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To study the effects of compression rate and weight ratio of sandstone to mudstone on permeability, water flow tests were
performed on crushed rocks using an in-house designed and built water flow apparatus. Seepage properties of sandstone and
mudstone were tested on specimens under six axial displacement levels. +e weight ratios of the six specimens of sandstone to
mudstone were set to 1 : 0, 4 :1, 3 : 2, 2 : 3, 1 : 4, and 0 :1. A non-Darcy law was adopted to calculate the permeability in the
experiments based on verification of the Reynolds number. Non-Darcy flow is found to be most significant when the axial
displacement or mudstone content increases. +e permeability in the experiments is found to be in the range of
9.1× 10−15–9.492×10−13m2, which is calculated from a quadratic polynomial fit between the flow velocity and pressure gradient.
A compression rate of 28.6% and weight ratio of sandstone to mudstone of 60% are found to be key values affecting permeability.
When the axial displacement of specimen A (1 : 0) increases from 10mm to 30mm, the compression rate (ratio of axial dis-
placement to original specimen height) increases from 9.5% to 28.6%, and the permeability decreases by 83.8% to 1.534×10−13m2.
When the axial displacement is 10mm and the content of mudstone is increased from 0% to 60%, the permeability decreases by
77.1% to 2.172×10−13m2.

1. Introduction

Underground mining can lead to strata movement and loss
of equilibrium of the stress state, causing deterioration in the
mechanical behavior of surrounding rocks [1–3]. Schatzel
et al. [4] tested water flow properties of overburden strata at
a mine site and demonstrated that the permeability in-
creased by two to three orders of magnitude as a result of
mining disturbance. Advancement of the working face may
result in a series of hazards, such as groundwater inrush into
a coal mine from an aquifer, which is one of the most
frequent forms of mining accidents [5–7]. +is type of ac-
cident seriously threatens safe production of the mine, and
mine workers themselves [8, 9]. Since 2000, about 500 events
of mine water inrush have occurred in China and more than
3000 people have lost their lives. For example, 36 people died
in a groundwater inrush accident at the Wangjialing Coal

Mine in Shanxi Province, China, on 28 March 2010 [8]. In
recent years, and with continuing extension to more com-
plex coal seams containing faults, karst collapse pillars and
other weak tectonic structures, the hydrogeological condi-
tions in such mines are deteriorating [10, 11].

Many scholars have studied the mechanics and the pre-
diction and the control measures of water inrush [12–15].
Bukowski [16] proposed a risk assessment method to classify
mine shafts according to the risk of water inrush. +e method
considers factors such as flow intensity, condition of water-
bearing formations, suspendedmaterials contained in thewater,
and protective coal pillars. Wu et al. [11] adopted the “three
maps-two predictions” method to construct an index model of
water abundance in overlying aquifers, with results shown on a
map indicating potential water flow channels to aquifers.

A more accurate and in-depth understanding of
seepage properties is important for prediction and control
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of mine water inrush accidents [17], and the study of
permeability of rocks is the foundation of such. Tanikawa
and Shimamoto [18] carried out water permeability tests on
sedimentary rocks from the western foothills of Taiwan and
found that the permeability increased slightly when the
pressure gradient increased. Benavente et al. [19] studied
the water permeability of 15 sedimentary rock types and
proposed a model for calculating permeability that con-
siders factors such as flow velocity, water properties
(density and viscosity), porosity, interfacial tension, and
contact angle.

Research into the permeability of rocks mainly focuses
on intact rocks that have not been broken or damaged, while
crushed rocks are widely distributed in fault zones, karst
collapse pillars, and caved zones. +ese crushed rocks, of
which the permeability is much higher than intact rock
[20–25], may act as preferential migration pathways for
groundwater into a mine [26].

In this paper, the effects of compression rate and weight
ratio of sandstone to mudstone on permeability are in-
vestigated using an in-house designed and built water flow
apparatus. Water flow tests were performed on crushed
rocks containing sandstone and mudstone. +e experi-
mental results provide an improved understanding of the
mechanism of water inrush through such preferential
pathwaymaterials and serve as a reference for prediction and
control of water inrush accidents.

2. Experimental Materials and
Testing Procedures

2.1. Experimental Materials. +e sandstone and mudstone
used in the experiments were collected from the 21105
working face of the Pingshuo Coal Mine in Shanxi Province,
China. +e mineral composition of the tested sandstone and
mudstone was composed of feldspar, quartz, kaolinite,
chlorite, siderite, and small amounts of other minerals. +e
sandstone and mudstone blocks were crushed using a
hammer, piercer, and rock crusher in the laboratory. A sieve
was used to separate the particles in the 10–15mm size
range, as shown in Figure 1.+is size range closely correlates
with site conditions, as 10–15mm size sandstone and
mudstone grains are typically widely distributed in fault
zones, collapse pillars, and caved zones. Six specimens were
made, each with a different weight ratio of sandstone to
mudstone. +ese specimen were A (1 : 0), B (4 :1), C (3 : 2),
D (2 : 3), E (1 : 4), and F (0 :1), the ratios of sandstone to
mudstone shown in parentheses.

2.2. Experimental Equipment and Testing Procedures. +e
experimental apparatus is illustrated in Figure 2. +e details
of the apparatus setup are provided in the figure caption.

+e testing procedures are conducted in two main steps,
as described in detail as follows.

(1) +e axial displacement (S) is applied. Six axial dis-
placement levels were set: 10mm, 15mm, 20mm,
25mm, 30mm, and 35mm. +e target value was
applied to the specimen and maintained until step

(2) was completed, as shown in Figure 3. +e po-
rosity (φ) of the crushed rocks was calculated as
follows:

φ �
AHn −(m/ρ)

AHn

, (1)

whereA is the cross sectional area of the inner wall of
the cylindrical barrel (1.27×10−2m2), m is the mass
(1.7 kg), ρ is the density, and Hn is the height of
specimen at a given axial displacement and is cal-
culated as follows:

Hn � H− 110− hn( 􏼁− h2 + h3( 􏼁, (2)

where H is the height of the cylindrical barrel
(180mm), hn is the length of part of piston that is
outside of the cylindrical barrel (variable according
to the six different axial displacement levels), h2 is the
thickness of the perforated plate (9mm), and h3 is
the thickness of the felt pad (3mm).

(2) Water flow testing is undertaken. When the axial
displacement becomes stable, a pore pressure control
system is used to produce four different piston ve-
locities: 10, 20, 30, and 35mm/min. +e relation
between water flow velocity (Vs) and piston velocity
(Vp) is written as follows:

Vs �
dp

ds
􏼠 􏼡

2

Vp, (3)

where ds and dp are the respective diameters of the
specimen and the piston (12.7 cm and 5.5 cm, re-
spectively). +us, it is possible to obtain the pressure
gradient and corresponding water flow velocities.

3. Permeability Calculation Based on a
Non-Darcy Flow

+e Forchheimer equation has been proven to accurately
quantify water flow in crushed rock when water flow is stable
[27, 28]. +e value of the pressure gradient relative to flow
velocity can be expressed as follows:

zp

zx
� −

μ
k

Vs + βρwV
2
s , (4)

where μ is the dynamic viscosity (tap water was used in the
experiment: μ�1.01× 10−9MPa·s), k is the permeability, ρw
is the mass density of the fluid medium (1.0×10−6 kg/mm3),
and β is a factor of non-Darcy seepage.

+e non-Darcy equation (4) adopted in the experiments
is verified by the Reynolds number Re, which is calculated as
follows:

Re �
ρwdVs

φμ
, (5)

where d is the average grain size of the crushed rocks
(10–15mm). Earlier studies have shown that the upper limit
of Re is 5 when using Darcy law, and non-Darcy flow can be
adopted when Re> 5. In our experiments, the minimum and
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maximum values of Re were 0.72 and 10.09, respectively.
+us, non-Darcy flow is more applicable.

+ere is a difference between the base pressure Pb and
top pressure Pt of the specimen, and the pressure gradient,

shown in (6), is approximately equal to the ratio of
pressure difference to specimen height h. +e downstream
end is open to the atmosphere in the testing system, thus
Pt � 0:
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Figure 2: Water flow testing system. A, pressure transducer; B, supercharger; C, relief valve; D, voltage stabilizer; E, differential pressure
transducer; F, drainage; S1–S15, switches; 1, crushed rocks; 2, platen; 3 and 8, rubber seal rings; 4, piston; 5, perforated plate; 6, felt pad; 7,
cylindrical barrel; 9, plate; 10, spring; 11, valve core; 12, valve chest; and 13, screw.
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Figure 1: Illustration of the geological conditions and sample material showing (a) working faces of the Pingshuo coal mine, (b) borehole
log showing the lithologies, (c) crushed mudstone, and (d) crushed sandstone.
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zp

zx
� −

pb −pt

h
� −

pb

h
. (6)

+e permeability k is calculated from the quadratic
polynomial fit between the flow velocity and the corre-
sponding pressure gradient as follows:

μ
k

�
􏽐

n
i�1(zp/zx)|iVi(i)􏽐

n
k�1V

4
k(k)−􏽐

n
i�1(zp/zx)|iV

2
i (i)􏽐

n
k�1V

3
k(k)

􏽐
n
i�1V

2
i (i)􏽐

n
k�1V

4
k(k)􏽐

n
i�1V

3
i (i)􏽐

n
k�1V

3
k(k)

.

(7)

4. Test Results and Discussion

As the water flow tests began, the pore pressure gradually
increased, reaching a stable state after about 20 seconds
(Figure 4). It was found that a piston velocity of 10mm/
min corresponds to the first axial displacement level
in the water flow test, and the 10mm/min curves show

more significant changes than other curves as time
increases.

+e positions and distributions of the constituent grains
changed as the tests continued, leading to the unstable state
of the curves. +e 10mm/min curve in Figure 4(a) and the
20mm/min curve in Figure 4(c) both show a significant
decrease before the water flow stabilized. +is resulted from
the evolution of water flow channels. When the water flow
tests were started, the channels through which water flows
had not formed completely, and pore pressure was in-
creasing sharply. As water flow continued, the channels
became smoother, leading to a decrease in pore water
pressure.

Values of water flow velocity (Vs), the corresponding
pressure gradient, and the calculated permeability k are
provided in Table 1, and the relationship between the
pressure gradient and the flow velocity is shown in
Figures 5 and 6. As the axial displacement and the content
of mudstone increase, the curves of pressure gradient vs.
flow velocity change from straight lines to curves. +at is,
the phenomenon of non-Darcy flow is most significant
when the porosity decreases. +e relationship between
the pressure gradient and the axial displacement is shown
in Figure 7. +e permeability k was calculated from the
quadratic polynomial fitting between the pressure gra-
dient and flow velocity (Vs).

Table 2 shows that the permeability of crushed rocks in
the tests was in the range of 9.1× 10−15–9.492×10−13m2,
which is an approximate two orders of magnitude increase
compared to fractured sandstone [29].

Figure 8 demonstrates that the permeability is closely
correlated with the compression state and, when the axial
displacement increases, the porosity decreases, resulting in
a decrease in permeability. +e decreasing rate is most
significant when the axial displacement increased from
10mm to 30mm. As the axial displacement of specimen A
(1 : 0) increased from 10mm to 30mm, the compression
rate (ratio of axial displacement to original specimen
height) increased from 9.5% to 28.6%, the porosity de-
creased from 0.427 to 0.275, and the permeability decreased
by 83.8% from 9.492 ×10−13 to 1.534×10−13 m2. When the
axial displacement increased to 35mm, the permeability
decreased slightly and the difference in permeability among
different specimens decreased when the axial displacement
increased.

For specimens with the same axial displacement, a
higher content of mudstone led to a decrease in porosity and
thus a decrease in permeability (Figure 9). When the content
of mudstone increased from 0% to 60%, the changing rate of
permeability was most significant. When the axial dis-
placement was 10mm and the content of mudstone in-
creased from 0% to 60%, the porosity decreased from 0.427
to 0.400 and the permeability decreased by 77.1% from
9.492×10−13 to 2.172×10−13m2. +e decreasing rate of
permeability declined when the content of mudstone was
>60%. As the mudstone content increased, the difference in
permeability among different axial displacement levels
decreased.
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Figure 3: Water flow testing procedure of the crushed sandstone
and mudstone samples.
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5. Conclusions

Based on the work presented, the following conclusions can
be drawn regarding the experiment and the results thereof:

(1) Stable water flow in the flow tests is achieved after
about 20 seconds, and the pore water pressure
showed most significant changes at the first velocity
levels for each axial displacement.
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Figure 4: Graphs of pore water pressure vs. time at various axial displacement levels of specimen A (1 : 0): (a) axial displacement 10mm
(compression rate 9.5%); (b) axial displacement 15mm (compression rate 14.3%); (c) axial displacement 20mm (compression rate 19.0%);
(d) axial displacement 25mm (compression rate 23.8%); (e) axial displacement 30mm (compression rate 28.6%); (f ) axial displacement
35mm (compression rate 33.3%).
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(2) Non-Darcy flow was adopted for calculations of the
permeability, based on the verification of the Rey-
nolds number. Non-Darcy flow was most significant
when the axial displacement or the mudstone con-
tent increased.

(3) Permeability of the crushed rock samples was in the
9.1× 10−15–9.492×10−13m2 range, which correlates

closely with the level of axial displacement and
mudstone content.

(4) +e permeability decreases most significantly
when the axial displacement increased from
10mm to 30mm. When the axial displacement of
specimen A (1 : 0) increased from 10mm to
30mm, the compression rate increased from 9.5%

Table 1: Pressure gradient and flow velocity parameters of specimen A (1 : 0).

Axial displacement
S (mm)

Piston velocity
Vp (mm/min) Flow velocity Vs (m/s) Pressure gradient zp/zx

(MPa/m)
Permeability

k (m2)

10

10 3.13×10−5 −0.09

9.49×10−1320 6.25×10−5 −0.33
30 9.38×10−5 −0.60
35 1.09×10−4 −0.87

15

10 3.13×10−5 −0.12

6.84×10−1320 6.25×10−5 −0.38
30 9.38×10−5 −0.85
35 1.09×10−4 −1.06

20

10 3.13×10−5 −0.14

5.83×10−1320 6.25×10−5 −0.41
30 9.38×10−5 −0.95
35 1.09×10−4 −1.16

25

10 3.13×10−5 −0.19

3.05×10−1320 6.25×10−5 −0.53
30 9.38×10−5 −1.12
35 1.09×10−4 −1.38

30

10 3.13×10−5 −0.31

1.53×10−1320 6.25×10−5 −0.75
30 9.38×10−5 −1.53
35 1.09×10−4 −1.83

35

10 3.13×10−5 −0.44

1.12×10−1320 6.25×10−5 −1.08
30 9.38×10−5 −2.09
35 1.09×10−4 −2.63
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Figure 5: Flow velocity and corresponding pressure gradient of
specimen A (1 : 0) under different axial displacements (S).
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Table 2: Porosity (φ) and permeability (k) at various axial displacements for all the specimens.

Specimen number Properties
Axial displacement (mm)

10 15 20 25 30 35

A (1 : 0) φ 0.427 0.396 0.360 0.320 0.275 0.223
k (×10−14) 94.92 68.43 58.31 30.51 15.34 11.20

B (4 :1) φ 0.420 0.387 0.352 0.311 0.266 0.214
k (×10−14) 47.80 38.40 39.72 18.85 11.81 8.23

C (3 : 2) φ 0.409 0.377 0.341 0.300 0.254 0.201
k (×10−14) 45.99 33.81 27.97 16.32 6.31 5.11

D (2 : 3) φ 0.400 0.368 0.331 0.290 0.244 0.191
k (×10−14) 21.72 20.35 12.46 9.30 3.94 2.98

E (1 : 4) φ 0.389 0.356 0.319 0.277 0.231 0.177
k (×10−14) 12.79 8.94 7.32 4.60 3.34 1.20

F (0 :1) φ 0.376 0.343 0.305 0.263 0.216 0.161
k (×10−14) 6.16 4.71 3.38 2.62 1.06 0.91
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Figure 8: Permeability as a function of porosity of all the specimens (A–F).
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to 28.6%, the porosity decreased from 0.427 to
0.275, and the permeability decreased by 83.8%
from 9.492 ×10−13 to 1.534 ×10−13 m2. When the
mudstone content was increased from 0% to
60%, the changing rate of permeability was most
significant. When the axial displacement was
10mm and the mudstone content increased from
0% to 60%, the porosity decreased from 0.427 to
0.400, and the permeability decreased by 77.1%
from 9.492 ×10−13 to 2.172 ×10−13 m2.
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[21] C. Ö. Karacan, “Reconciling longwall gob gas reservoirs and
venthole production performances using multiple rate
drawdown well test analysis,” International Journal of Coal
Geology, vol. 80, no. 3-4, pp. 181–195, 2009.
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