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Split-Hopkinson pressure bar (SHPB) tests were conducted for sandstone after recurrent heat-cool (H-C) cycles. Physical and
mechanical properties, damage, and fracture characteristics of sandstone after the H-C cycle were explored. Additionally, the damage
variable and release rate of damage strain were defined to describe the damage degree of the sandstone specimen after recurrent H-C
cycles. Finally, the relationship between mass fractal dimension of fragmentation and cycling number was discussed. Results show
that the P-wave velocity and density decrease with the increase of cycling number, while the porosity increases. It was found that the
dynamic compressive strength and relative elastic modulus decrease with the increase of cycling number. 20 cycles is the critical point
for the low temperature (L-T) group and moderate temperature (M-T) group, while it is 4 cycles for the high temperature (H-T)
group. With the increase of cycling number, both the damage variable and release rate of damage strain of rock increase, while the

destruction degree of sandstone becomes greater, and the corresponding fragments show more evenly.

1. Introduction

Heat-cool (H-C) cycle is a typical weathering process, which
shows strong effect on the physical and mechanical properties
of rock. Rock weathering is a phenomenon of rock breakage,
porosity, and secondary change of mineral composition
under the combined action of solar radiation, atmosphere,
water, or biology [1, 2]. The recurrent H-C cycles cause
degradation of rock engineering [3, 4]; in addition, because of
the widely existed volcano eruption, thermal shock, exploi-
tation of geothermal resources, and deep geological re-
positories for heat-generating radioactive wastes, which have
significant effects on degradation degree of rocks, should be
considered as an important factor in the H-C cycle process. In
addition, the rock is not only in the environment of hy-
drothermal coupling in the underground and ground engi-
neering but also subjected to the effects of engineering
disturbance, earthquake, and other impact loads in the whole

construction and operation process [5]. Recurrent H-C cycles
lead to changes in the microstructure of rocks, which cause
generation of new microcracks and micropores inside rocks
[3, 6-8]. Rock tends to experience a deep weathering due to
repeated erosion of water and temperature. Resistance ability
of the rock to the H-C cycle depends on a complex set of
material properties, including mineralogical composition,
inner structure, and pore characteristics of rock [9]. When the
temperature floats down the freezing point of water, a 9%
volume expansion occurs inside rock, which causes damage to
rock caused by great ice pressure. The frequent freeze-thaw
(F-T) of water expands the original fissures inside rock. The
freeze-thaw phenomenon also induces new microcracks in
rock, which causes great damage to rock engineering [10-12].
Due to various coeflicients for different mineral particles,
temperature increment during the H-C cycle leads to sec-
ondary thermal stress in rock. Studies show that the main
mechanism of H-C cycles on rock is the loss of water and


mailto:puy2012@126.com
http://orcid.org/0000-0002-6177-3635
http://orcid.org/0000-0003-4733-1731
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7318768

damage of the inner structure caused by thermal reactions
[13-15].

Weathered rock is damaged not only by water and tem-
perature but also subject to dynamic loads, such as blasting,
mechanized construction, and earthquake vibration [16, 17].
However, by summarizing the theoretical and experimental
studies achievements of predecessors, it can be found that
researches, in terms of the physical and mechanical changes of
rock during the weathering process, mainly concentrate on the
static mechanical properties and physical characteristics. Less
research has concentrated on the study for the dynamic me-
chanical properties of weathered rock. Ma et al. [18] investigate
the effects of F-T cycles on dynamic compressive strength and
energy distribution parameters for soft rock. Wang et al. [19]
compared the static and dynamic mechanical characteristic of
red sandstone free from and after F-T or thermal shock (T-S)
weathering. Test results show that both the static and dynamic
strength of rock after F-T or T-S cycles decrease compared with
that of fresh specimen; additionally, the decrease degree of the
dynamic property induced by F-T or T-S cycles is larger than
that under static loads. Xu and Dai [20] studied the dynamic
response and failure mechanism of brittle rock under
compression-shear combined loading and proposed a new
method to describe the mechanical response and failure
mechanism of brittle rock under dynamic compression-shear
loading. Du et al. [21] accurately describe characterization of the
strength and failure behavior of deep rock under coupled
hydrostatic confinement and dynamic loading in the deep
underground engineering. The discrete element method
(DEM) is used. This study systematically investigates the me-
chanical behavior of granite specimens under different hy-
drostatic confinements in the split-Hopkinson compression bar
(SHPB) test, which provides an important guarantee for en-
gineering safety. Very little research work has been conducted
on the dynamic property of rock after H-C cycles, especially for
rock after the H-C cycle with different heat temperatures. On
the earth’s surface, 70% of the rock is sedimentary rock, which
accounts for 80% of the total mineral deposits in the world.
Sandstone is a sedimentary rock formed by sand-sized grains.
Therefore, sandstone is selected as the test sample, SHPB tests
are carried out for sandstone after H-C cycles with different
heat temperatures (e.g., 50, 100, and 400°C), and the objective of
this research work is to investigate the effect of H-C cycles on
the deterioration of physical and dynamic mechanical prop-
erties, such as porosity, P-wave velocity, density, dynamic
strength, elastic modulus, and failure mode. The damage
variable and release rate of damage strain energy are defined to
describe the damage degree of rock after recurrent H-C cycles.
Finally, the relationship between mass fractal dimension of
fragmentation and cycling number is studied.

2. Specimen Preparation and
Experimental Setup

2.1. Sample Preparation. Fine-grained sandstone samples
were collected from the Zhujidong coalmine in Huainan
city, Anhui province, China. Power X-ray diffraction
analysis was adopted to study the mineral composition of
rock at 20°C. According to the XRD spectrum (Figure 1), the
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FiGure 1: XRD spectrum of sandstone sample (under 20°C).

main components of sandstone are quartz accounted for
62.8%, besides of which the sandstone was composed of
12% albite, 6.98% kaolinite, and other minerals [22, 23]. As
seen from Figures 2(a) and 2(b) and Table I, the main
elements of sandstone are Si, O, Ca, Fe, and Al. Scanning
electron microscope (SEM) was performed on some off-
cuts of rock specimens, and chemical analyses were also
conducted by energy dispersive spectroscopy (EDS). The
primary fractures and pores were found by SEM. As seen
from the EDS picture and Table 1, the brighter the color
block, the more elements it contains, such as the relatively
large numbers of elements in block 3. These primary fis-
sures, pores, and elements have a significant effect on the
physical and chemical properties of rocks. The SEM and
EDS images of sandstone after different H-C cycles groups
are shown in Figures 2(c)-2(h). It can be seen from the
diagram that the cracks and pores in rocks increase with the
increase of high temperature treatment temperature,
showing a phenomenon of high temperature (H-T)
group > moderate temperature (M-T) group >low tem-
perature (L-T) group. Additionally, the above figures also
illustrate that the damage degree of rock after 12 H-T cycles
is obviously higher compared with that after M-T and L-T
treatment. Samples with similar P-wave velocity were se-
lected and processed into ¢50 mm x 25 mm cylinder with
surface parallelism within 0.05mm and surface flatness
within 0.02mm. Sample processing dimensions and
methods comply with the ISRM (International Society for
Rock Mechanics) standard [24]. Surface planeness is
controlled to +0.05mm, and the vertical deviation of the
upper and lower surfaces is +0.25".

2.2. H-C Cycling and Testing Equipment. According to the
heating temperature in H-C cycles, the test sandstone
samples were divided into four groups: high temperature
(H-T) group from —20°C to 400°C, moderate temperature
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FiGgure 2: Continued.
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FIGURE 2: SEM and EDS observation of sandstone after H-C cycles: (a) 20°C (SEM 200 ym and 50 ym), (b) 20°C (EDS 100 ym), (c) after 40

cycles in L-T group (SEM 50 um), (d) after 40 cycles in L-T group (EDS 500 ym), (e) after 40 cycles in M-T group (SEM 50 um), (f) after 40
cycles in M-T group (EDS 500 ym), (g) after 12 cycles in H-T group (SEM 50 ym), and (h) after 12 cycles in H-T group (EDS 500 ym).
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TaBLE 1: wt.% and at.% of blocks in Figure 2(b).

Blocks in Figure 2(b) Element wt.% at.%
(6] 29.51 43.93
1 Al 11.90 10.50
Si 41.35 35.06
K 17.25 10.51
2 O 35.57 49.22
Si 64.43 50.78
C 14.63 30.10
O 25.74 39.76
Mg 5.08 5.17
3 Si 1.08 0.95
Ca 1.93 1.19
Mn 3.04 1.37
Fe 48.5 21.47
O 40.33 53.83
4 Al 26.02 20.59
Si 33.65 25.59

(M-T) group from -20°C to 100°C, low temperature (L-T)
group from —20°C to 50°C, and the control group (without
H-C cycle). For L-Tand M-T groups, 4 experimented sets are
prepared according to 10, 20, 30, and 40 H-C cycles. Because
of the fast deterioration rate of the high temperature group, 3
experimented sets are prepared according to 4, 8, and 12
H-C cycles. There are 5 specimens in each experimented set
(Figure 3).

Heating device was a SX-5-12 box-type resistance fur-
nace, which composes control box and electric furnace. The
electric furnace could heat the specimens to a maximum
temperature of 1200°C. Sandstone specimens were heated at
a rate of 6°C/min to the desired temperature. The low-
temperature test box was used in this test, and 40 min
was needed for the test chamber to drop from 20°C to —20°C.

The whole H-C cycles process were shown as follows:
sandstone samples were first immersed in water for 12 hours,
then put them in a low-temperature test chamber at —20°C
for 6 hours, and finally, heat samples in a high-temperature
box at a predetermined temperature for 6 hours. A whole
H-C cycle lasts for 24h. The mass, volume, and P-wave
velocity of sandstone samples were tested before and after
different H-C cycles.

SHPB equipment has been successfully used to in-
vestigate the dynamic behaviors of materials, such as rock
and concrete [25]. In this test, dynamic impact loading tests
were conducted by the SHPB system with a diameter of
50mm. As shown in Figure 4, it contains launch device,
striker, incident bar, transmitted bar, buffer bar, and strain
acquisition instrument, and two strain gauges are glued on
the incident and transmitted bars to collect the origin strain
signals; in addition, a striker with double-tapered shape was
adopted to guarantee the stress balance of the rock specimen
[26]. The SHPB test steps are as follows: (1) check all the test
parts on the working state and adjust voltage balance, (2)
appropriate lubricant is evenly smeared on the two side
surfaces of the rock specimen and then put it between in-
cident and transmitted bars, (3) open the gas pressure switch
and collect the test signal, and (4) collect the fragment of the

rock specimen. The dynamic stress-strain curves could be
calculated according to the “three wave methods” [27-29]:

o(t) = i"i‘) [, (5) — e () — &1 (1)), (1)

e(t) = % Jr[sl(t)—sR(t)—sT(t)]dt, (2)
s Jo

. C,

e(t) == [ (t) —eg (1) —ep ()], (3)

I

where ¢ (t), eg (t), and ¢ () are the strain of incident wave,
reflected wave, and transmitted wave, respectively; Ey, Ao,
Co, A, and [ are Young’s modulus, the cross-sectional area,
the elastic wave speed of the bar, and the cross-sectional area,
and the height of the rock specimen, respectively; and ¢ is the
duration time of the elastic wave. Cy can be calculated by the

following equation:
E
C() = \ji) (4)
Po

where p, is the density of the bar material.

3. Test Results and Analysis

3.1. Variation in P-Wave Velocity. The P-wave velocity re-
sults of sandstone measured before and after different H-C
cycles are shown in Figure 5. It can be noticed that before
H-C cycles, the average wave velocities of the specimens
range from 2870 m/s to 3067 m/s. For sandstone specimens
after H-C cycles, it shows a decrease tendency of P-wave
velocity. After 20 and 4 H-C cycles, the descent rate is
relatively slow for L-T and M-T groups and the H-T group,
respectively. The descent rate of P-wave velocity from 0 to 20
cyclesis 7.93% and 11.52% for the L-T group and M-T group,
respectively, while it is 41.09% for the H-T group from 0 to 4
cycles. As a contrast, after 20 cycles, the descent rates are
only 1.91% and 4.42% for L-T and M-T groups, respectively,
while the descent rate is only 19.42% for the H-T group from
4 to 12 cycles. Hence, 20 cycles is the critical point of P-wave
velocity for the L-T group and M-T group, and 4 cycles is the
critical point for the H-T group. There are two reasons for
the variation of the P-wave velocity of sandstone. On the one
hand, the water in the rock firstly absorbs water to attain
saturation and then escapes because of the increase of
temperature, which leads to the increase of pore volume due
to the repeated absorption and escape of this kind of water.
On the other hand, the generation and expansion of internal
microcracks and micropores also lead to the attenuation of
ultrasonic wave energy after rock damage.

3.2. Variation in Density and Porosity. Rock is naturally a
three-phase system of air-water-solid, and rock density
refers to the mass of rock in unit volume, which is signif-
icance for studying weathering process, stability of rock
mass, and prediction of surrounding rock pressure in rock
engineering [30]. By testing the volume and weight of rock
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samples before and after different H-C cycles, we obtained
the variations in density with cycling number, as shown in
Figure 6. It can be seen from the diagram that the density of
sandstone samples gradually decreases with increasing cy-
cling number for three groups.

Figure 6 also shows that the relationship between density
and cycling number is similar to that of the P-wave velocity.
The descent rates of density from 0 to 20 cycles are 1.14% and
1.80% for the L-T group and M-T group, respectively, while
it is 2.44% for the H-T group from 0 to 4 cycles. After 20
cycles, the descent rates are only 0.27% and 0.33% for the

L-T group and M-T group, respectively, while it has a 0.62%
descent rate for the H-T group from 4 to 12 cycles. Hence, 20
cycles is the critical point of density for the L-T group and
M-T group, and 4 cycles is the critical point for the H-T
group.

Rock is a natural polycrystalline material with many
defects and pores [31]. Porosity has great effect on the
hydration and thermal and mechanical properties of rock
and rock mass. The existence of pores makes it more vul-
nerable subject to external load, leading to further de-
terioration of rock. Therefore, the porosity change of rock
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after different H-C cycles is measured and analyzed in this
test.

Figure 7 illuminates the variation of porosity of sandstone
versus H-C cycles. It is clearly notice that (1) under the same
cycling number, the porosity of sandstone for the H-T group
is much higher than that for L-T and M-T groups. (2) A
different changing trend is found for three groups, and for
L-Tand M-T groups, with the increase of cycling number, the
porosity exhibits a linear correlation. However, there shows a
exponential growth relationship between porosity and cycling
number for the H-T group, which attributes to the high
temperature damage to the sandstone specimen. (3) The rise
rate of porosity is higher from 0 to 20 cycles compared with
that from 20 to 40 cycles for L-T and M-T groups, and the
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FIGURE 7: Variation of porosity of sandstone versus H-C cycles.

values of the rise rate of porosity from 0 to 20 cycles are
39.64% and 92.93% for L-T and M-T groups, respectively,
while they are only 10.17% and 18.87% from 20 to 40 cycles.
By contrast, the average value of porosity for the H-T group
increases from 2.23% to 5.29% with the cycling number in-
creasing from 0 to 4 cycles, with a 137.22% rise rate, while it
changes from 5.29% to 7.34% when the cycling number in-
creases from 4 to 12 cycles, with only 38.76% rise rate, which is
much lower compared with that from 0 to 4 cycles.

3.3. Dynamic Stress-Strain Curve and Relative Elastic
Modulus. Typical dynamic stress-strain curves are pre-
sented in Figure 8. By comparison of complete stress-strain
curves of different groups, we can see that with the increase
of axial strain, the stress increase rate gradually decreases
with increasing cycling number before peak strain. The peak
stress decreases with increasing cycling number. Further-
more, the brittleness of the sandstone samples gradually
decreases and the ductility gradually increases as the increase
of the cycling number.

The dynamic compressive strength is defined as the peak
stress in the stress-strain curve in this research, and test
results of dynamic compressive strength of the sandstone
specimen at the strain rate of (190 10) s' under different
H-C cycles are shown in Figure 9(a).

Figure 9(a) results show that the dynamic compressive
strength of rock decreases slowly after 40 cycles for L-T and
M-T groups, while it decreases sharply after 4 cycles for H-T
cycles. Specifically, the dynamic compressive strength of the
control group is 143.17 MPa, and it only decreases to
103.80 MPa and 96.30 MPa after 40 cycles for L-T and M-T
groups, respectively, and the corresponding descent rates are
27.50% and 32.74%, respectively. However, after 4 cycles for
the H-T group, the dynamic compressive strength decreases
to 64.38 MPa, with 55.03% descent rate, which is much larger
than the other two groups.
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Elastic modulus in this research is defined as the slope
corresponding to 40% and 60% of compression strength
during the rising phase of the stress-strain curve; the cal-
culated results are shown in Table 2. The results showed that

the elastic modulus decreased with the increasing cycling
number, in order to describe the drop degree of elastic
modulus caused by the H-C cycle, the relative elastic
modulus (K,) is defined and can be calculated as follows:
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TaBLE 2: Test results on the basic dynamic properties of sandstone after H-C cycles.

Ilelsr;ber Number of sample groups I?Zii)nj_ Peak stress (MPa) Elastic modulus (GPa) Relative elastic modulus (K,)
1 Room temperature 0 143.17 28.8 1.000
2 10 139.59 25.6 0.889
i Low temperature (L-T) group ig }gggé igg 8223
5 40 103.80 19.0 0.660
6 10 123.61 22.4 0.778
Z Moderate temperature (M-T) group ig 190; 9763 igé 8§§§
9 40 96.30 11.3 0.392
10 4 64.38 15.8 0.549
11 High temperature (H-T) group 8 51.43 8.6 0.297
12 12 42.11 6.6 0.230
E, strength [18], which can be calculated according to equation
Ke=g, G 3

where K, is the relative elastic modulus and E, and E, are
dynamic elastic modulus of the rock specimen after 0 and n
H-C cycle numbers, respectively.

Table 2 and Figure 9(b) illustrate the variation in elastic
modulus and K, of sandstone with different cycling num-
bers. For the L-T group, K, decreases to 0.688 after 20 cycles,
and then, it has a slight reduction from 20 to 40 cycles. In
addition, K, for the M-T group is larger than that for the L-T
group, and after 30 H-C cycles, the values of K, are 0.667 and
0.538 for L-T and M-T groups, respectively. However, the
elastic modulus of the specimen for the H-C group has a
larger descent rate after 8 cycles, and the corresponding
value of K, decreases from 1 to 0.297. The decrease trend of
the H-T group is obviously larger than that of L-T and M-T
groups.

3.4. Variation in Damage. Using damage mechanics
methods to study questions of rock hydrothermal coupling
is a new development in rock mechanics. The damage
variable can describe the deformation and failure degree of
the sandstone specimen after different H-C cycles. Two
defined methods are adopted and compared in this research
to describe the damage degree of sandstone after H-C cycles.
Various changes occur in the internal structural of rocks
after the H-C cycle, which affect the refraction and dif-
fraction phenomena of ultrasonic propagation. Hence, there
has a relationship between wave velocity and damage degree
of rock after the H-C cycle. Based on this, damage variable is
defined by the variation of longitudinal wave velocity [32]:

2
D, - 1—(5") , (6)
0

where D, stands for damage variable calculated by variation
of wave velocity, V, is the P-wave velocity after n H-T cycle
numbers, and V|, is the P-wave velocity of rock without H-C
cycles.

The other effective calculation method to describe the

damage variable is based on the variation of dynamic

D, = 1—<ﬁ), (7)
0o

where D, stands for the damage variable calculated by
variation of dynamic strength, o, is the dynamic com-
pressive strength after H-T cycle, and o, is the dynamic
compressive strength of the specimen without the H-C cycle.

In addition, the release rate of damage strain energy can
describe the damage degree inside rock. The relation be-
tween damage and release rate of damage strain energy can
be expressed as [33]

0,2

= EG-Dp ®

where 0 is the release rate of damage strain energy, o is the
dynamic compressive strength, E is the elastic modulus, and
D is the damage variable of rock caused by H-C cycles.

The calculated results of damage variable and release rate
of damage strain energy of sandstone are listed in Table 3
and Figures 10 and 11.

As can be observed from Table 3 and Figures 10 and 11,
both the damage variable and release rate of damage strain
energy can describe the damage variation tendency of the
sandstone specimen after different H-C cycles. However,
compared with the release rate of damage strain energy,
damage variable can better reflect the damage degree; the
reason can be clarified as follows. With the increase of cycling
number, the damage variables increased gradually, which was
in accordance with the general rule of damage evolution in the
L-T group. However, the release rate of damage strain energy
shows a first-increase-and-then-decrease tendency, which is
inappropriate according to the damage evolution rule.
Additionally, from the test results of P-wave velocity, porosity,
density, and dynamic strength, it is clearly noticed that 20
cycles are critical point of density for L-Tand M-T groups, and
4 cycles is critical point for the H-T group, which is similar to
the relationship between damage variable and cycling
number, while the turning points are different for release rate
of damage strain energy, as shown in Figure 11.
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TaBLE 3: Test results on damage of sandstone after H-C cycles.

Test number Number of sample groups Cycling number D, Dy 0, (MPa) 0, (MPa)
1 Room temperature 0 0 0 0.356 0.356
2 10 0.091 0.025 0.461 0.400
3 Low temperature (L-T) group 20 0.152 0.160 0.508 0.518
4 30 0.160 0.238 0.439 0.533
5 40 0.184 0.275 0.426 0.539
6 10 0.087 0.137 0.409 0.458
Z Moderate temperature (M-T) group ;8 gig 8??2 82?(8) 822
9 40 0.285 0.327 0.803 0.906
10 4 0.653 0.550 1.089 0.648
11 High temperature (H-T) group 8 0.751 0.641 2.48 1.193
12 12 0.775 0.706 2.654 1.554
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Figure 10: Relation of damage variable with cycling number.

The sandstone used in the tests was a typical sedimentary
rock with some original pores and cracks in Figure 2. After
repeated action of water and temperature, various internal
damage degrees happens inside rock, and the main reasons
are as follows:

(1) Repeated erosion of water is one of the causes of rock
damage after H-C cycles. On the saturated process,
there are original cracks and pores in the rock, as
shown in Figure 1. In the process of water absorption,
many minerals are hydrophilic and soluble, which
promote the weathering of rocks [13, 34-36]. The
frequent freezing and thawing of pore water inside
rock expands the cracks and pores and promotes the
development of new microfractures [7, 11, 37].

(2) Rock specimens are taken out after heat treatment at
50°C, 100°C, and 400°C. The different states of water
(attached water, bound water, and mineral combined
water) existing inside the rock will evaporate after
heat treatment. Particularly, the weakly bound water
can completely escape at about 150°C, and the strong

0 (MPa)

Cycling number

—-0- 0, for L-T group
-0- 0, for M-T group
—%— 0, for H-T group

—®— g, for L-T group
—@— 0, for M-T group
—*— 0, for H-T group

FIGURE 11: Relation of release rate of damage strain energy with
cycling number.

bound water can completely escape only at the
temperature of about 200°C to 300°C. The crystalline
water evaporates and escapes at least 400°C. The loss
of component water and crystalline water will lead to
the destruction of the crystal structure of sandstone
mineral [14, 21].

(3) Because of various thermal expansion coefficients of
mineral composition in rock, induced thermal stress
between crystal and fissure leads to flaw and exfo-
liation of rock after heat treatment [32, 33]. After
400°C, the fissures between the crystalline grains in
the interior of rocks shows a cracking phenomenon,
and the crack cannot be recovered [38, 39].

3.5. Fracture of Sandstone. In order to further illuminate the
fracture characteristic of sandstone after the H-C cycle, the
fracture result is quantified by mass fractal dimension of
fragmentation. The rock fragments are collected and screened
by different sizes after the SHPB test. The sizes are 0.15 mm,
0.3mm, 0.6mm, 1.18 mm, 2.36 mm, 4.75mm, 9.5mm,
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FIGURE 12: Typical grading curves of rock specimen.
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FIGURE 13: b value of mass fractal dimension of fragmentation: (a) L-T group, (b) M-T group, and (c) H-T group.

13.2mm, 16 mm, 19 mm, 26.5mm, 31.5mm, and 37.5 mm,
and the typical grading curves are illustrated in Figure 12.

The mass fractal dimension of fragmentation (Dy) under
different test conditions is calculated. The fragment distri-
bution parameter can be calculated by the following for-
mulas [40]:

m \
() Y
b= M’ (10)
Inr

where m, is the accumulative mass under sieve of charac-
teristic size r, M is the total mass of the specimen, r,, is the
particle size, and b is the fragment distribution parameter.

The b value is obtained from mass fractal dimension of
fragmentation by Formula (10). As shown in Figure 13, with

the increase of cycling number, the value of b decreases and
the degree of fragmentation increases. The mass fractal
dimension of fragmentation is calculated by the following
equation:

D;=3-b, (11)

where Dy is the mass fractal dimension of fragmentation.
The relationship between Dy and cycling number is
shown in Figure 14. With the increase of cycling number, the
destruction degree of sandstone becomes greater, and the
corresponding fragments show more evenly. As seen from
Figure 14, the Dy of sandstone ranges from 2.024 to 2.304
under different test conditions in this research. The values of
Dy of sandstone increase with increasing cycling number;
turthermore, there is a linear relation between mass fractal
dimension and cycling number for the L-T group and M-T
group, while it exhibits an exponential relation for the H-T
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FIGURE 14: Relation of mass fractal dimension of fragmentation with cycling number. (a) L-T group and M-T group and (b) H-T group.

group. The larger the mass fractal dimension of fragmen-
tation is, the finer the fragmentation is. From the above
analysis, it can be noticed that the cycling process promotes
the degradation inside the rock specimen, and there exhibits
a positive correlation between damage degree and Dpg
agreeing with the previous studies results [41, 42].

4. Conclusions

(1) With the increase of cycling number, the P-wave
velocity and density decrease, while the porosity
increases. Additionally, 20 cycles is critical point of
P-wave velocity for the L-T group and M-T group,
and 4 cycles is critical point for the H-T group. Both
the dynamic compressive strength and K, decrease
with increasing cycling number for three groups, and
the descent rate of them is relatively lower for L-T
and M-T groups compared with that for the H-T
group under the same cycling number.

(2) The damage degree of rock increases with the in-
crease of cycling number. Compared with the release
rate of damage strain energy, the damage variable
can better describe the damage degree of sandstone
after the H-C cycle.

(3) The Dy of sandstone increase with increasing cycling
number; furthermore, there has a linear relation
between mass fractal dimension and cycling number
for the L-T group and M-T group, while it exhibits an
exponential relation for the H-T group. The larger
the mass fractal dimension of fragmentation is, the
finer the fragmentation is.
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