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In this investigation, an improved Rayleigh–Ritz method is put forward to analyze the free vibration characteristics of arbitrary-
shaped plates for the traditional Rayleigh–Ritz method which is difficult to solve. By expanding the domain of admissible functions
out of the structural domain to form a rectangular domain, the admissible functions of arbitrary-shaped plates can be described
conveniently by selecting the appropriate admissible functions. Adopting the spring model to simulate the general boundary
conditions, the problems of vibration of the arbitrary plate domain can be solved perfectly. ,en, a numerical method is in-
troduced to figure out the structure strain energy, kinetic energy, and elastic potential energy of the boundary. Finally, comparing
the result with the simulation results and reference examples, the accuracy and convergence of this method are testified.,erefore,
an effective new method is proposed for the guidance of the related research and practical engineering problems.

1. Introduction

Plate structures are widely used in various engineering fields
such as civil engineering, aerospace, and vehicle engineering.
Vibration of plates has extensively been investigated for
many years. Analytical methods are firstly proposed to
handle the vibration characteristic analysis of the plates of
single shapes and simple boundary conditions. However, the
problems of plates in practical engineering are usually more
complex. ,us, research on plates of arbitrary shape with
complicated boundary conditions is of great significance.

So far, scholars mainly utilize numerical methods to
solve the vibration problems of the arbitrary-shaped plate
and shell, for instance, finite element approach [1], gener-
alized differential quadrature finite element method [2],
general higher-order equivalent single layer theory [3],
differential quadrature method [4, 5], complex variable
methods [6], and differential volume method [7]. Ahmad
et al. [8] proposed amethod to overcome the disadvantage of
former ways when approximate geometric structure and the
influence of shear displacement were ignored, by using the

curved thick shell finite element method. Gorman [9]
proposed a method, the method of superposition, for solving
the problems of free vibration analysis of the completely free
rectangular plate in 1978. By using the method of super-
position, solutions can satisfy identically the differential
equation and boundary conditions with any desired degree
of accuracy. Eigenvalues of four-digit accuracy are provided
for a wide range of plate aspect ratios and modal shapes.
Fantuzzi et al. [10] proposed a generalized differential
quadrature finite element method (GDQFEM) for four-
parameter functionally graded cracked plates of arbitrary
shape. It is very convenient to solve the problems of arbi-
trary-shaped plates and shells with numerical methods
because of their natural advantages [11]. Yet there are also
many shortcomings. For instant, in terms of the finite el-
ement method, when dividing the grid, the accuracy is of
vital importance on the user’s experience, which takes so
much energy to ensure the calculation precision. In addition,
when the model parameters and dimensions are changed, it
is necessary to remodel, which is time-consuming and
laborious.
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,us, an analytical method, as a simple and effective
analysis method, is widely used in the static and dynamic
analysis of simple plate and shell problems. Xie et al. [12]
used the wave-based method to analyze the free and forced
vibration of the elastically coupled annular plate. Brischetto
[13] analyzed the convergence of the free vibration analysis
solution of 3D equilibrium equations for plates and shells by
using the exponential matrix method. ,ere are also many
analysis methods used for solving problems of plates [14–
16]. ,e Rayleigh–Ritz method is one of the most important
analysis methods. Using the Rayleigh–Ritz method, Abrate
[17] studied the vibration of point supported triangular
plates. Karunasena and Kitipornchai [18], based on the
Rayleigh–Ritz method and Reissner–Mindlin plate theory,
analyzed free vibration of shear deformable general tri-
angular plates with arbitrary combinations of boundary
conditions. Pavlovic and Mbakogu [19] used the Rayleigh
method to study the fundamental frequencies of vibration of
circular plates. ,e Rayleigh–Ritz method is so widely used
for solving problems of plates. Due to the inherent ad-
vantages such as easy to be combined with other methods,
the analytical method is widely used. It can also reveal the
structural vibration characteristics theoretically and facili-
tate the analysis of the mechanism. Furthermore, it can be
used to test the numerical methods. So, the study of ana-
lytical methods is also of great significance. However, for the
plate with complex shape, the test function is very difficult to
obtain and the formula derivation is very complex. For these
reasons, the traditional Rayleigh–Ritz method or other
analytic methods are difficult to solve the vibration problems
of arbitrary-shaped plates.

In order to solve the problems of arbitrary-shaped
plates, one of the most crucial difficulties to overcome is
how to deal with the boundary conditions of a curved edge.
,ere are many methods to simulate complex boundary
conditions nowadays such as high-order precision mixed
finite element method, extended Kantorovich method
[20], length undetermined method, and boundary integral
equation method [21]. But these methods are computa-
tionally complex, and furthermore, when the boundary
conditions are changed, mostly it is necessary to rederive
the formula, which is quite tedious. In particular, when
dealing with the boundary of curved edges, it is even more
difficult. As a very flexible method, the method of spring
simulation boundary is widely used, and the accuracy of
this approach has been well validated [22, 23]. ,e main
idea of the method is to translate the boundary condition
constraints into the solving of the elastic potential energy.
Various boundary conditions are simulated by changing
the corresponding stiffness values of linear springs and
angle springs distributing along the edges linearly of the
structure. By converting the boundary constraint into
elastic potential energy, the influence of different
boundary conditions on the vibration of the structure is
analyzed. However, studies above mainly simulated the
boundary of the straight edges, and there is less research on
the boundary conditions of the curved edges.

Based on the Rayleigh–Ritz method, a semianalytic
method called the improved Rayleigh–Ritz method is

proposed to solve the free vibration problems of arbitrary-
shaped plates, which is an improvement and expansion of
the Rayleigh–Ritz method. ,e traditional Rayleigh–Ritz
method and some methods currently proposed to cal-
culate the vibration of specific shape plates are not very
adaptable, and many kinds of shapes of plates are too
difficult to find suitable admissible functions to solve the
vibration problems. ,e improved Rayleigh–Ritz method
can be used in the calculation of vibration of arbitrary-
shaped plates. It is suitable for various solutions without
renewing the model while complex boundary conditions
are changed, which is of higher efficiency and adaptability.
,e main innovation of the present method is that, on the
one hand, the domain of admissible functions can be
extended to the outside of the structure, and then the
admissible functions can be used to simulate the arbitrary-
shaped plates’ displacement. On the other hand, com-
bining the spring model method, the present method can
be used to solve problems of complex boundary condi-
tions especially on the curved edges. ,e basic solving
process of the present method is basically the same as that
of the Rayleigh–Ritz method, which turns the vibration
problem of plates into the eigenvalue problem. In addi-
tion, the method of this paper is more convenient in
programming and analysis. Especially when the model
size, materials, or boundary conditions of the structure are
changed, there is no need to rederive the formula or build
the model, and by just changing the parameters, the
problems can be solved easily, which is quite time-saving
and labor-saving. Compared with the traditional
Rayleigh–Ritz method, this method has a larger appli-
cation range and higher precision. It provides an effective
reference for solving the problems of arbitrary-shaped
plates in engineering problems.

2. The Improved Rayleigh–Ritz Method

,e physical model of an arbitrary-shaped thin plate is
shown in Figure 1. ,e structural domain S is of arbitrary
shape, and the springs are adopted to simulate general
boundary conditions, linear springs and rotational springs.
,e spring constants are k and K, respectively.

2.1. Main Features of the Method

2.1.1. Expansion of the Admissible Function Domain.
When using the improved Rayleigh–Ritz method, the ad-
missible function domain is expanded to the outside of the
real structure, and the model is shown in Figure 2.

S is the structural domain. And Sa is the integral do-
main of the admissible function, the length is Lx and Ly,
respectively. When the structural domain is of arbitrary
irregular shape, we can suppose that the structural domain
can be extended to a rectangular domain slightly larger
than the real domain of the structure, and the rectangular
domain must contain the real structural domain.
According to the rectangular domain, the admissible
function can easily be obtained. By integrating according
to the original structural domain, the strain energy and
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kinetic energy of the plate are obtained, and the calculation
results are very accurate. ,e closer the admissible func-
tion domain is to the structural domain, the more accurate
the solution is. So, a principle of the method to select the
admissible function domain is to keep the rectangular
domain as small as possible. ,erefore, when the rect-
angular field is tangent to the irregular structure, the error
is minimized.

When obtaining the strain energy and kinetic energy of
the plate, integration needs to be performed. Set a circular
plate whose radius is R as an example. Due to its symmetry,
when calculating the integral, only a quarter of the structure
needs to be calculated, and the bending strain energy is
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,en, the strain energy and kinetic energy of the circular
plate can be obtained by double integral. Normally, the edges
of the irregular shape can be fitted by a polynomial, and the
energy can be obtained by the integral. It is important to
notice that when calculating these forms of double integral
calculation, it is very difficult to solve some complicated
functions by direct integral. In order to solve this problem,
and improve the efficiency of calculation as well, we in-
troduced the discrete method to calculate the above points.
,e specific way of discretization of the structural domain is
shown in Figure 3.

Along the y direction, the entire integral domain is
uniformly divided into Q equal parts with width Vy and the
corresponding y coordinate yj. According to the function
expression of the curve, the corresponding length of the
integral domain can be calculated as

Lxj � xR − xL. (2)

,en, the above length is divided into Q parts, and the
length of the small segment after discretization is

Vxj �
Lxj

Q
. (3)

,e horizontal and vertical coordinates of the discrete
subsections are

xij � Lxj +(i − 0.5) · Vxj, (4a)

yi � ymin +(i − 0.5) · Vy. (4b)

,erefore, the double integral can approximately be
converted into the sum of the microarea, so the strain energy
and kinetic energy can be expressed as follows:

Vc � C 

Q

i�1


Q

j�1
f xij, yi  · Vxj · Vy, (5)

where C is the coefficient and f(xij, yi) is the related
function of calculating strain energy and kinetic energy.

In this way, not only the computational efficiency is
greatly improved, but also problems with some complicated
integral functions can be solved.

S

K
k

Figure 1: Physical model of an arbitrary-shaped thin plate with
springs.

y
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S
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Lx xO

Figure 2: ,e relationship between integral domain and structural
domain.
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2.1.2. Virtual Spring Model Method Handling the Curved
Boundary Conditions. Classical boundary conditions, such
as fixed and simple support , are often difficult to accurately
simulate the boundary conditions of the actual structure.
Considering the general condition, the spring model is used
to simulate the more general boundary conditions. On the
edges of the structural domain, the linear springs and the
rotational springs are adopted. Set the rectangular plate as an
example, the model is shown in Figure 4.

Supposing the linear spring constants and the rotational
spring constants are kij (N/m2) and Kij (N/rad), respectively.
It is easy to simulate various complex boundary conditions
by adjusting the stiffness of the two kinds of springs. ,e
simulation of classical boundary conditions is described
below. ,e specific constants are shown in Table 1.

,e mechanism of the spring model method is to
transform the influence of the boundary conditions on the
structural vibration to the increase of elastic potential energy
of the total stiffness of the structure.

For the arbitrary-shaped plate studied in this paper, its
edges are curved, and then the elastic potential energy of
boundary is expressed as

Vs �
1
2


l
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+ K
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⎡⎣ ⎤⎦dl, (6)

where Vs is the spring elastic potential energy, w · (x, y) is
the admissible function of the thin plate, nV is the normal
direction of the edge, and l is the total length of the edge, as
shown in Figure 5.

,e partial derivative of the curve in the normal di-
rection is expressed as
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Discretize the edge, as shown in Figure 6.
,e length of each microsegment is
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���������
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. (8)

,en, the elastic potential energy at the boundary can be
expressed as

y

x

S

l
Δl1

Δlj

Δl2

xL xR

(x1, y1)
(x2, y2)

(xj, yj)

ymin

Δy

Figure 3: Diagram of the discrete model along the vertical axis.

Figure 4: Model of the rectangular thin plate.

Table 1: Classical boundary conditions corresponding spring
values.

Clamped Simply supported Free
k (N/m2) ∞ ∞ 0
K (N/rad) ∞ 0 0

l

Δli–1

Δli+1

Δli

Δxi

Δxi–1

Δxi+1

Δy

Δy

Δy

Figure 6: Diagram of discrete boundary edges.

O

y

l

n

θ

x

Figure 5: Border partial derivative calculation diagram.
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2.1.3. Analysis Process. ,e admissible function of the thin
plate can be expressed as

w(x, y, t) � 
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where Amn is the unknown expansion coefficient, m and n
are the serial numbers, M and N are the truncated items,
fm(x) and gn(y) are the orthogonal polynomials along the x
and y directions, Chebyshev series is selected, and eiωt is the
simple harmonic time factor.

It is very important to select the appropriate admissible
function when applying the improved Rayleigh–Ritzmethod
for it has a great influence on the accuracy because the
Chebyshev series can satisfy arbitrary boundary conditions
and satisfy the condition that its third-order derivative is
continuous and the fourth-order derivative exists at each
point, which can overcome the disadvantage that the phe-
nomenon of discontinuity may appear at the boundary. ,e
present method chooses the Chebyshev series as admissible
function [24,25] as follows:
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where m � 1, 2, 3, . . . , M and n � 1, 2, 3, . . . , N.
In order to be able to calculate the vibration problem of

plates with arbitrary shape in complicated boundary con-
ditions, the admissible function chosen in the present
method has the following characteristics: it is an orthogonal
function satisfying the corresponding governing equation,
there is arbitrariness at the boundary, that is, some geo-
metric boundary conditions cannot bemet naturally, and the
boundary conditions are only related to the spring stiffness
constant.

,e bending strain can be expressed as
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where μ is called Poisson’s ratio, D� Eh3/(12(1 − μ2)) is the
flexural rigidity, and h is the thickness of the plate.

Ignoring the mass of the springs at the edges, the kinetic
energy of the structure is

T �
1
2
ρhB
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dx dy, (13)

where ρ is the mass density.
,e energy functional of the system can be expressed as

 � Vp + Vs − T. (14)

Substituting formulas (6), (12), and (13) into equation
(14), and taking the total energy for partial derivatives:

z 

zAmn

� 0, (15)

where Amn is the unknown coefficient used to describe
bending vibration of the thin plate.

,en, the vibration problem of the structure is trans-
formed into the problem of solving eigenvalues, which can
be expressed as follows:

K − ω2M A � 0, (16)

where K is the stiffness matrix, K�Ks+Kp, where Ks is the
stiffness matrix of spring energy and Kp is the stiffness
matrix of the overall structure strain energy. M is the mass
matrix of the structure, A is the unknown coefficient vector,
and ω is the circular frequency. In this way, the free vibration
problems can be transformed into the eigenvalue problem.

3. Numerical Analysis

In this section, set the calculations of free vibration problems
of rectangle, triangle, parallelogram, round, and oval thin
plate as examples, and by comparing the results of the
present method with the results of references and FEM, good
convergence and accuracy of the present method are proved.
,e material parameters of the plate are as follows: Young’s
modulus is equal to 2.1× 1011 Pa, Poisson’s ratio is equal to
0.3, and density is equal to 7850 kg/m3.

3.1. Convergence. ,e values of truncated number M and N
in the admissible function, the spring stiffness, and the dis-
crete divisionQmay have a great influence on the accuracy of
the calculation via the present method. ,e convergence
analysis mainly focuses on the abovementioned quantities.
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By choosing the calculations of free vibration of rect-
angular plates under simply supported and clamped
boundary conditions as examples, the convergence of the
improved Rayleigh–Ritz method is tested.,e parameters of
the physical model are as follows: the length is a� 2m, the
width is b� 1m, and the thickness is h� 0.02m, as shown in
Figure 7.

Convergence analysis is carried out on the truncated
number M and N first. Table 2 shows the first 10 natural
frequencies of the plate changing with M and N when the
number of division Q is a constant and the stiffness co-
efficients of the springs equal to zero.

From the data in Table 2, the natural frequencies of the
vibration of the rectangular plate tend to be fixed with the
increase of the truncation termsM andN. WhenM�N� 12,
the change of natural frequency is already very small, it can
be considered that the method has converged.

,e convergence of the division value Q is illustrated.
According to Table 2, the truncation termsM and N are equal
to 12, the stiffness coefficient is 0, and the natural frequencies
of the plate on different Q are compared, as shown in Table 3.

From Table 3, the variation of natural frequencies of the
rectangular plate is very small with increasing Q. When Q is
equal to 40, the natural frequency is basically the same, so it
can be thought that the present method has converged.

,e convergence analysis is carried out on the stiffness of
the spring next. Sometimes when simulating complex
boundary conditions, the stiffness coefficients may need to
be infinite such as simply supported or clamped conditions.
However, when calculating by Matlab, the coefficients
cannot be infinite actually. So, we choose a very large
number instead. Table 4 shows the values of spring stiffness
coefficient convergence tending to infinite. ,e values of the
selected spring stiffness coefficient are related to the bending
stiffness D. Suppose k� p N/m2 and K� p N/rad.

From Table 4, we can conclude that the free vibration
frequencies of the clamped plate tend to be a stable value as the
stiffness coefficient increases gradually. When the stiffness
coefficient is k� 108DN/m2 and K� 108DN/rad, it converges.
,erefore, when simulating complex boundary conditions and
the stiffness of the spring is infinite, the stiffness value of the
spring can be just p� 108D to get an accurate solution.

3.2. Accuracy

3.2.1. Free Vibration Analysis of Rectangular Plate. To verify
the accuracy of the present method, free vibration fre-
quencies of rectangular plates are calculated.,e parameters
of the rectangular plate are length a� 1m, width b� 1m, and
thickness h� 0.02m. Calculating the dimensionless fre-
quency Ω � ωa2 �����

ρh/D


, the results are compared with
reference [26] in Tables 5–7. ,e calculating formula for
error is

Error �
fref − fpresent

fref




× 100%. (17)

Tables 5–7 show that the present method calculated
results are very close to the reference, which proves that

when calculating the free vibration of rectangular plates
under complex boundary conditions, the present method is
very accurate.

3.2.2. Free Vibration Analysis of Triangular Plate. To illus-
trate the accuracy of the method for solving the problems of
free vibration on plates with hypotenuse edges under complex
boundary conditions, natural frequencies of the triangular
plate under different boundary conditions are obtained. ,e
physical model is shown in Figure 8. ,e length of the two
short sides is a=1m, the length of the long side is b=2m, and
the thickness of the plate is h=0.02m.

In this section, two kinds of boundary conditions are
selected for modal analysis of triangular plates, simply
supported and elastic boundary (set K� 0N/rad). Calcu-
lating the natural frequencies, and comparing with the re-
sults of FEM, the accuracy of the method can be proved in
Tables 8-9 and Figures 9-10.

From Tables 8 and 9, comparing with the results of the
finite element method, the natural frequency of the tri-
angular plate via the present method is accurate and the
error is very small. Figures 9 and 10 show the corre-
sponding modes of the first four orders of the two methods.
(the red part shows convex, and the blue part shows
concave). As can be seen from the figure, the corresponding
modes of the first four orders of the triangular plate are
almost the same. It can be seen that the results of the
present method are highly consistent with the FEM results,
which proves the correctness and accuracy of the method
when solving free vibration problems of plates with
hypotenuse.

3.2.3. Free Vibration Analysis of Elliptical Plate. In order to
verify the applicability of the present method for the curved
edge plates under different boundary conditions, the vibration
analysis of elliptical plates under different boundary conditions
is discussed, as shown in Figure 11. ,e long axis of the ellipse
model is a� 4m, short axis b� 2m, and thickness h� 0.02m.

In this section, two kinds of boundary conditions are
selected, simply supported and clamped. By using the
present method, the natural frequencies are obtained.
Compared with the results of FEM, the accuracy of the
method can be proved in Tables 10-11 and Figures 11-12.

From Tables 10 and 11, the natural frequencies of the
elliptical plate calculated via the present method are in good
agreement with the results of FEM, Figures 12 and 13 give
the corresponding modes of the first four orders under the

Figure 7: Physical model of the rectangular plate.
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two boundary conditions (the red part of the figure shows
convex, and the blue part is concave).

3.2.4. Free Vibration Analysis of Isosceles Trapezium Plate
with Curved Sides. We combined the shapes above to verify

the applicability of the presentmethod in solving free vibration
of complex-shaped thin plates, and we combined the following
two kinds of borders: straight edges and curved edges. Take the
trapezoid with curved sides as an example, and analyze the free
vibration characteristics. ,e model is shown in Figure 14, in
which No. 2 and No. 4 edges are curved.

Table 2: Natural frequencies of rectangular plate on different M and N (Hz).

Mode M�N� 8 M�N� 10 M�N� 12 M�N� 14 M�N� 16
1 26.84 26.84 26.84 26.84 26.84
2 33.28 33.16 33.15 33.15 33.15
3 73.23 73.07 73.05 73.04 73.02
4 74.80 74.75 74.74 74.74 74.74
5 110.11 110.06 110.06 110.06 110.05
6 127.47 127.15 127.10 127.08 127.04
7 130.13 130.02 130.00 129.99 129.97
8 150.54 149.23 149.21 149.21 149.21
9 180.91 180.35 180.27 180.23 180.19
10 204.87 201.37 201.25 201.21 201.16

Table 5: Natural frequencies of free vibration on rectangular plates under the condition of clamped edges (Hz).

Mode
Ω � ωa2 �����

ρh/D


Present Ref. [26] Error (%)
1 35.952 35.985 0.091
2 73.318 73.395 0.105
3 73.326 73.395 0.094
4 108.10 108.22 0.114
5 131.44 131.58 0.110
6 132.00 131.20 0.610

Table 3: Natural frequencies of the rectangular plate on different Q (Hz).

Mode Q� 10 Q� 20 Q� 30 Q� 40 Q� 50
1 27.16 26.84 26.78 26.76 26.75
2 33.05 33.15 33.12 33.11 33.11
3 72.81 73.05 72.94 72.90 72.88
4 76.15 74.74 74.46 74.37 74.32
5 111.35 110.06 109.81 109.73 109.69
6 126.62 127.10 126.73 126.60 126.54
7 130.95 130.00 129.75 129.66 129.61
8 153.09 149.21 148.47 148.21 148.09
9 180.93 180.27 179.90 179.76 179.70
10 204.14 201.25 200.31 199.98 199.82

Table 4: Natural frequencies of the rectangular plate on different spring stiffness coefficients (Hz).

Mode p � 105D p � 106D p � 107D p � 108D p � 109D p � 105D
1 121.97 122.15 122.17 122.17 122.17 121.97
2 157.75 158.05 158.08 158.09 158.09 157.75
3 221.55 222.10 222.15 222.16 222.16 221.55
4 312.91 313.85 313.95 313.96 313.96 312.91
5 316.46 317.64 317.76 317.77 317.77 316.46
6 351.20 352.73 352.88 352.90 352.90 351.20
7 410.91 413.06 413.27 413.30 413.30 410.91
8 429.83 431.43 431.60 431.61 431.60 429.83
9 496.51 499.59 499.90 499.93 499.93 496.51
10 571.89 574.50 574.76 574.79 574.79 571.89

Advances in Civil Engineering 7



,e parameters of the isosceles trapezoidal plate with
curved sides in this section are as follows: the upper bottom
length is a� 4m, the lower bottom length is b� 10m, the
highest is c� 8m, the two hypotenuses are 1/4 elliptic curve
whose long axis is 8m and the short axis is 3m, as shown in
Figure 14. Tables 12-13 show the comparison of the natural
frequencies of the first 10 orders. ,e natural frequencies of
the trapezoidal plate are calculated by the present method

and then compared with the FEM. ,e data show that the
results of the two methods are in good agreement and the
error is less than 1%.

4. Discussion

,e analysis above showed that the improved Rayleigh–Ritz
method can be used to solve the free vibration problems of

Table 6: Natural frequency of free vibration on the rectangular plate under the condition of one side clamped and three sides free (Hz).

Mode
Ω � ωa2 �����

ρh/D


Present Ref. [26] Error (%)
1 3.471 3.470 0.039
2 8.508 8.504 0.045
3 21.296 21.279 0.078
4 27.217 27.201 0.059
5 30.965 30.948 0.054
6 54.219 54.185 0.063

Table 7: Natural frequencies of the rectangular plate under the condition of two adjacent sides simply supported and others free (Hz).

Mode
Ω � ωa2 �����

ρh/D


Present Ref. [26] Error (%)
1 3.367 3.370 0.077
2 17.321 17.321 0.003
3 19.297 19.293 0.021
4 38.222 38.203 0.049
5 51.061 51.032 0.057
6 53.509 53.497 0.022

Figure 8: Triangular physical model.

Table 8: Natural frequencies of free vibration on the triangular plate under the boundary condition of three-side simply supported (Hz).

Mode
Simply supported

Present FEM Error (%)
1 122.93 122.37 0.4576
2 245.85 244.79 0.4344
3 319.61 318.00 0.5079
4 417.94 416.25 0.4072
5 491.69 489.74 0.3997
6 614.69 610.59 0.6723
7 639.18 637.05 0.3358
8 713.41 710.93 0.3489
9 836.13 832.47 0.4398
10 910.22 906.65 0.3938
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the arbitrary-shaped plates perfectly whose outer boundary
is arbitrary. Yet, how about the inner boundary? ,e nu-
merical example shows that this method is also applicable to

the problems when the inner boundary is arbitrary. Set the
rectangular plates with arbitrary-shaped center opening as
an example to illustrate.

Table 9: Natural frequencies of the triangular plate under the condition of elastic boundary (Hz).

k (N/m2)
Mode

1 2 3 4 5 6

106
Present method 37.63 92.79 149.08 204.17 256.77 365.43

FEM 37.35 92.24 148.06 202.88 255.07 362.61
Error (%) 0.76 0.59 0.69 0.64 0.67 0.78

107
Present method 81.44 133.47 175.81 228.84 276.61 379.54

FEM 80.86 80.86 80.86 80.86 80.86 80.86
Error (%) 0.72 0.60 0.81 0.62 0.74 0.91

108
Present method 117.03 219.36 281.84 343.33 398.05 483.37

FEM 116.35 218.15 279.74 341.69 395.28 478.54
Error (%) 0.59 0.55 0.75 0.48 0.70 1.01

Figure 9: Comparison of the free vibration diagram of the corresponding modes of first four orders under the simply supported boundary
condition.

Figure 10: Comparison of the free vibration diagram of the corresponding modes of first four orders under the clamped boundary
condition.
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Figure 11: Physical model of the elliptical thin plate.

Table 10: Natural frequencies of the elliptical thin plate under the simply supported boundary condition (Hz).

Mode
Simply supported

Present FEM Error (%)
1 16.45 16.49 0.22
2 29.45 29.51 0.22
3 47.69 47.90 0.44
4 57.29 57.84 0.95
5 71.60 72.00 0.56
6 78.19 78.70 0.65
7 101.01 101.91 0.87
8 103.05 104.13 1.03
9 121.99 123.09 0.89
10 133.40 134.59 0.88

Table 11: Natural frequencies of the elliptical thin plate under the clamped boundary condition (Hz).

Mode
Clamped

Present FEM Error (%)
1 34.123 34.153 0.08
2 49.200 49.292 0.18
3 69.721 69.893 0.24
4 87.090 87.359 0.30
5 95.895 96.228 0.34
6 109.697 110.09 0.35
7 127.815 128.47 0.51
8 136.944 137.5 0.40
9 164.982 166.37 0.83
10 165.533 166.64 0.66

Figure 12: Comparison of the free vibration diagram of the corresponding modes of the first four orders under the simply supported
boundary condition.
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In terms of the free vibration problems of rectangular
plates with center openings, the method to select the dis-
placement function and to simulate the complex boundary
condition is almost the same as the plates analyzed above.
What is different is that due to the perfect symmetry of the
model, in order to simplify the calculation, only a quarter of
the structure was studied, which can be seen in the study of
the circular plate and ellipse plate as well. ,e compute
model of the rectangular plate with circular opening is
shown in Figure 15.

,e strain energy of the plates of opening should be
obtained by using the whole strain energy minus the strain
energy of the opening, which is true of the kinetic energy.
Take a rectangular plate with circular opening as an example
to show the formulas to introduce it. Relevant geometric
parameters are as follows: the length of rectangular plate is
a� 6m, the width is b� 4m, the thickness is h� 0.02m, and
the inner opening radius is R� 1m.

,e bending strain energy of the rectangular plate
without opening is expressed as

Figure 13: Comparison of the free vibration diagram of the corresponding modes of first four orders under the clamped boundary
condition.

Table 12: Natural frequencies of the isosceles trapezoidal plate with curved sides under the clamped boundary condition (Hz) (C-C-C-C).

Mode
Clamped

Present FEM Error (%)
1 2.55 2.54 0.50
2 4.77 4.76 0.22
3 5.58 5.56 0.36
4 7.91 7.86 0.63
5 8.16 8.17 0.15
6 10.08 10.06 0.21
7 11.70 11.69 0.05
8 12.44 12.36 0.66
9 12.58 12.59 0.08
10 15.63 15.68 0.29

Table 13: Natural frequencies of the isosceles trapezoidal plate under the simply supported boundary condition (S-S-S-S) (Hz).

Mode
Simply supported

Present FEM Error (%)
1 1.34 1.33 0.70
2 3.15 3.14 0.35
3 3.70 3.69 0.33
4 5.70 5.68 0.36
5 6.06 6.05 0.17
6 7.52 7.51 0.22
7 9.09 9.07 0.19
8 9.58 9.56 0.20
9 9.97 9.96 0.16
10 12.56 12.55 0.06
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Figure 14: Isosceles trapezoidal plate with curved sides.
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Figure 15: Compute model of the rectangular plate with circular opening.

Table 14: Natural frequencies of the rectangular plate with circular opening in C-C-C-C boundary (Hz) (C-C-C-C).

Mode
Clamped

Present FEM Error (%)
1 10.511 10.519 0.08
2 12.189 11.975 1.79
3 19.851 19.797 0.27
4 23.837 23.162 2.92
5 24.993 25.064 0.28
6 31.751 31.397 1.13

Figure 16: ,e corresponding modes of the first four orders of the rectangular plate with circular opening.
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,e bending strain energy of the circular opening is
expressed as

Vpr �
D
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where D � Eh3/12(1 − μ2) and E and μ are the material’s
Young’s modulus and Poisson’s ratio, respectively.

Kinetic energy of the rectangular plate without opening
can be expressed as

T �
ρh
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0

zw

zt
 

2

dx dy. (20)

Open part’s kinetic energy can be expressed as

Tr �
ρh
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0
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0

zw

zt
 

2

dx dy, (21)

where ρ is the density of material and ω is the circular
frequency.

,e elastic potential energy of the boundary springs can
be expressed as
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(22)

where kx0, ky0, kxb, and kyb are the displacement-constrained
spring stiffness values in x� 0, y� 0, x� a/2, and y� b/2,
respectively.Kx0,Ky0,Kxb, andKyb are the corner constrained
spring stiffness values in x� 0, y� 0, x� a/2, and y� b/2,
respectively.

,en, the total energy functional of the whole structure
can be expressed as

L � Vp − Vpr + Vs − T + Tr. (23)

Table 14 shows the natural frequencies of free vibration
of the rectangular plate with circular opening obtained by
the present method and FEM. Figure 16 gives the corre-
sponding modes of the first four orders.

Of course, the improved Rayleigh–Ritz method also can
be applied to solve the vibration problems when the shape of
the plate or the opening is changed as well. ,e corre-
sponding vibration modes of the first four orders of hex-
agonal plate with rectangular opening are shown in
Figure 17.

5. Conclusion

An improved Rayleigh–Ritz method is proposed to analyze
the free vibration characteristic of the arbitrary-shaped
plates under general boundary conditions. We expand the
domain of admissible functions out of the structural domain
to form a rectangular domain for which the admissible
functions can be obtained easily. Besides, the spring model is
adopted to simulate the general boundary conditions. ,e
numerical results of the analytical solutions of rectangular,
triangular, circular, oval, and curved trapezoidal thin plates
are given. By comparing the natural frequencies and mode
figures with the simulation results and reference examples,
the remarkable convergence and accuracy of the present
solution have repeatedly been demonstrated through the
numerical examples. It is worth noting that, for a plate of
symmetric shape, a quarter of the plate is adequate enough
for the analysis to simplify the model. However, the sym-
metric and antisymmetric boundary conditions can be
applied to the central cutting lines to get the frequencies and
modes of the whole plate, and it is proved to be accurate.

As a semianalytical method, this method is used to
calculate arbitrary-shaped thin plates under complicated

Figure 17: ,e corresponding modes of the first four orders of the hexagonal plate with rectangular opening.
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boundary conditions. With unique advantages, the pro-
gramming of the method is simple and easy to understand
and of great compatibility. It should be highlighted that the
present method can also be extended to the areas of other
dynamic problems such as Mindlin plate, thick plate, and
functionally gradient plate and shell.
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