(z)}{f(z)} + \lambda \frac{z^2f''(z)}{f(z)} = 1 + h_2(x)u_1z + [h_2(x)u_2 + h_3(x)u_3]z^2 + \cdots . \]
(22)

\[\frac{w^2f''(w)}{g(w)} + \lambda \frac{w^2g''(w)}{g(w)} = 1 + h_2(x)u_1w + [h_2(x)u_2 + h_3(x)u_3]w^2 + \cdots . \]
(23)

If
\[u(z) = \sum_{n=1}^{\infty} u_n z^n \quad \text{and} \quad v(z) = \sum_{n=1}^{\infty} v_n w^n, \]
(24)

then it is well known that
\[|u_n| \leq 1 \quad \text{and} \quad |v_n| \leq 1 \quad (n \in \mathbb{N}). \]
(25)

Thus upon comparing the corresponding coefficients in (22) and (23), we have
\[(1 + 2\lambda)a_2 = h_2(x)u_1, \]
(26)
\[2(1 + 3\lambda)a_3 - (1 + 2\lambda)a_2 = h_2(x)u_2 + h_3(x)u_3, \]
(27)
\[-(1 + 2\lambda)a_2 = h_2(x)v_1, \]
(28)
and
\[(3 + 10\lambda)a_3^2 - 2(1 + 3\lambda)a_2 = h_2(x)v_2 + h_3(x)v_3. \]
(29)

From (26) and (28), we can easily see that
\[u_1 = -v_1, \quad \text{provided} \quad h_2(x) = bx \neq 0 \]
(30)
and
\[2(1 + 2\lambda)a_2^2 = h_2(x)^2 [u_1^2 + v_1^2] \]
\[a_2^2 = \frac{[h_2(x)]^2 (u_1^2 + v_1^2)}{2(1 + 2\lambda)^2}. \]
(31)

If we add (27) to (29), we get
\[2(1 + 4\lambda)a_3^2 = h_2(x)(u_2 + v_2) + h_3(x)(u_3 + v_3). \]
(32)

By substituting (31) in (32), we obtain
\[a_3^2 = \frac{[h_2(x)]^2 (u_2 + v_2)}{2(1 + 4\lambda)[h_2(x)]^2 - 2h_2(x)(1 + 2\lambda)^2}. \]
(33)

and by taking \(h_2(x) = bx \) and \(h_1(x) = bp x^2 + qa \) in (33), it further yields
\[|a_2| \leq \frac{[bx] \sqrt{[bx]}}{\sqrt{[(b - p)x^2 - qa]}}, \quad \text{and} \quad |a_3| \leq \frac{[bx]}{2} + b^2 x^2. \]
(34)

By subtracting (29) from (27) and in view of (30), we obtain
\[4(1 + 3\lambda)a_3 - 4(1 + 3\lambda)a_2^2 = h_2(x)(u_2 - v_3) + h_3(x)(u_3^2 - v_3^2) \]
\[a_3 = \frac{h_2(x)(u_2 - v_3)}{4(1 + 3\lambda) + a_2^2}. \]
(35)

Then in view of (31), (35) becomes
\[a_3 = \frac{h_2(x)(u_2 - v_3)}{4(1 + 3\lambda)} + \frac{[h_2(x)]^2 (u_1^2 + v_1^2)}{2(1 + 2\lambda)^2}. \]
(36)

Applying (10), we deduce that
\[|a_3| \leq \frac{[|bx| \sqrt{|bx|}}{2 + 6\lambda} + \frac{b^2 x^2}{(1 + 2\lambda)^2}. \]
(37)

From (35), for \(v \in \mathbb{R} \), we write
\[a_3 - va_3^2 = \frac{h_2(x)(u_2 - v_3)}{4(1 + 3\lambda)} + (1 - v)a_3. \]
(38)

By substituting (33) in (38), we have
\[a_3 - va_3^2 = \frac{h_2(x)(u_2 - v_3)}{4(1 + 3\lambda)} + \left(\frac{(1 - v)[h_2(x)]^2 (u_2 + v_3)}{2(1 + 4\lambda)[h_2(x)]^2 - h_2(x)(1 + 2\lambda)^2} \right) \]
\[= h_2(x) \left(\frac{\Omega(v, x) + \left[(1 - v)[h_2(x)]^2 (u_2 + v_3) \right]}{2(1 + 4\lambda)[h_2(x)]^2 - h_2(x)(1 + 2\lambda)^2} \right), \]
(39)

where
\[\Omega(v, x) = \frac{(1 - v)[h_2(x)]^2}{2(1 + 4\lambda)[h_2(x)]^2 - h_2(x)(1 + 2\lambda)^2}. \]
(40)

Hence, we conclude that
\[|a_3 - va_3^2| \leq \begin{cases} \frac{|h_2(x)|}{2 + 6\lambda} & 0 \leq |\Omega(v, x)| \leq \frac{1}{2(1 + 3\lambda)} \quad \text{if} \quad |v - 1| \leq \frac{1}{2b^2 x^2} \quad (41) \\
\frac{|h_2(x)|}{2} & |\Omega(v, x)| \geq \frac{1}{2(1 + 3\lambda)} \end{cases} \]

and in view of (10), it evidently completes the proof of Theorem 1. \(\square \)

For \(\lambda = 0 \), Theorem 1 readily yields the following coefficient estimates for \(S^n \) (\(x \)).

Corollary 1. Let \(f(z) = z + \sum_{n=1}^{\infty} a_n z^n \) be in the class \(S^n \) (\(x \)). Then
\[|a_2| \leq \frac{[bx] \sqrt{[bx]}{\sqrt{[b - p]b^2 x^2 - qa}} \quad \text{and} \quad |a_3| \leq \frac{|bx|}{2} + b^2 x^2 \]
(42)

and for \(v \in \mathbb{R} \)
\[|a_3 - va_3^2| \leq \begin{cases} \frac{|bx|}{2} & \text{if} \quad |v - 1| \leq \frac{|b - p|b^2 x^2 - qa}{2b^2 x^2} \quad (43) \\
\frac{|bx||v - 1|}{|b - p|b^2 x^2 - qa} & \text{if} \quad |v - 1| \geq \frac{|b - p|b^2 x^2 - qa}{2b^2 x^2} \end{cases} \]
In view of Remark 1, Theorem 1 can be shown to yield the following result.

Corollary 2. Let \(f(z) = z + \sum_{n=1}^{\infty} a_n z^n \) be in the class \(S_r^\ast(\lambda, t) \). Then

\[
|a_n| \leq \frac{|t| \sqrt{2|t|}}{(1 + 2\lambda)^2 - 16\lambda^2 r^2}, \quad \text{and} \quad |a_n| \leq \frac{|t|}{1 + 3\lambda} + \frac{4t^2}{(1 + 2\lambda)^2}
\]

and for \(v \in \mathbb{R} \)

\[
|a_n - v a_1| \leq \frac{|v|}{1 + 3\lambda} \quad \text{if} \quad |v - 1| \leq \frac{(1 + 2\lambda)^2 - 16\lambda^2 r^2}{8\lambda^2 (1 + 3\lambda)}
\]

\[
|a_n - v a_1| \leq \frac{|v| (v - 1)}{(1 + 2\lambda)^2 - 16\lambda^2 r^2} \quad \text{if} \quad |v - 1| \geq \frac{(1 + 2\lambda)^2 - 16\lambda^2 r^2}{8\lambda^2 (1 + 3\lambda)}
\]

Remark 2. Results obtained in Corollary 1 coincide with results obtained in [15]. For \(\lambda = 0 \), Corollary 2 reduces to the results discussed in [3, 12].

Next, a function \(f \in A \) of the form (2) belongs to the class \(M_\alpha(\alpha, x) \) for \(0 \leq \alpha \leq 1 \) and \(z, w \in \Delta \), if the following conditions are satisfied:

\[
(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) < \Pi(x, z) + 1 - a
\]

and for \(g(w) = f^{-1}(w) \)

\[
(1 - \alpha) \frac{wg'(w)}{g(w)} + \alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) < \Pi(x, w) + 1 - a,
\]

and for \(g(w) = f^{-1}(w) \)

where the real constant \(a \) is as in (10).

Note that the class \(M_\alpha(\alpha, x) \) reduces to the classes \(S_r^\ast(x) \) and \(K_\alpha(x) \) as \(M_\alpha(0, x) \equiv S_r^\ast(x) \) and \(M_\alpha(1, x) \equiv K_\alpha(x) \). In view of Remark 1, the bi-univalent function classes \(M_\alpha(\alpha, x) \) would become the class \(M_\alpha(\alpha, t) \) introduced and studied by Altnkaya and Yalçın [4]. For functions in the class \(M_\alpha(\alpha, x) \), the following coefficient estimates and Fekete–Szegö inequality are obtained.

Theorem 2. Let \(f(z) = z + \sum_{n=1}^{\infty} a_n z^n \) be in the class \(M_\alpha(x, x) \). Then

\[
|a_n| \leq \frac{|bx| \sqrt{|bx|}}{\sqrt{[(1 + \alpha) b - p(1 + \alpha)^2]bx^2 - qa(1 + \alpha)^2}}, \quad \text{and}
\]

\[
|a_n| \leq \frac{|bx|}{2 + 4\alpha} + \frac{b^2 x^2}{(1 + \alpha)^2}
\]

and for \(v \in \mathbb{R} \)

\[
if \quad |v - 1| \leq \frac{|(1 + \alpha) b - p(1 + \alpha)^2]bx^2 - qa(1 + \alpha)^2|}{b^2 x^2 (2 + 4\alpha)}
\]

\[
if \quad |v - 1| \geq \frac{|(1 + \alpha) b - p(1 + \alpha)^2]bx^2 - qa(1 + \alpha)^2|}{b^2 x^2 (2 + 4\alpha)}
\]

From (53), (54) and in view of (11), we obtain

\[
(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right)
\]

\[
= 1 + h_2(x)u_2 + h_3(x)u_3 + \cdots
\]

numerically, and

\[
(1 - \alpha) \frac{wg'(w)}{g(w)} + \alpha \left(1 + \frac{wg''(w)}{g'(w)} \right)
\]

\[
= 1 + h_2(x)u_2 + h_3(x)u_3 + \cdots
\]

then it is well known that

\[
|u_n| \leq 1 \quad \text{and} \quad |v_n| \leq 1 \quad (n \in \mathbb{N}).
\]

Thus upon comparing the corresponding coefficients in (55) and (56), we have

\[
(1 + \alpha) a_2 = h_2(x)u_2.
\]
\[2(1 + 2\alpha) a_3 - (1 + 3\alpha) a_2^2 = h_2(x) u_2 + h_3(x) u_1^2 \]
\[-(1 + \alpha) a_2 = h_2(x) v_1 \]
(60)
and
\[(3 + 5\alpha) a_3^2 - 2(1 + 2\alpha) a_3 = h_2(x) v_2 + h_3(x) v_1^2. \]
(62)
From (59) and (61), we can easily see that
\[u_i = v_i, \quad \text{provided} \quad h_2(x) = bx \neq 0 \]
(63)
and
\[2(1 + \alpha) a_3^2 = \left[h_2(x) \right]^2 \left(u_i^2 + v_i^2 \right) \]
\[a_3^2 = \frac{\left[h_2(x) \right]^2 \left(u_i^2 + v_i^2 \right)}{2(1 + \alpha)^2}. \]
(64)
If we add (60) to (62), we get
\[2(1 + \alpha) a_2^2 = h_2(x) (u_2 + v_2) + h_3(x) \left(u_1^2 + v_1^2 \right). \]
(65)
By substituting (64) in (65), we obtain
\[a_3^2 = \frac{\left[h_2(x) \right]^2 (u_2 + v_2)}{2(1 + \alpha) \left[h_2(x) \right]^2 - 2h_3(x)(1 + \alpha)^2} \]
(66)
and by taking $h_2(x) = bx$ and $h_3(x) = bpx^2 + qa$ in (66), it further yields
\[|a_3| \leq \frac{|bx| \sqrt{|bx|}}{\sqrt{[2(1 + \alpha)b - p(1 + \alpha)^2]bx^2 - qa(1 + \alpha)^2}}. \]
(67)
By subtracting (62) from (60) and in view of (63), we obtain
\[4(1 + 2\alpha) a_3 - 4(1 + 2\alpha) a_2^2 = h_2(x) (u_2 - v_2) + h_3(x) \left(u_1^2 - v_1^2 \right) \]
\[a_3 = \frac{h_2(x) (u_2 - v_2)}{4(1 + 2\alpha)} + a_2^2. \]
(68)
Then in view of (64), (68) becomes
\[a_3 = \frac{h_2(x) (u_2 - v_2)}{4(1 + 2\alpha)} + \frac{\left[h_2(x) \right]^2 \left(u_i^2 + v_i^2 \right)}{2(1 + \alpha)^2}. \]
(69)
Applying (10), we deduce that
\[|a_3| \leq \frac{|bx|}{2 + 4\alpha} + \frac{b^2x^2}{(1 + \alpha)^2}. \]
(70)
From (68), for $\nu \in \mathbb{R}$, we write
\[a_3 - \nu a_2^2 = \frac{h_2(x) (u_2 - v_2)}{4(1 + 2\alpha)} + (1 - \nu) a_2^2. \]
(71)
By substituting (66) in (71), we have
\[a_3 - \nu a_2^2 = \frac{h_2(x) (u_2 - v_2)}{4(1 + 2\alpha)} + \frac{(1 - \nu) \left[h_2(x) \right]^2 (u_i + v_i)}{2(1 + \alpha) \left[h_2(x) \right]^2 - 2h_3(x)(1 + \alpha)^2} \]
\[= h_2(x) \left(\frac{\Omega(v, x) + \frac{1}{4(1 + 2\alpha)} v_1}{\frac{1}{4(1 + 2\alpha)} v_2} \right), \]
(72)
where
\[\Omega(v, x) = \frac{(1 - \nu) \left[h_2(x) \right]^2}{2(1 + \alpha) \left[h_2(x) \right]^2 - 2h_3(x)(1 + \alpha)^2}. \]
(73)
Hence, we conclude that
\[|a_3 - \nu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{\left[h_2(x) \right]}{2 + 4\alpha} & 0 \leq |\Omega(v, x)| \leq \frac{1}{4(1 + 2\alpha)} \\
2|h_2(x)||\Omega(v, x)| & |\Omega(v, x)| \geq \frac{1}{4(1 + 2\alpha)}. \end{array} \right. \]
(74)
which in view of (10), evidently completes the proof of Theorem 2.

For $\alpha = 1$, Theorem 2 readily yields the following coefficient estimates for $K_\alpha(x)$.

Corollary 3. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be in the class $K_\alpha(x)$. Then
\[|a_3| \leq \frac{|bx| \sqrt{|bx|}}{\sqrt{\left[2b - 4p \right]bx^2 - 4qa}}, \quad \text{and} \quad |a_3| \leq \frac{|bx|}{6} + \frac{b^2x^2}{4} \]
(75)
and for $\nu \in \mathbb{R}$
\[|a_3 - \nu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|bx|}{6} & 0 \leq |\nu - 1| \leq \frac{1}{2b - 4p} \frac{b^2x^2}{4qa} \\
\frac{|bx|}{4\alpha} & 0 \leq |\nu - 1| \leq \frac{b^2x^2}{4\alpha} \frac{b^2x^2}{4qa}. \end{array} \right. \]
(76)
In view of Remark 1, Theorem 2 yields the following result.

Corollary 4. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be in the class $M_\alpha(x, t)$. Then
\[|a_3| \leq \frac{2|t| \sqrt[2]{|t|}}{\sqrt{(1 + \alpha)^2 - 4\alpha(1 + \alpha)t^2}}, \quad \text{and} \quad |a_3| \leq \frac{|t|}{1 + 2\alpha} + \frac{4t^2}{(1 + \alpha)^2} \]
(77)
and for $\nu \in \mathbb{R}$
\[|a_3 - \nu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|t|}{1 + 2\alpha} & 0 \leq |\nu - 1| \leq \frac{1 + 2\alpha}{8t^2} \\
\frac{8t^2}{(1 + \alpha)^2 - 4\alpha(1 + \alpha)t^2} & 0 \leq |\nu - 1| \leq \frac{(1 + 2\alpha)(1 + \alpha + t^2)}{8t^2}. \end{array} \right. \]
(78)
In view of Remark 1, Corollary 3 yields the following result.

Corollary 5. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be in the class $K_\alpha(t)$. Then
\[|a_3| \leq \frac{|t| \sqrt[2]{|t|}}{\sqrt{1 - 2t^2}}, \quad \text{and} \quad |a_3| \leq \frac{|t|}{3} + t^2 \]
(79)
and for $\nu \in \mathbb{R}$
\[|a_3 - \nu a_2^2| \leq \left\{ \begin{array}{ll}
\frac{|t|}{3} & 0 \leq |\nu - 1| \leq \frac{1 - 2t^2}{3} \\
\frac{8t^2}{|\nu - 1| - 1} & 0 \leq |\nu - 1| \leq \frac{1 - 2t^2}{8t^2}. \end{array} \right. \]
(80)
Remark 3. The results obtained in Corollary 4 and 5 coincide with results of Altinkaya and Yalçın [4].
Next, a function $f \in \sigma$ of the form (2) belongs to the class $\mathcal{L}_\sigma(\mu, x)$ for $0 \leq \mu \leq 1$, and $z, w \in \Delta$ if the following conditions are satisfied:

$$\left(\frac{zf'(z)}{f(z)} \right)^\mu \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\mu} < \Pi(x, z) + 1 - a$$ \hspace{1cm} (81)$$

and for $g(w) = f^{-1}(w)$

$$\left(\frac{wg'(w)}{g(w)} \right)^\mu \left(1 + \frac{wg''(w)}{g'(w)} \right)^{1-\mu} < \Pi(x, w) + 1 - a,$$ \hspace{1cm} (82)

where the real constants a is as in (10).

This class also reduces to $\mathcal{S}_\sigma'(\mu)$ and $\mathcal{K}_\sigma(x)$. In view of Remark 1, the bi-univalent function class $\mathcal{L}_\sigma(\mu, x)$ would become the class $\mathcal{L}_\sigma^2(\mu, t)$. For functions in the class $\mathcal{L}_\sigma(\mu, x)$, the following coefficient estimates are obtained.

Theorem 3. Let $f(z) = z + \sum_{n=1}^{\infty} a_n z^n$ be in the class $\mathcal{L}_\sigma(\mu, x)$. Then

$$|a_3| \leq \frac{|bx| \sqrt{2|bx|}}{\left[((\mu^2 - 3\mu + 4)b - 2p(2 - \mu)^2 \right] |bx^2 - 2qa(2 - \mu)^2 |}$$ \hspace{1cm} (83)$$

and for $v \in \mathbb{R}$

$$|a_3| \leq \frac{|bx|}{6 - 4\mu} + \frac{b^2x^2}{(2 - \mu)^2}$$ \hspace{1cm} (84)

and

$$\left(\frac{wg'(w)}{g(w)} \right)^\mu \left(1 + \frac{wg''(w)}{g'(w)} \right)^{1-\mu} = \Pi(x, u(w)) + 1 - a.$$ \hspace{1cm} (85)

Proof. Let $f \in \mathcal{L}_\sigma(\mu, x)$ be given by the Taylor–Maclaurin expansion (2). Then, there are analytic functions μ and ν such that

$$u(0) = 0; \ \nu(0) = 0, \ |u(z)| < 1 \ \text{and} \ |\nu(z)| < 1 \ (\forall \ z, w \in \Delta),$$ \hspace{1cm} (86)

and

$$\left(\frac{zf'(z)}{f(z)} \right)^\mu \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\mu} = \Pi(x, u(z)) + 1 - a$$ \hspace{1cm} (87)

Equivalently,

$$\left(\frac{zf'(z)}{f(z)} \right)^\mu \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\mu} = 1 + h_1(x) \nu(x) + h_2(x) \nu(x)^2 + \cdots$$ \hspace{1cm} (88)

and

$$\left(\frac{wg'(w)}{g(w)} \right)^\mu \left(1 + \frac{wg''(w)}{g'(w)} \right)^{1-\mu} = 1 + h_1(x) \nu(x) + h_2(x) \nu(x)^2 + \cdots.$$ \hspace{1cm} (89)

From (88) and (89) and in view of (11), we obtain

$$\left(\frac{zf'(z)}{f(z)} \right)^\mu \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\mu} = 1 + h_1(x) u_1 z + [h_2(x) u_2 + h_3(x) u_1^2] z^2 + \cdots$$ \hspace{1cm} (90)

and

$$\left(\frac{wg'(w)}{g(w)} \right)^\mu \left(1 + \frac{wg''(w)}{g'(w)} \right)^{1-\mu} = 1 + h_1(x) v_1 z + [h_2(x) v_2 + h_3(x) v_1^2] z^2 + \cdots.$$ \hspace{1cm} (91)

If

$$u(z) = \sum_{n=1}^{\infty} u_n z^n \ \text{and} \ v(z) = \sum_{n=1}^{\infty} v_n z^n,$$ \hspace{1cm} (92)

then it is well known that

$$|u_n| \leq 1 \ \text{and} \ |v_n| \leq 1 \ (n \in \mathbb{N}).$$ \hspace{1cm} (93)

Thus upon comparing the corresponding coefficients in (90) and (91), we have

$$(2 - \mu) \alpha_2 = h_2(x) u_1$$ \hspace{1cm} (94)

$$2(3 - 2\mu) \alpha_3 + (\mu^2 + 5\mu - 8) \frac{\alpha_1^2}{2} = h_2(x) u_2 + h_3(x) u_1^2$$ \hspace{1cm} (95)

and

$$-(2 - \mu) \alpha_2 = h_2(x) v_1$$ \hspace{1cm} (96)

and

$$(\mu^2 - 11\mu + 16) \frac{\alpha_1^2}{2} - 2(3 - 2\mu) \alpha_3 = h_2(x) v_2 + h_3(x) v_1^2.$$ \hspace{1cm} (97)

From (94) and (96), we can easily see that

$$u_1 = -v_1, \ \text{provided} \ h_2(x) = bx \neq 0$$ \hspace{1cm} (98)

and

$$2(2 - \mu) \alpha_2^2 = [h_2(x)]^2 (u_1^2 + v_1^2)$$ \hspace{1cm} (99)
If we add (95) to (97), we get
\[(\mu^2 - 3\mu + 4)a_2^2 = h_2(x)(u_2 + v_2) + h_3(x)(u_1 + v_1^2).\] (100)

By substituting (99) in (100), we obtain
\[a_2^2 = \frac{[h_2(x)]^2(u_2 + v_2)}{(\mu^2 - 3\mu + 4)[h_3(x)]^2 - 2h_3(x)(2 - \mu)^2},\] (101)
and by taking \(h_2(x) = bx\) and \(h_3(x) = bp^2 + qa\) in (101), it further yields
\[|a_2| \leq \left|\frac{1}{4}\sqrt{\frac{b^2}{(2 - \mu)^2}}\right|.\] (102)

By subtracting (97) from (95) and in view of (98), we obtain
\[4(3 - 2\mu)a_3 - 4(3 - 2\mu)a_2^2 = h_2(x)(u_2 - v_2) + h_3(x)(u_1^2 - v_1^2),\] \[a_3 = \frac{h_2(x)(u_2 - v_2)}{4(3 - 2\mu)} + a_2^2.\] (103)

Then in view of (99), (103) becomes
\[a_3 = \frac{h_2(x)(u_2 - v_2)}{4(3 - 2\mu)} + \frac{[h_3(x)]^2(u_1^2 + v_1^2)}{2(2 - \mu)^2}.\] (104)

Applying (10), we deduce that
\[|a_3| \leq \left|\frac{1}{6}\sqrt{\frac{1}{4\mu}}\right| + \left|\frac{b^2}{(2 - \mu)^2}\right|.\] (105)

From (103), for \(v \in \mathbb{R}\), we write
\[a_3 - va_2^2 = \frac{h_2(x)(u_2 - v_2)}{4(3 - 2\mu)} + (1 - v)a_2^2.\] (106)

By substituting (101) in (106), we have
\[a_3 - va_2^2 = \frac{h_2(x)(u_2 - v_2)}{4(3 - 2\mu)} + \frac{(1 - v)[h_3(x)]^2(u_1 + v_2)}{(\mu^2 - 3\mu + 4)[h_3(x)]^2 - 2h_3(x)(2 - \mu)^2},\]
\[= h_2(x) \left\{ (\Omega(v, x) + \frac{1}{4(3 - 2\mu)})u_2 + \left(\Omega(v, x) - \frac{1}{4(3 - 2\mu)}\right)v_2 \right\},\] (107)

where
\[\Omega(v, x) = \frac{(1 - v)[h_2(x)]^2}{(\mu^2 - 3\mu + 4)[h_3(x)]^2 - 2h_3(x)(2 - \mu)^2}.\] (108)

Hence, we conclude that
\[|a_3 - va_2^2| \leq \left|\frac{[h_2(x)]}{4(3 - 2\mu)}\right| \left|\frac{1}{4(3 - 2\mu)}\right| |\Omega(v, x)| \leq \frac{1}{4(3 - 2\mu)},\] (109)

which in view of (10) evidently completes the proof of Theorem 2.

In view of Remark 1, Theorem 3 yields.

\textbf{Corollary 6.} Let \(f(z) = z + \sum_{n=2}^\infty a_n z^n\) be in the class \(L_\mu(\mu, t)\). Then
\[|a_2| \leq \frac{2|a| \sqrt{2|a|}}{\sqrt{(2 - \mu)^2 - 2(\mu^2 - 5\mu + 12)t^2}} \quad \text{and} \quad |a_3| \leq \frac{|a|}{3 - 2\mu} \left(\frac{4t}{(2 - \mu)^2}\right)\] (110)
and for \(v \in \mathbb{R}\)
\[v a_2^2 - a_3 \leq \left\{ \begin{array}{ll}
\frac{|a|}{3 - 2\mu} & \text{if } |v - 1| \leq \frac{(2 - \mu)^2 - 2(\mu^2 - 5\mu + 12)t^2}{r^2(3 - 2\mu)} \\
1 & \text{if } |v - 1| \geq \frac{(2 - \mu)^2 - 2(\mu^2 - 5\mu + 12)t^2}{r^2(3 - 2\mu)}.
\end{array} \right.\] (111)

\textbf{Data Availability}

No data were used to support this study.

\textbf{Conflicts of Interest}

The authors declare that there have no conflicts of interest.

\textbf{Authors’ Contributions}

All authors contributed equally towards writing, reading, and approval of this manuscript.

\textbf{Acknowledgments}

The authors are thankful to the referees for their valuable suggestions and comments to improve the paper in the present form.

\textbf{References}

