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The accurate measurement of human joint torque is one of the research hotspots in the field of biomechanics. However, due
to the complexity of human structure and muscle coordination in the process of movement, it is difficult to measure the
torque of human joints in vivo directly. Based on the traditional elbow double-muscle musculoskeletal model, an improved
elbow neuromusculoskeletal model is proposed to predict elbow muscle torque in this paper. The number of muscles in
the improved model is more complete, and the geometric model is more in line with the physiological structure of the
elbow. The simulation results show that the prediction results of the model are more accurate than those of the traditional
double-muscle model. Compared with the elbow muscle torque simulated by OpenSim software, the Pearson correlation
coefficient of the two shows a very strong correlation. One-way analysis of variance (ANOVA) showed no significant
difference, indicating that the improved elbow neuromusculoskeletal model established in this paper can well predict elbow
muscle torque.

1. Introduction

Human joint torque is one of the key reference indexes in
rehabilitation evaluation and human-machine interaction.
Joint torque can be applied to patient rehabilitation and ath-
lete training, assessment, prosthetic and orthosis design and
control, and so on. Especially in rehabilitation training, the
estimation of joint torque can not only provide a basis for
judging the degree of rehabilitation of patients but also help
rehabilitation equipment to identify the movement intention
of operators more accurately. Some researchers use the sur-
face electromyogram (sEMG) signal of biceps brachii to esti-
mate the exercise intensity of subjects and map it to the
elbow torque and design the control strategy of the rehabil-
itation robot based on torque estimation [1–3]. Applying the
estimation results of ankle torque based on sEMG to the
sinusoidal trajectory tracking task of the ankle exoskeleton

robot can help exoskeleton equipment achieve more natural
movement [4]. However, due to the complexity of human
structure and muscle coordination in the process of move-
ment, it is difficult to measure the torque of human joints
in vivo directly. Accurate prediction of human joint torque
is one of the most challenging topics in the field of biome-
chanics [5].

There are two main methods to solve the joint torque.
One is to construct the inverse dynamic model of the human
body. Pontonnier and Dumont proposed a method to obtain
muscle force according to the captured human motion data
and established a human inverse dynamic model [6]. Obu-
sek et al., combined with the motion law of the mass center
of the human upper limb, established the spring simple pen-
dulum model and then solved the joint torque of the human
ankle [7]. Due to the high dependence on the accuracy of the
dynamic model, it is difficult for the above method to
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provide high-accuracy joint torque solution results. The sec-
ond method is the prediction of joint muscle strength with
sEMG signal as input. The second method can predict mus-
cle force, reflect antagonistic muscle actuating, and reflect
more abundant information of human movement and mus-
cle activation. Therefore, in recent years, many scholars have
proposed the method of using sEMG signals to solve joint
torque, which has been used in human upper limb elbow
joint [8], index finger [9], lower limb knee joint [10], and
ankle joint [4].

There are two kinds of estimation methods for predict-
ing the joint torque by EMG signal. One method is to estab-
lish a regression model between sEMG and joint torque by
using the machine learning method, which is usually called
“black box method.” The commonly used machine learning
methods include neural network, linear classifier, and sup-
port vector machine. Peng et al. established two three-layer
reverse BP neural network models to estimate the torque
of hip and knee joints [11]. Meng et al. used the root mean
square characteristics of sEMG signals of four lower limb
muscles as the input of the support vector regression model
to estimate human-robot interaction force [12]. The model-
ing process of the “black box method” is simple, but the
establishment of the model depends greatly on the training
samples. When the test samples are greatly different from
the training samples, the estimation accuracy will be very
unsatisfactory. In addition, when complex multijoint and
multidegree of freedom motion is carried out, the complex-
ity of the mapping model will increase greatly. Because the
increase of training samples is usually very limited compared
with the complexity of the sEMG model, it is difficult for the
black box method to obtain satisfactory generalization
performance.

That limitation can be overcome through the dynamic
modeling of the neuromuscular and skeletal systems [13].
Chen et al. used the musculoskeletal biomechanical model
to estimate the knee torque and verified the accuracy and
availability of the model through the experimental results
of 8 subjects at different walking speeds [14]. Hou et al.
established the elbow neuromusculoskeletal model to esti-
mate the joint torque during flexion and extension [15].
Joint torque prediction based on musculoskeletal model
needs to collect a large number of motion parameters and
human physiological parameters, and the process of muscle
strength estimation is complex [1]. To meet the practical
needs, it is necessary to simplify and optimize the musculo-
skeletal model. For example, the common dual-muscle mus-
culoskeletal model is often used to predict the muscle torque
of the elbow [16]. Linear optimization [17], genetic algo-
rithm [18], nonlinear least squares optimization [19], and
other methods are usually used to optimize the parameters
in the musculoskeletal model for more accurate prediction.

Elbow joint and its accessory muscles play an important
role in the movement of the upper limbs. The bone structure
of the elbow joint is relatively simple, but it involves a large
number of muscles. The commonly used elbow muscle bone
model is the double-muscle model, which uses two muscle
force lines to represent the biceps and triceps. The bone
structure involved in the elbow is regarded as a connecting

rod, and the radius of the upper arm and forearm is ignored
in the calculation [20]. The model can quickly solve the
muscle force, arm, real-time muscle fiber length, and muscle
contraction speed according to the real-time joint angle,
combined with sEMG signal and Hill muscle model, and
then quickly obtain the muscle torque of elbow joint. How-
ever, the triangular relationship of triceps brachii is inconsis-
tent with the physiological structure of the elbow joint. This
will cause deviations in the calculation and then lead to a
large error in the calculation result of the resultant torque.
This paper discusses an improved elbow neuromusculoske-
letal model. Based on the traditional double-muscle model,
the biceps brachii muscle force is divided into two muscles,
the triceps brachii muscle is divided into three muscles,
and the brachialis is added as the flexor. The humeral troch-
lear was also taken into account. The improved model has
more complete muscle quantity; the geometric model is
more in line with the physiological structure and can predict
the elbow muscle torque more accurately.

The rest of this paper is organized as follows: Section 2
introduces the physiological of the elbow joint; Section 3
introduces the optimization results of the main parameters
of the elbow neuromusculoskeletal model; in Section 4, the
elbow neuromusculoskeletal model proposed in this paper
is used to predict the elbow muscle torque and compared
with the simulation results of OpenSim software. Section 5
is the conclusion of this paper.

2. Elbow Musculoskeletal Model

The elbow physical model is the basis of elbow muscle tor-
que prediction. The elbow physiological model established
in this paper includes three parts: Hill musculotendon
model, elbow musculoskeletal model, and elbow joint kine-
matic and moment model. The Hill musculotendon model
is used to calculate the force of muscle contraction according
to muscle activation. The elbow musculoskeletal model con-
sists of an amalgamation of muscle architecture and bone
structure of the elbow joint. The elbow joint kinematic and
moment model is used to determine the force arm of the
elbow flexor and extensor groups acting on the rotation axis
of the elbow joint during movement and finally solve the
muscle resultant moment.

2.1. Hill Musculotendon Model. The improved Hill Musculo-
tendon model shown in Figure 1 is generally used to solve
the muscle contraction force [21]. The muscle model mainly
includes series elastic element (see), passive elastic element
(PEE), contraction element (CE), viscous damping element
(VE), and pennation angle φ (in the following formulas,
“CE,” “PE,” and “ve” are used as subscripts for the latter
three, respectively). In Figure 1, lmt is the length of muscle,
lm is the length of muscle fiber, and lt1 and lt2 are the length
of tendon at both ends, respectively.

According to the Hill muscle model, the relationship
between muscle length, muscle fiber length, and tendon
length is as follows:

lmt = lm ⋅ cos φ + lt = lE ⋅ cos φ + lt1 + lt2: ð1Þ
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The muscle force is calculated as follows:

FM = FCE + FPE + FVEð Þ ⋅ cos φ: ð2Þ

In equation (2), FCE, FPE, and FVE are muscle fiber active
force, muscle fiber passive force, and viscous damping force,
respectively. FVE is very small and is not considered in this
paper. FCE is determined by muscle activation, muscle fiber
length, muscle fiber contraction speed, and maximum mus-
cle strength. The calculation formula of FCE is as follows:

FCE = a ⋅ f l ⋅ f v ⋅ F0 = f CE ⋅ F0: ð3Þ

In equation (3), a, f l, f v , and F0 are muscle activation,
muscle fiber length influencing factor, muscle fiber contrac-
tion speed influencing factor, and resting maximum isomet-
ric contraction force, respectively. In equation (3), muscle
activation a is calculated by the following formula [22]:

a tð Þ = eAu tð Þ‐1
eA − 1

: ð4Þ

In equation (4), aðtÞ, uðtÞ, and A are muscle activation,
normalized sEMG signal, and nonlinearity, respectively.
The influence factor of muscle fiber length f l and the influ-
ence factor of muscle fiber contraction speed f v in equation
(3) are calculated by the Thelen model [23], as shown in the
following equation:

f l = e− lm/lmopt−1ð Þ2/γ
� �

: ð5Þ

In formula (5), lm and lmopt are the current muscle fiber
length and resting muscle fiber length, respectively. γ is the
shape factor. The calculation formula of f v in equation (3) is

f v =

1 + vn
1 − vn/Asð Þ , vn ≤ 0,

fM ⋅ vn + As ⋅ fM − 1ð Þð Þ/ 2 + 2 ⋅ Asð Þð Þ
vn + As ⋅ fM − 1ð Þð Þ/ 2 + 2 ⋅ Asð Þð Þ , vn > 0:

8>>><
>>>:

ð6Þ

In equation (6), vn is the normalized contraction veloc-
ity; As is the curve parameter, taken as 0.25; and fM is the
maximum muscle force during muscle fiber elongation (nor-
malizing the muscle fiber active force). The passive force FPE

can be calculated by the passive coefficient f PE and the max-
imum muscle force F0, that is,

FPE = f PE ⋅ F0: ð7Þ

f PE can be calculated by muscle fiber length. When the
length of muscle fiber is less than or equal to the resting
length, no passive force will be generated. When the length
of muscle fiber is greater than the resting length, a passive
force will be generated. Thelen’s formula is also used here
[23]:

f PE =
e kPE lm/lmopt−1ð Þð Þ/εM0 − 1

ek
PE − 1

: ð8Þ

In equation (8), kPE is the curve shape parameter; εM0 the
maximum passive muscle tension strain. The pennation
angle φ can be calculated as follows:

φ = arcsin
lmopt sin φ0

lm

� �
: ð9Þ

In equation (9), φ0 is the pennation angle corresponding
to the resting length of muscle fiber lmopt, φ is the pennation
angle corresponding to the muscle fiber length lm, and w is
the muscle fiber width.

To sum up, the process of calculating muscle force using
Hill musculotendon model is shown in Figure 2. The inputs
to the model are real-time muscle fiber length lm and real-
time tendon length lt (the calculation methods of lm and lt
will be introduced in Section 2.3). The cosine value of pen-
nation angle can be obtained from lm according to equation
(9). The normalized muscle fiber contraction velocity vn can
be obtained by deriving lm. By lm, cos φ, and lt, the real-time
muscle length lmt can be obtained according to equation (1).
The influence factor of muscle fiber length f l can be
obtained from lm according equation (5). The influence fac-
tor of muscle fiber speed f v can be obtained from vn accord-
ing to equation (6). According to a1, f l, and f v, the active
coefficient f CE can be obtained according to equation (3).
The passive coefficient f PE can be obtained from lmt accord-
ing to equation (8). Summing f CE and f PE and multiplying
by the cosine value of the pennation angle φ and the maxi-
mum muscle strength of muscle fiber F0 according to equa-
tion (2), the muscle strength FM is obtained finally.

2.2. Elbow Physiological Model. The bone structure of the
elbow joint is relatively simple, but it involves a large num-
ber of muscles, so it needs to be simplified. In the process
of elbow flexion, the joint torque produced by the brachialis,
the long head of biceps brachii, and short head of biceps bra-
chii is large, and they are the main flexion muscles. It can be
seen from the muscle force data of upper limb in reference
[24] that, although the average force arm of the brachiora-
dialis muscle is large, its peak force is relatively small. At
the same time, according to the data in reference [25], the
elbow torque provided by the brachioradialis muscle is
smaller than that of the biceps brachii muscle and brachialis.

PEE

SEE

SEE

lm

VE
CE lt2

lmt

lt1

𝜑

Figure 1: The improved Hill musculotendon model.
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Considering comprehensively, the brachioradialis muscle
was not added in order to simplify the model in this paper.
The elbow extensor muscle group mainly includes the tri-
ceps brachii and anconeus muscle. The maximum cross-
sectional area of the anconeus muscle is relatively small,
the muscle contraction force is also small, and the torque
of the elbow joint is limited. In addition, this paper only
establishes a two-dimensional musculoskeletal model of
elbow flexion/extension in the sagittal plane to predict elbow
muscle torque. The reasons are as follows: firstly, the three-
dimensional elbow musculoskeletal model increases the
number of parameters to be input in the model furtherly,
which increases the complexity of the musculoskeletal
model. Secondly, according to the motor anatomy of the
human upper limb, the elbow joint is a natural hinge joint,
which has only one degree of freedom of flexion/extension.
In the process of flexion and extension, the relevant muscle
forces are mainly used to make the elbow flexion and exten-
sion when excluding the influence of double-joint muscles.

Figure 3 shows the comparison of two-dimensional
elbow musculoskeletal models, in which Figure 3(a) shows
the commonly used elbow model [20]. The model uses two
tension lines to represent the biceps brachii and triceps bra-
chii. The bone structure involved in the elbow joint is

regarded as a connecting rod, and the radii of the upper
arm and forearm are ignored in the calculation. The model
takes the rotation center of the elbow joint as the origin O
and establishes a spatial rectangular coordinate system O
-xyz. The x-axis is parallel to the sagittal axis, and the direc-
tion is forward. The y-axis is parallel to the frontal axis and
the direction points to the inner side of the body of the right
hand. The z-axis is parallel to the vertical axis, and the direc-
tion is upward. The upper arm coincides with the z-axis and
does not move vertically. The forearm rotates around the y
-axis. A is the starting point of biceps brachii, B is the stop
point of biceps brachii, and C is the position of B after elbow
flexion. D is the starting point of triceps brachii, E is the end-
ing point of triceps brachii, and F is the position of E after
rotation; θ is the elbow flexion angle. FBi represents biceps
brachii muscle strength, and FTr represents triceps brachii
muscle strength.

It can be seen from Figure 3(a) that the geometric rela-
tionship between the starting and ending points of muscle
and bone can be considered a triangular relationship, that
is, the triangular ODF and triangular OAC. Figure 4 shows
a sagittal view of the humeral ulnar joint during flexion, in
which the ending point of the flexor muscle group in the
forearm bone is far from the rotation center. Therefore, the
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Figure 2: Calculation flow of the Hill musculotendon model.
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(b) Model considering humeral trochlea

Figure 3: Comparison of elbow musculoskeletal models.
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relationship between the muscle force line of the flexionmuscle
group and the bone during flexion can be calculated according
to the triangular relationship. However, the ending point of
extensor muscle group is located on the olecranon process of
the ulna. When the ulna moves around the humeral pulley,
the contraction trajectory of the extensor muscle is approxi-
mately a circular arc, which is different from Figure 3(a). Some
scholars have improved the musculoskeletal model in
Figure 3(a) according to the real anatomical structure of the
elbow joints, as shown in Figure 3(b) [26]. The triceps brachii
ending point E in Figure 3(b) is located on the red circle, which
represents the humeral trochlea. When the extensor muscle
contracts, its ending point moves around the arc, which is more
in line with the physiological structure of the elbow.

In this paper, the model in Figure 3(b) is further
improved to obtain the elbow musculoskeletal model shown
in Figure 5. Firstly, in the musculoskeletal model of this
paper, the two heads of the biceps brachii are divided into
two muscles, the triceps brachii is divided into three muscles,
and the brachialis is added as the flexor. Secondly, because
the long head of the triceps brachii and biceps brachii is
double-joint muscles that span the shoulder joint and elbow
joint, part of the length is located on the shoulder joint,
which is not within the triangular relationship, and consid-
ering the structure of the humeral trochlear, the starting
and ending points of the main muscles in the elbow joint
musculoskeletal model are considered in detail in this paper.
The long head of triceps brachii is a double-joint muscle, so
point J is set as the starting point of the long head of triceps
brachii. The lateral head and medial head of triceps brachii
are single joint muscles, the starting point is set at D0 and
D1, and all ending points of the three heads of triceps brachii
are E. When the upper arm is vertically stationary, due to the
humeral trochlear structure, the ending points of triceps bra-
chii change according to the arc track. Therefore, the change
of D0, D1, E, and J points does not affect the calculation of
the length of triceps brachii. They are set here to explain
the structural characteristics of triceps brachii. The long
head and short head of the biceps brachii are double-joint
muscles that span the shoulder joint and elbow joint. Part
of the length is located on the shoulder joint and is not
within the triangular relationship. Based on the existing data
analysis, the starting points of the two heads of biceps brachii

are the same in the sagittal plane, but the activation degree is
different during flexion. Set the starting point of both heads
of the biceps brachii as A0, and the part crossing the shoulder
joint is A0A segment. When the shoulder joint is not moving,
the length of A0A segment remains unchanged. According to
the anatomical characteristics of the brachialis, the GH seg-
ment is newly added as the path of the brachialis (when the
elbow joint is in the extended position). In Figure 5, the posi-
tion of the brachialis ending point H after rotation is point I.
The specific position of the above starting and ending points
is determined according to the anatomical data. In Figure 5,
FBilong, FBishort, FBra, FTrlong, FTrlat, and FTrmed represent the
muscle forces of the long head of biceps brachii, the short head
of biceps brachii, the brachialis, the long head of triceps bra-
chii, the lateral head of triceps brachii, and the medial head
of triceps brachii, respectively.

2.3. Elbow Joint Kinematic and Moment Model. The main
function of the elbow joint kinematic and moment model
is to calculate the real-time muscle fiber length lm, real-
time tendon length lt and real-time muscle force arm rm
according to the joint flexion angle θ and elbow physiologi-
cal model. Then, combined with the Hill muscle model, the
muscle force FM and the muscle torque acting on the elbow
can be obtained. In this section, the long head of biceps bra-
chii is taken as an example to introduce the calculation
method of muscle force arm and the length of flexion muscle
group. The short head of biceps brachii and brachialis can
refer to this calculation method. Then, taking the long head
of triceps brachii as an example, the calculation of muscle
force arm and the length of extensor muscle group is intro-
duced. Since the ending points of triceps brachii are located
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Figure 5: Schematic diagram of the improved musculoskeletal
model of the elbow joint established in this paper.
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Figure 4: Sagittal view of the humeral ulnar joint during flexion.
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on the humeral trochlea and the force arm is almost con-
stant, the medial head and lateral head of triceps brachii
can refer to this calculation method.

For the long head of biceps brachii, if the coordinates of
the starting point A, the ending point B, and the position C
after the rotation of B are (x1, y1, z1), (x2, y2, z2), and (x2, y2,
z2), there is the following transformation equation:

OC
�! = ROB

�!,

R =

cos θ 0 −sin θ

0 1 0

sin θ 0 cos θ

2
664

3
775:

ð10Þ

In equation (10), OC
�!

and OB
�!

are the directed vectors
from the origin O to point C and point B, respectively. R is
the transformation matrix; θ is the elbow flexion angle.

The coordinates of point C can be obtained according to

OC
�!

. The muscle length lmtBi of the long head of biceps bra-
chii after joint rotation is calculated as follows:

lmtBi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 − x1ð Þ2 + y3 − y1ð Þ2 + z3 − z1ð Þ2

q
+ l0: ð11Þ

In equation (11), l0 is the muscle length that does not
belong to the triangular relationship. For the long head
and short head of biceps brachii, it refers to segment AA0
in Figure 5. The real-time length lmBi of muscle fiber can
be obtained by subtracting the tendon length ltBi from the
muscle length lmtBi of the long head of the biceps brachii.
The change of tendon length ltBi is very small. In this paper,
it is treated as 1.02 times of resting tendon length ltoptBi.

lmBi = lmtBi − ltBi = lmtBi − 1:02 ⋅ ltoptBi: ð12Þ

In this paper, the flexion motion is regarded as carried
out in the sagittal plane, that is, the xOz plane. Then, the cal-
culation formula of the force arm of the long head of biceps
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Figure 6: Elbow muscle torque prediction workflow.

Table 1: Values of formula parameters in the musculoskeletal model in this paper.

Item Name Value

Shape coefficient of f l γ 0.5

Curve parameters of f v As 0.25

Maximum muscle force during muscle fiber elongation fM 1.8

Normalized muscle fiber maximum contraction velocity vn 8lmopt

Shape parameters of passive force curve kPE 4

Maximum passive tension strain εM0 0.5

Muscle force arm shape parameters ks 0.004

Table 2: Relevant personalized parameters used in this paper.

Name lmopt (m) ltopt (m) F0 (N) φ0 (
°)

Long head of biceps brachii 0.116 0.272 624.3 0

Short head of biceps brachii 0.132 0.192 435.6 0

Brachialis 0.086 0.054 987.3 0

Long head of triceps brachii 0.134 0.143 798.5 12

Lateral head of triceps brachii 0.114 0.091 624.3 9

Medial head of triceps brachii 0.114 0.098 624.3 9
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brachii rBi can be obtained according to the distance from
the origin to the straight line in the two-dimensional plane:

rBi =
bj jffiffiffiffiffiffiffiffiffiffiffiffi

k2 + 1
p ,

b = −k ⋅ x1 + z1,

k =
z3 − z1
x3 − x1

:

8>>>>><
>>>>>:

ð13Þ

For the long head of triceps brachii, Pigeon and Feldman
found that the forced arm of this muscle increased slightly
during extension [27]. In this paper, its treatment is as fol-
lows:

rTri = r0 − ks ⋅
θ

90
: ð14Þ

In equation (14), r0 and ks are the initial force arm value
and shape parameters when the elbow joint is in the
extended position. Because the ending points of the three
muscles of the triceps brachii converge on the total tendon
of the olecranon process, the force arms of the three muscles
are always the same. The muscle length of the long head of
triceps brachii lmtTri is calculated as follows:

lmtTri =
lmoptTri + θ ⋅ rTri

180
: ð15Þ

The tendon length of the long head of triceps brachii is
treated in the same way as equation (12). The real-time mus-
cle fiber length lmTri can be obtained by subtracting the ten-
don length ltTri from the muscle length.

From equations (10)–(15), the muscle fiber length and
muscle force arm of each muscle contained in the elbow
muscle bone model in this paper can be obtained. Combined
with the sEMG data of each muscle, the muscle force FM of
each muscle can be obtained according to the Hill muscle
model in Section 2.1. The calculation formula of elbow mus-
cle resultant moment is as follows:

τhuman‐el θ, tð Þ = 〠
m

i=1
ri θð Þ ⋅ Fi

M θ, tð Þ�
: ð16Þ

In equation (16), τhuman−el represents the elbow muscle
resultant moment when the joint angle is θ and the sampling
time is t. riðθÞ is the ith muscle force arm when joint angle is
θ. Fi

Mðθ, tÞ is the ith muscle force when the joint angle is θ.
To sum up, the workflow of solving muscle torque by

using the elbow musculoskeletal model is shown in
Figure 6. Firstly, the sEMG1 signal of the first muscle in this
model is processed to obtain the muscle activation ai. Then,
according to the measured elbow flexion angle θ, the for-
ward kinematics analysis is carried out. The real-time mus-
cle fiber length lm1, real-time tendon length lt1, and real-
time muscle force arm r1 were obtained. According to the
Hill muscle model mentioned in Section 2.1, the muscle
strength F1

M of the first muscle can be obtained. According
to equation (16), the muscle force F1

M of the first muscle is
multiplied by r1 to obtain the muscle torque τ1 of the first
muscle acting on the elbow joint. Just like the first muscle,
according to the joint flexion angle θ and the other muscle’s
surface EMG signals, the muscle torque can be obtained,
respectively. By summing these moments, we can get the
muscle torque τsum acting on the elbow joint.

3. Parameter Values in the
Musculoskeletal Model

According to the analysis in the previous section, there are a
large number of parameters to be input in the elbow muscu-
loskeletal model. These parameters can be divided into two
categories: formula parameters and personalized parameters.
Formula parameters refer to widely verified and generalized
parameters, such as shape parameters. The values of formula
parameters in the musculoskeletal model in Section 2 are
shown in Table 1.

Personalized parameters refer to the physiological and
anatomical parameters of the calculated object, which may
change due to different objects, including muscle activation,
muscle fiber resting length lmopt, tendon resting length ltopt,
maximum muscle force F0, and resting pinnate angle φ0
and muscle space coordinate values. Muscle activation A is

Table 3: Spatial position of starting and ending points of flexion muscles.

Name Starting point End point l0 (m)

Long head of biceps brachii (0.023, 0, 0.115) (0.007, 0, -0.047) 0.263

Short head of biceps brachii (0.023, 0, 0.115) (0.007, 0, -0.047) 0.178

Brachialis (0.008, 0, 0.115) (0.007, 0, -0.023) 0.010
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Figure 7: Planned elbow angle change.
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obtained by processing sEMG, which has been introduced in
the workflow of the musculoskeletal model. In this paper,
the sEMG signals of relevant muscles are not actually col-
lected to obtain the activation degree but obtained by using
the open source human musculoskeletal system simulation
software OpenSim. Other personalization parameters as
shown in Table 2 are obtained from the literature [24]. For
different individuals, the resting length of muscle fibers
and tendons can be scaled by height, and the maximum
muscle strength needs to be measured.

In addition, the calculation of muscle fiber length of the
flexion muscle group also requires muscle spatial coordi-
nates (not required for extensor muscle group calculation).
These data can be fitted in OpenSim through the muscle-
related parameters in Table 2. For individual parameters of
different heights, the scaling fitting method can be used. As
shown in Table 3, the spatial parameters of the flexion mus-
cle group are shown. For biceps brachii, the starting point
and ending point in the table refer to the point A in the
model in Figure 5, rather than the anatomical starting and
ending point A0.

4. Simulation and Results

4.1. Simulation Setup. The musculoskeletal model in Section
2 is implemented in the numerical simulation software. To
verify the elbow muscle torque prediction model proposed
in this paper, the elbow angle data and the muscle activation
of the six muscles contained in the musculoskeletal model
need to be input. The elbow input angle of the model is
shown in Figure 7. The elbow angle moves from 0° to 90°

and then returns to 0° within 2 s, representing the flexion
and extension movement of the elbow. OpenSim4.1 was
used to calculate the main muscle force, muscle activation,
and elbow muscle torque of the upper limb under the same
exercise state. The extracted muscle activation is input into
the numerical model, and the muscle force and elbow mus-

cle torque calculated by the numerical model are compared
with the results calculated by OpenSim.

The model used in OpenSim simulation is Arm26, which
is an OpenSim self-contained upper limb musculoskeletal
model. The right upper limb muscles introduced by the
model include the long head of biceps brachii, the short head
of biceps brachii, the long head of triceps brachii, the lateral
head of triceps brachii, and the medial head of triceps bra-
chii. Secondly, to prevent the influence of shoulder and
elbow double-joint muscles on the prediction of elbow mus-
cle torque, the shoulder joint was set as fixed after
deenabling.

According to the elbow flexion and extension movement
planned in Figure 7, the elbow forward kinematics, dynam-
ics, and muscle activation data can be obtained according
to the joint angle by using the Computed Muscle Control
(CMC) function of OpenSim software. The activation range
in OpenSim model is 0-1, but in order to make the model
run normally, the activation is set to a number slightly
higher than 0 by default, and this study is set to 0.02-1.
The muscle activation derived from OpenSim fluctuates
greatly before the end of muscle movement and needs
smoothing. As shown in Figure 8, the muscle activation data
obtained by the above method will be substituted into the
numerical calculation model as one of the signal sources.

4.2. Simulation Results and Discussion. Using the elbow
musculoskeletal model established in this paper, the muscle
force time relationship and muscle length time relationship
of relevant muscles are calculated and compared with the
calculation results of OpenSim software (Figures 9 and 10).

Next, the curves in Figures 9 and 10 are analyzed from
the perspective of Pearson correlation coefficient and one-
way ANOVA. Pearson correlation is a method to measure
correlation. One-way ANOVA can compare the differences
between the two. The comparative analysis results of muscle
force time relationship are shown in Table 4. According to
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Figure 8: The related muscle activation obtained by OpenSim.
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Pearson correlation coefficient, the model results established
by OpenSim and this study are an extremely strong correla-
tion (ESC); that is, the change trend of the two is consistent,
which is consistent with that in Figure 9. According to the

results of one-way ANOVA, there was no significant differ-
ence (NSD) in the comparison results of the long head of
biceps brachii, the long head of triceps brachii, and the lat-
eral head of triceps brachii, but there was an extremely
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Figure 9: Muscle force and time relationship under the two models.
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significant difference (ESD) among the brachialis, the
short head of biceps brachii, and the medial head of tri-
ceps brachii. As can be seen from Figure 9, the three
muscles are inconsistent with the OpenSim simulation
results in some sections, indicating that there are some

differences in the model. Since the formula parameters
in the two models are the same, the main source of error
is the above muscle personalized parameters, mainly the
error of the coordinates of the starting and ending points
of muscle anatomy.
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Figure 10: Muscle length and time relationship under two models.
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Compare the muscle length-time relationship predicted
by the OpenSim model and numerical model, and the results
are shown in Table 5. It can be seen from Table 5 that there
is a strong correlation between muscle length and time

under the two models; that is, the change trend of the two
models is the same. From one-way ANOVA, only the long
head of triceps brachii had significant difference. Moreover,
if the confidence level is set to 0.01, there is no significant
difference between the data obtained by the two models,
and the results under the two models show a strong correla-
tion. The above results show that the musculoskeletal model
established in this paper can well predict the relationship
between muscle length and time in the process of elbow flex-
ion and extension.

Finally, the resultant moment of each muscle in the
elbow joint is calculated by the model, and the flexion

Table 4: Comparative analysis results of muscle force-time relationship.

Muscle
Pearson correlation coefficient One-way ANOVA (α = 0:05)

OpenSim Improved model Result F P value F-crit Result

Biceps long 1 0.993 ESC 2.664 0.103 3.865 NSD

Biceps short 1 0.975 ESC 16.08 7.21E-05 3.865 ESD

Brachialis 1 0.943 ESC 9.468 2.23E-3 3.865 ESD

Triceps long 1 0.999 ESC 2.508 0.114 3.865 NSD

Triceps lateral 1 0.995 ESC 0.149 0.903 3.865 NSD

Triceps medial 1 0.969 ESC 38.325 1.5E-3 3.865 ESD

Table 5: Comparative analysis results of muscle length-time relationship.

Muscle
Pearson correlation coefficient One-way ANOVA (α = 0:05)

OpenSim Improved model Result F P value F-crit Result

Biceps long 1 0.999 ESC 0.028 0.876 3.865 NSD

Biceps short 1 0.999 ESC 0.948 0.331 3.865 NSD

Brachialis 1 0.998 ESC 0.235 0.628 3.865 NSD

Triceps long 1 0.999 ESC 5.887 0.016 3.865 ESD

Triceps lateral 1 0.999 ESC 0.003 0.953 3.865 NSD

Triceps medial 1 0.999 ESC 1.978 0.160 3.865 NSD
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Figure 11: Comparative diagram of elbow joint muscle resultant torque predicted by three models.

Table 6: Comparative analysis of the predicted resultant moment-
time relationship.

Pearson correlation coefficient One-way ANOVA (α = 0:05)

OpenSim
Improved
model

Result F
P

value
F

-crit
Result

1 0.970 ESC 1.390 0.239 3.865 NSD
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direction is set as the positive direction. As shown in
Figure 11, the comparison diagram of the muscle resultant
torque of the elbow joint under the three models is shown,
in which the red line represents the torque calculated by
the improved musculoskeletal model, the black line repre-
sents the torque calculated by OpenSim, and the blue line
represents the torque calculated by the common double-
muscle musculoskeletal model. The muscle activation degree
used in these models is exported through OpenSim. It can be
seen from the figure that the torque-time curve calculated by
OpenSim and the improved musculoskeletal model is con-
sistent. Compared with the commonly used double-muscle
musculoskeletal model, the improved musculoskeletal model
proposed in this paper has a better prediction effect.

To verify whether the improved musculoskeletal model
and OpenSim model can be regarded as equivalent furtherly,
the resultant moments predicted by the two models are ana-
lyzed. Table 6 shows the analysis results. It can be seen from
the table that the resultant moment-time relationship calcu-
lated by the two models shows a very strong correlation, and
there is no significant difference. Therefore, the musculo-
skeletal model established in this study can be regarded as
equivalent to the model in OpenSim.

As shown in Figure 12, it is the elbow torque distributed
among the muscles calculated according to the model in this
paper. The elbow joint flexes 90° from 0° and then extends
back to 0° (elbow angle θ = 45 + 45 ∗ sin ðπt − π/2Þ).

The black solid line is the resultant moment, which is
mainly to help the forearm overcome the gravity movement.
Therefore, the resultant moment increases with the elbow
flexion (forearm lifting). When the elbow is extended (fore-
arm lowering), the resultant moment decreases gradually.

The green line represents the flexion muscle group, and
the red line represents the extensor muscle group. During
the flexion process (0-1 s), the long head of biceps brachii

contributed the most important flexion torque. The initial
flexion moment is provided by passive force of the biceps
brachii muscle fibers. At the initial stage, the triceps muscle
torque is small, mainly to help to maintain the stability of
elbow movement. When the angle of the elbow joint
approaches 90°, the length of the long head of the triceps
brachii exceeds the resting length, resulting in the muscle
fibers’ passive force. Therefore, the muscle torque of the long
head of the triceps brachii becomes larger.

During extension (1-2 s), the muscle torque of the flex-
ion muscle group gradually decreases with the extension of
elbow joint. The muscle torque of the long head of triceps
brachii also decreased gradually. The main reason is that
the long head of triceps brachii is gradually reduced during
extension. Although the active force increases, the overall
muscle torque decreases due to the small degree of muscle
activation.

In the whole movement process, because gravity and
flexion muscle force are antagonistic to each other, it can
be clearly seen that flexion muscle group plays a major role
in joint flexion and extension, while the extension torque
of triceps brachii is relatively small. The musculoskeletal
model established in this paper can explain the changes of
equivalent muscle torque of main muscles during elbow flex-
ion and extension.

5. Conclusion

For the estimation of elbow muscle torque, this paper pre-
sents an improved elbow musculoskeletal model. In the
model, the biceps and triceps are divided into individual
two and three muscles, and the brachialis is added as the
flexor, which is different from the traditional elbow
double-muscle musculoskeletal model. At the same time,
the structure of the humeral trochlear is considered. The
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Figure 12: Elbow torque distributed among the muscles calculated according to the model in this paper.
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improved model has more complete muscle quantity, and
the geometric model is more in line with the physiological
structure. The simulation results show that the model can
well predict the muscle torque of the elbow joint. Compared
with the elbow muscle torque obtained by OpenSim simula-
tion, the Pearson correlation coefficient shows a very strong
correlation, and the one-way ANOVA shows no significant
difference between the two models, indicating that the
improved elbow neuromusculoskeletal model established in
this paper can well predict the elbow muscle torque. How-
ever, there are still some problems. Firstly, this paper does
not consider the influence of double-joint muscles on elbow
muscle torque prediction during shoulder movement. At the
same time, although increasing the number of muscles can
improve the accuracy of muscle torque prediction, it makes
the prediction and parameter optimization process more
complex and time-consuming. Therefore, the model estab-
lished in this paper is not suitable for real-time control of
rehabilitation robots or exoskeletons, but it is suitable for
evaluating the training effect and guiding the design of reha-
bilitation robots and prostheses when there is a need to esti-
mate muscle elbow torque.
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