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In geotechnical reliability analysis, random volatility in marginal distributions of shear strength parameters has been rarely
considered. Unfortunately, conventional marginal distribution models cannot characterize real probability distribution accu-
rately, leading to considerable dispersion with incomplete probabilistic information. In this paper, an estimation methodology is
proposed based on copula theory coupling information diffusion technique. Firstly, information diffusion distribution is extended
to represent one-dimensional marginal distributions of shear strength parameters. Secondly, copula theory is employed to
characterize the dependence structures among the parameters. Eventually, equivalent sample is yielded by information diffusion
distribution that has been already established. A case study in Singapore is implemented to enunciate and validate the competence
of the proposed method. 0e performances of the candidate copulas coupling different marginal distributions are further
discussed. Results indicate that information diffusion distribution can efficiently capture the random volatility of real distributions
of shear strength parameters and hold remarkable superiority in modeling marginal distributions. 0e equivalent sample, es-
timated by information diffusion technique in conjunction with Gaussian copula, has considerable consistency with original data.
0e proposed method can provide a reference to reliability analysis in geotechnical engineering.

1. Introduction

It is well recognized that shear strength parameters (cohesive
force c and internal friction angle φ) are significantly crucial
to geotechnical reliability analysis [1–4]. In geotechnical
engineering, c and φ are often viewed as random variables,
and their joint cumulative distribution function (CDF)
or probability density function (PDF) seriously affects the
accuracy of risk assessment [5, 6]. In order to conduct a
realistic analysis on the geotechnical reliability, it is essential
to accurately address the joint CDF or PDF of the shear
strength parameters. However, only limited data can be
obtained by the field test or laboratory test. Under these
incomplete information, marginal distributions and corre-
lation coefficients are approximately estimated with inevi-
table uncertainty [7, 8]. 0e joint CDF or PDF is also

challenged by data scarcity and uncertainty, leading to a
large dispersion in the probability of failure.

Traditionally, bivariate normal distribution [9], bivariate
Beta distribution [10], and Nataf distribution [11] are
commonly employed to address that objective. Nevertheless,
such approaches are available under the constraint that all
the variables correspond to normal distribution or Beta
distribution. And, Nataf distribution inherently assumes a
Gaussian dependence structure for the random variables,
which can be inappropriate in some cases [8]. Recently, the
copula approach, considering the deduction of marginal
distribution and the selection of optimal copula function
separately, provides a fairly general way for modeling joint
distribution [12–14]. A copula is a function thatmaps the joint
distribution of variables with their one-dimensional marginal
distributions [15, 16]. Arbitrary marginal distribution and
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corresponding dependence structure can be incorporated by
it. In recent years, it has been progressively applied to re-
liability analysis in geotechnical engineering. Zhang et al.
performed slope reliability by counting copula-based bivariate
distribution of shear strength parameters [7]. Wu employed
the Gaussian and Frank copulas to construct the joint dis-
tribution among cohesion, friction angle, and unit weight of
soils [12]. Motamedi and Liang conducted a landslide hazard
assessment using the Copula modeling technique [13]. Das
et al. introduced the copula theory to study the reliability of
vegetated slopes [17].

It is worthwhile noting that the copula is not a panacea,
though its connotation has been enriched and developed
along with above researchers’ efforts. In Sklar’s theorem [18],
copulas generate random pairs in rank space, and then,
equivalent samples can be simulated by corresponding
marginal distributions [8]. 0erefore, the selection of
marginal distribution types for shear strength parameters
has a direct effect on the calculated slope reliability. Chen
et al. had proven that marginal distribution has a minor
effect on calculated results of the factor of safety as a major
influence on the failure probability [19]. Wu demonstrated
the performances of conventional distribution models differ
from each other [20]. 0ese studies concluded that a rea-
sonable marginal distribution of shear strength parameter is
vitally significant to the accuracy of reliability analysis.
Presently, the deduction of marginal distribution for indi-
vidual parameter remains subjective and open to debate.
Various statistical models have been proposed and utilized
for fitting the base distribution of shear strength parameters.
For instance, Low [21], Li et al. [22], Ji et al. [23], and Zhou
et al. [24] employed normal distribution to represent base
distribution of shear strength parameters. Brejda et al. [25],
Fenton and Griffiths [26], and Jiang et al. [27] considered the
parameters obeying lognormal distribution because the soil
properties were strictly nonnegative. Harrop-Williams [28]
and Harr [29] demonstrated that beta distribution was
another suitable choice for distribution properties. Other
distributions, such as Gamma [12, 30], Gumbel [31, 32], and
Weibull [20, 33], are gaining popularity. 0ese assumptions,
however, do not always hold as the random volatility owing
to the heterogeneity of rock or soil mass is observed in real
distribution [4, 34, 35]. In modeling the base distributions
realistically, it may be necessary to recreate the random
volatility by fitting a sufficiently flexible theoretical probability
distribution to shear strength parameters. Furthermore, the
deduction of marginal distribution is commonly subject to
sparse sample, and reliability analysis thus has associated
uncertainties, leading to a high deviation from reality.
However, these specific characters in marginal distribution
estimation have been rarely accounted for. 0e aforemen-
tioned conventional mathematical approaches cannot truly
cater to random volatility nature because their varying curves
act as a single peak value wave. Once the selected model does
not coincide with the real distribution, it cannot asymptot-
ically represent the actual properties as the sample size and
computational capability increase. Accordingly, it is imper-
ative to explore some novel deduction method for geo-
technical parameters under incomplete information.

Information diffusion (ID) technique is inherently a set-
valued fuzzy mathematical processing method [36]. It
maintains that each information sample point is inclined to
develop into multiple information points in the process of
transition from incompleteness to completeness. In this re-
spect, single-valued samples can be expanded to set-valued
samples through a certain diffusion function. Consequently,
the corresponding information expansion of incomplete
systems can be achieved. It is perfectly capable of incomplete
information processing and avoids solving the membership
function. Based on the information diffusion theory, Gong
et al. [37] and Huang et al. [38] specified information dif-
fusion distribution and successfully captured the random
volatility of geotechnical parameters, providing a new en-
lightenment to marginal distribution deduction. However,
these studies did not perform model construction for mul-
tivariate distribution. 0e application and effectiveness of ID
approach coupling copula theory under incomplete proba-
bilistic information remain to be validated in a rigorous way.

In this case, a novel estimationmethod for shear strength
parameters is proposed. 0e information diffusion tech-
nique is further explored to deduce the optimal marginal
distributions of shear strength parameters, in conjunction
with copula theory employed to model the dependence
structure among them. For this objective, the rest of the
study is organized as follows. First, copula theory and
construction procedure of joint distribution are briefly
elucidated in Section 2. 0en, information diffusion dis-
tribution of each shear strength parameters is constructed
and validated by mathematical and graphic analysis in
Section 3. 0e whole implementation procedure is induced
in Section 4. Sequentially, Section 5 gives an illustrative
example to demonstrate the performance of the proposed
method. To validate the consistency between equivalent and
initial samples, a backward analysis is conducted in this
section. Finally, Section 6 provides the conclusions and
suggestions for future work.

2. Joint Distribution of Shear Strength
Parameters Based on Copulas

2.1. Bivariate Distribution of c and φ Using Copula ,eory.
In Sklar’s theorem [18], a bivariate CDF, F(c, φ), can be
expressed in terms of a copula function C(u1, u2; θ) and two
marginal distributions u1 � F1(c) and u2 � F2(φ):

F(c,φ) � C F1(c), F2(φ); θ(  � C u1, u2; θ( , (1)

where θ is the related parameter of copula function C(·). If u1
and u2 are continuous, C(·) can be uniquely determined.

By taking derivatives of equation (1), the bivariate joint
PDF f(c, φ) can be given in terms of a copula probability
density function c(·) in the following form:

f(c,φ) � f1(c)f2(φ)c F1(c), F2(φ); θ( . (2)

By definition, the construction of the copula joint dis-
tribution function can be broadly converted into two steps:
First, the probable marginal distributions of c and φ are
determined. As mentioned in Introduction, this work is
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basic and vitally significant to the rest of reliability study.
Detailed analysis is given in the next section. Second, the
optimal copula function to characterize the dependence
structure in the original data is identified. Previous studies
have established the fact that different copula functions
characterize different dependence structures, which is
quantified by the correlation coefficient [39]. 0erein,
Pearson linear correlation coefficient cn and Kendall’s rank
correlation coefficient τn are widely derived.

Assume that (xi, yi) (i � 1, 2, . . . , n) are n-size observa-
tion samples from population (X, Y). cn and τn can be,
respectively, expressed as follows [18]:

cn �


n
i�1 xi −x(  yi −y( 

(n− 1)
����
S2xS2y

 ,

τn � 
n

2

−1


i<j

sgn xi − xj  yi −yj  ,

(3)

wherein n is the number of observation samples (X,Y), x and y

are the sample means, S2x and S2y are the sample variances,
sgn(·) is the sign function, sgn(·)� 1 if (xi− xj) (yi− yj)> 0, and
sgn(·)�−1 if (xi− xj) (yi− yj)< 0, i, j � 1, 2, . . . , n.With respect
to sample pairs (xi, yi) and (xj, yj), if they satisfy (xi− xj) (yi− yj)
> 0, they are considered to be in accordance with each other.

To address the interrelationship between the two pa-
rameters, the observed data (x, y) in original space are
commonly transformed into the standard uniform distri-
bution ui � (u1i, u2i), which can be computed by using the
following equation [40]:

u1i �
rank xi( 

n + 1
,

u2i �
rank yi( 

n + 1
, i � 1, 2, . . . , n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where rank(xi) and rank(yi) are the ascending order of xi
and yi, respectively.

2.2. Estimation of Related Parameters of Copula Function.
0e estimation of related parameter θ is a key step in
constructing copula function. It can be obtained according
to the corresponding relationship between Kendall’s rank
correlation coefficient τK and copula function C(·), as shown
in the following [18]:

τK � 4
1

0

1

0
C u1, u2; θ( dC u1, u2; θ( − 1. (5)

Particularly, for Gaussian Copula functions, there is a
simpler relationship:

τK �
2 arcsin(ρ)

π
, (6)

wherein ρ is defined as the related parameter of Gaussian
copula. By solving equation (5) or (6), each ρ or θ of copula
selected to fit the dependence structure between c and φ is
obtained. Furthermore, unique copula function can be

determined. Obviously, it can be recognized from equations
(5) and (6) that the copula parameter is independent of their
base distribution of c and φ.

2.3. Identification of Optimal Copula Function. Squared
Euclidean distance (SED) and Akaike information crite-
rion (AIC) are routinely employed to sieve the optimal
copula function. SED is defined as the quadratic sum of the
D-value between the theoretical joint cumulative fre-
quency p and empirical joint cumulative frequency pe,
located in F(x) and F′(x), respectively, denoted as d2 in the
following equation [41]:

d2 � 
n

i�1
pi −pei

 
2
. (7)

AIC is commonly used for the selection of optimal
statistical model. Briefly, it can be expressed as [42]

AIC � 2k− 2 ln(L), (8)

where k is the number of parameters of statistical model and L
is the maximized value of the likelihood function for the
estimated model. Given a set of candidate models for the data,
the preferred model is the one with the minimum AIC value.
Substituting theoretical joint CDF F(x) and empirical joint
CDF F′(x) into equation (8), the AIC of copula is given as

AIC � n ln
1

n− k


n

i�1
F(x)−F′(x)( 

2⎧⎨

⎩

⎫⎬

⎭ + 2k. (9)

Generally, the copula function associated with minimum
SED and AIC values is considered to be optimal.

3. Probability Distribution Estimation Using
Information Diffusion Technique

As discussed earlier, marginal distribution of each parameter
is significant to copula joint distribution construction.
However, most studies estimate marginal distributions of
shear strength parameters without considering random
volatility owing to the heterogeneity of rock or soil mass.
Moreover, incomplete probabilistic information severely
restricts the performance of conventional models.0erefore,
conventional marginal distribution models cannot charac-
terize real probability distribution accurately, leading to
considerable dispersion with incomplete probabilistic in-
formation. For this case, information diffusion technique is
introduced to address a more appropriate distribution.

3.1. Information Diffusion Deduction Method. Let
X � (x1, x2, . . . , xn) be a sample set made up of n elements
and U � (u1, u2, . . . , um) be the domain of discourse made
up of m elements. 0en, the nondiffusion estimate R can be
defined as follows [36, 43]:

R(c, X) � c χ xi, u( (  xi ∈X, u ∈U
 , (10)

where c is called as reasonable operator and χ(xi, u) is the
associate characteristic function.
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If and only if X is incomplete, there must exist a di�usion
function μ(xi, u) and a corresponding operator c′. Se-
quentially, the di�usion estimate can be expressed as

R̃ c′, D(X)[ ] � c′ μ xi, u( )( ) ∣ xi ∈ X, u ∈ U{ }, (11)

that satis�es

‖R− R̃‖ < ‖R− R̂‖, (12)

where ‖ · ‖ is the absolute value of deviation between the
estimated relationship and the real relationship.

In the above equations, ID technique ensures a speci�c
di�usion function to improve nonspread estimate under
incomplete information. Alternatively, when X is incomplete,
there must exist a di�usion function μ(·) to extract and
propagate fuzzy information of X in order to more accurately
estimate the function approximation of a relation R.

Figure 1 gives the explanation of the information dif-
fusion principle.

Suppose that μ(·) is a Borel measurable function in (−∞,
+∞).

Here, a normal di�usion function, as shown in equation
(13), is adopted to di�use the information retained by ob-
servation xi to the monitoring point uj in normal approach:

μ(x) �
1

h
���
2π

√ exp −
x−xi( )2

2h2
( ), (13)

where h is called as di�usion coe�cient, determined by the
maximum value, minimum value, and size of sample set.
Note that h a�ects the e�ectiveness of ID technique con-
siderably. Some scholars have conducted a great amount of
research to elucidate it. Particularly, Wang has given an
extensive and mathematical investigation, as expressed in
the following [44]:

h �
c(b− a)
n− 1

, (14)

where a � min xi{ }, b � max xi{ }, n is the sample size, and ζ
can be determined depending on the study of Wang [44],
and the values for di�erent sample size of n are tabulated in
Table 1.

Suppose μ(·) is a Borel measurable function in (−∞,
+∞). In this case, one-dimension PDF is de�ned as follows:

f uj( ) �
1

h
���
2π

√ ∑
n

i�1
exp −

uj − xi( )
2

2h2
 





. (15)

3.2. Goodness-of-Fit Test. In order to examine the adequacy
of ID approach, the goodness-of-�t test is absolutely es-
sential. Herein, K-S test and AIC criteria are implemented
for veri�cation.

Assuming that F0(x) represents an estimated CDF, Fn(x)
is de�ned as the empirical CDF for n observation samples.
Let Dn be the maximum D-value between F0(x) and Fn(x),
expressed as follows [45]:

Dn � max Fn(x)−F0(x)
∣∣∣∣

∣∣∣∣, (16)

where Dn,α is called as the critical value of the Kolmogorov
distribution. While Dn<Dn,α, the estimated model pop-
ulation is considered to coincide with the estimated dis-
tribution, and vice versa.

AIC algorithm can be referred to Section 2.3. According
to equation (9), each candidate case is encountered an AIC
value. Specially, the candidate model with minimum AIC
value is considered as the most probable marginal
distribution.

4. Implementation Procedure

Based on the above analysis, the procedure of optimal es-
timation of shear strength parameters using copula theory
coupling information di�usion technique can be divided
into 5 steps as follows:

Step 1. Site-speci�c data of c and φ are obtained from the
�eld or laboratory test.

Step 2. �e optimal marginal distribution function is de-
duced. �e coe�cient ζ from Table 1 and compute di�usion

X

D(X)

μ(xi, u)

γ

γ′
R (γ′, X)

R̂ (γ, X)

˜
˜||R – R|| < ||R – R||ˆ

Figure 1: Schematic plot of information di�usion principle [43].

Table 1: Values of ζ for di�erent sample sizes of n.

n ζ
3 0.849321800
4 1.273982782
5 1.698643675
6 1.336252561
7 1.445461208
8 1.395189816
9 1.422962345
10 1.416278786
11 1.420835443
12 1.420269570
13 1.420698795
14 1.420669671
15 1.420693321
16 1.420692226
17 1.420693101
17 1.420693101
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coefficient h are determined firstly. 0en, by using equations
(13)–(15), marginal PDFs and CDFs of single random
variables c and φ are constructed with site-specific sample.
Good-of-fit test is implemented for validation. For com-
parison, some conventional distributions can be derived
simultaneously.

Step 3. 0e dependence structure between random variables
is measured. Correlation coefficients between c and φ are
calculated. And the most probable copula function with
minimum AIC and SED is selected.

Step 4. Random pairs in rank space by the optimal copula
function are simulated, which then yields equivalent samples
via the prescribed marginal distribution.

Step 5. Backward analysis is performed for equivalent
samples to verify the robustness and sensitivity of the
proposed model.

Figure 2 portrays all crucial ingredients of the proposed
model in a seamless manner.

5. Illustrative Example

5.1. Data Source and Property Analysis. Li et al. carried out a
large number of uniaxial and a series of triaxial compression
tests under different confining pressures [46]. 0e granite
samples are all taken from Bukit Timah, Singapore. 0e
specimen was made of 55mm core, and the sample size was
30mm× 60mm. All tests were carried out on the RDT-
10000 dynamic load test apparatus. On the basis of these
test data, Gong et al. constructed small sample sets of shear
strength parameters according to the permutation and
combination theory and Mohr–Coulomb shear strength
criterion [37]. Next, a total of 22 pairs data were obtained
using the robust regression estimation method. 0e corre-
lation coefficients show that cn �−0.8767 and τn �−0.7843.
Sample means are μc � 56.2939 and μφ � 41.7864, respectively,
and the corresponding standard deviations are σc � 9.4192
and σφ � 2.0214. Figure 3(a) shows the scatter plots of the
observed data in original space and the uniformed data
transformed by equation (4). It is explicit from not only
Figure 3 but also coefficients cn and τn that the original shear
strength parameters c and φ are basically symmetry and there
is a negative correlation between them.0us, the proper joint
distribution model studied in this paper should be capable of
capturing the symmetry and negative correlation of the de-
pendence structure between c and φ.

For preliminary analysis, different marginal probability
distributions, viz, normal distribution, lognormal distribu-
tion, extreme value distribution, and Weibull distribution,
are examined on Matlab platform. Figure 4 gives their
probability plots for the observed data. It can be readily
derived that all the four conventional distributions cannot
accurately model the probability distributions of shear
strength parameters. As for c, the scatters loosely distribute
and basically lie under the four fitting lines. More specifi-
cally, the scatters exhibit concentrated distribution at the

middle as discrete dispersion at both tails. With respect to φ,
scatters fluctuate up and down along the fitting lines.
Likewise, they also concentrate locally and disperse at both
tails of fitting lines, especially in Figures 4(c) and 4(d).
0erefore, although the base distributions of shear strength
parameters can be deduced by conventional distribution
models, in many cases they cannot give unbiased and re-
alistic probability estimations, and only the optimal prob-
ability distribution in a local range can be obtained. 0is is
mainly because a sample size of n � 22 is insufficient to
perform an explicit description of individual distribution by
them. 0erefore, exploring a novel deduction approach to
extract original information as much as possible is crucial.
Fortunately, the information diffusion technique is capable
of capturing and diffusing information original data retain,
providing a new idea to address this problem.

5.2. Optimal Marginal Distribution Deduction.
Information diffusion technique is implemented to estimate
PDFs and CDFs of c and φ from equation (15). Diffusion
coefficient h is determined in Table 2. 0e corresponding
correlation coefficients are shown in Table 2. 0e probability
plots of c and φ are depicted in Figure 5. As a reference, the
probability plots associated with normal distribution are also
given in the axes. It can be clearly observed that the fitting
curves associated with information diffusion distribution
vary along with the scatter distribution of c and φ. Almost all
scatters distribute more smoothly along the fitting curves
than those of normal distribution, indicating that the pro-
posed approach can efficiently capture the variation char-
acteristics of the real distributions.

To further verify the performance of the proposedmethod,
four conventional distribution types are introduced as can-
didate models, i.e., truncated normal distribution (left trun-
cated at zero), lognormal distribution, Gumbel distribution
(left truncated at zero), and Weibull distribution. 0e afore-
mentioned marginal distributions, along with the relation-
ships between (p, q) and (μ, σ), are summarized in Table 3.
Subsequently, AIC criteria and K-S test are employed to judge
the adequacies of the candidate models, from equations (8)
and (16), respectively. Here, due to the same sample size of
n � 22, the critical value is Dn,α � 0.2809, at the significance
level of 0.05.0e results of good-of-fit test are given in Table 4.
0e values in bold denote minimum Dn and AIC values.

It is evident that five values of Dn obtained by corre-
sponding marginal distribution functions are less than
0.2809. Namely, all five assumed models are statistically
accepted at the significance level of 0.05. 0is is attributed to
the obstacle of fitting test method in practice. However, the
magnitudes, representing corresponding fitting accuracies,
vary from each other. As for c, the values of Dn yielded by
conventional margins belong to (0.13, 0.28), as that pro-
duced by ID approach dips to 0.0975. 0ere are 90.25%
chances for original samples obeying ID distribution, im-
plying that ID technique is much better than the other
margins. Similarly, in terms of φ, ID distribution also has the
least value of Dn, deeply reduced compared to the other
cases. Obviously, not only c but also φ, the PDF derived by
ID approach can be complaint with actual distribution of
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Goodness-of-fit test by K-S
test and AIC criteria

Goodness-of-fit test by SED
and AIC criteria

Backward analysis

End

Estimation results for shear
strength parameters

Obtain original sample of (c, φ)

Preliminary analysis

Direction of correlation
between c and φ

Equivalent sample

Best marginal distributions
of c and φ

Most appropriate joint
distribution

PDFs and CDFs of c and
φ via candidate models

Information diffusion
approach

Probable conventional
distributions

Choose suitable copula
functions

Correlation coefficients
of τ and ρ

Transform by inverse
PDF function

Simulate suitable
pairs by copula

Figure 2: Flow diagram of optimal estimation model based on copula theory coupling information diffusion technique.
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Figure 3: Scatter plots of (a) original data and (b) uniformed data.
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random variables. In addition, among all of the available
distributions, ID distribution has the minimum AIC value,
as shown in Table 4. Both results indicate its best fit to actual
observations.

Similar results can be drawn from graphic analysis. For
visualization, the PDFs and CDFs of five candidate cases are
depicted in Figures 6 and 7, respectively. In Figures 6(a) and
7(a), it can be readily derived that the histogram of c and φ
exhibit evident volatility. 0is behavior enunciates the
randomness and variability of shear strength parameters in
realistic state. However, the PDFs associated with different
candidate cases differ considerably. Particularly, each curve
of classical ones merely has a single peak, which represents
themaximum probability. Along the curve, probability point
increases before the peak as decreases after that. Namely,
they cannot describe the random volatility of initial data. As
a contrary, the PDF curve depicted by ID approach holds
multiple peaks, accurately capturing the variation trend and
volatility of histogram. 0is is plainly due to the compe-
tences of extracting and diffusing original information of the

novel approach. Moreover, it is worthwhile noting that the
CDFs of information diffusion approximation are the best
asymptote to the empirical CDFs of c and φ, as shown in
Figures 6(b) and 7(b).

Consequently, both mathematical and graphic analyses
enunciate that ID distribution is the most probable marginal
distribution for c and φ, with a strong adequacy of capturing
random volatility. A great improvement in deducing base
distribution is achieved as compared to the conventional ones.

5.3. Bivariate Copula Distribution of c and φ. Figure 3 and
correlation coefficients have illuminated that c and φ exhibit
negative correlation, indicating the direction of the de-
pendence structure in the original data. As mentioned earlier,
different correlation coefficient represents different de-
pendence structure, as different copula characterizes different
dependence structures. 0erefore, the candidate copulas
describing negative correlation should be sieved to match the
dependence structure in the original sample. For this case, the
Gaussian copula, Plackett copula, Frank copula, and No. 16
copula are specifically selected. Li et al. [22] and Zhang et al.
[7] presented that these four copulas can model negative
dependences. 0e values of correlation coefficients between
obtained equivalent sample can cover the interval (−1, 0).
However, the Gaussian and Plackett copulas belong to el-
liptical and Plackett copula families, respectively. 0e Frank
and No. 16 copulas are commonly used Archimedean
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Figure 4: Probability plots of c and φ with different distribution types for (a) normal distribution, (b) lognormal distribution, (c) extreme
value distribution, and (d) Weibull distribution.

Table 2: Coefficients and PDFs of information diffusion distri-
butions for c and φ.

Parameter Φ H 1/
(2πnh) 1/(2h2)

C 1.420693101 2.2154 0.0033 0.1019
Φ 1.420693101 0.5020 0.0144 1.9841
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copulas. Moreover, No. 16 copula is approximately symmetric
in case of a strongly negative correlation. 0e other ones are
symmetric copulas. Such properties are very suitable for
modeling the dependence structure between c and φ. 0e
aforementioned copulas are summarized in Table 5.

By using equations (5) and (6), the parameter ρ or θ
could be computed, as listed in column 4 of Table 6. As-
sociated with the copula formulas in Table 5, corresponding
bivariate joint distributions are constructed. For visualiza-
tion and comparison, 500 random pairs (U1, U2) in rank
space are produced by the aforementioned copula functions.
0ese pairs would then be fed back to their base distributions
to predict the equivalent samples. 0e scatter plots are
successively portrayed in Figure 8, corresponding to the
Gaussian, Plackett, Frank, and No. 16 copulas. It can be
observed that all candidate copulas can cater to the

symmetry along the diagonal line. Specially, Figure 8(a),
representing Gaussian copula, consists with this behavior
more remarkably than the other three subfigures. Table 5
tabulates the results of goodness-of-fit test by equations (7)
and (9). It is clear that the Gaussian copula has the minimum
SED and AIC value simultaneously, also indicating that the
Gaussian copula is the most probable function for matching
the dependence structure.

Additionally, equivalent samples can be obtained by the
already determined marginal distributions of c and φ. As
analyzed earlier, ID distribution has been demonstrated to
have the best fit. 0erefore, with the inverse function of
information diffusion, 500 random pairs (U1, U2) are
transformed back into the original units. Sequentially, four
corresponding equivalent samples are obtained. 0e scatter
plots (open circle in blue) are portrayed in Figure 9, along
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Figure 5: Probability plots of c and φ associated with ID and normal distributions.

Table 3: Common probability distribution functions of parameter.

Type PDF CDF Remark
Truncated
normal (Φ((x−p)/q))/[1−Φ((0−p)/q)]

[Φ((x−p)/q)−Φ((0−p)/q)]/
[1−Φ((0−p)/q)]

p � μ
q � σ

Lognormal ((1)/(
���
2π

√
qx))exp[−(1/2)((ln(x)−p)/q)2] Φ((ln(x)−p)/q)

p � ln[μ/(
���������
(1 + σ2)/μ2


)]

q �
�����������
ln(1 + σ2/μ2)



Gumbel (qexp −1(x−p)− exp[−q(x−p)] )/
1− exp[−exp(pq)]

(exp −exp[−q(x−p)] 

− exp[−exp(pq)])/(1− exp[−exp(pq)])

p � (μ− 0.5772)/q
q � 1.2825/σ

Weibull (q/p)(x/p)q−1 exp[−(x/p)q] 1− exp[−(x/p)q]
μ � pΓ((1 + 1)/q)

σ � p

����������������������

Γ((1 + 2)/q)− Γ2((1 + 1)/q)



Table 4: Goodness-of-fit test for different marginal distributions.

Distribution type
c φ

α Dn,α Dn AIC α Dn,α Dn AIC
Information diffusion 0.05 0.2809 0.0975 154.0944 0.05 0.2809 0.0749 81.1342
Truncated normal 0.05 0.2809 0.2083 164.1152 0.05 0.2809 0.1018 96.4004
Lognormal 0.05 0.2809 0.1991 163.5509 0.05 0.2809 0.1040 95.6181
Gumbel 0.05 0.2809 0.1439 164.7073 0.05 0.2809 0.1231 91.9265
Weibull 0.05 0.2809 0.2667 165.7791 0.05 0.2809 0.1302 107.8857
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with the original data (solid circle in red). It is noticeable that
the equivalent sample in Figure 9(a), reproduced by the
Gaussian copula, holds a more concentrated distribution
and covers the measured pairs better. In contrast, the others

are relatively discrete, especially No. 16 copula. 0erefore,
the Gaussian copula captures the actual observation better
than the other three cases. 0is can be further substantiated
from the statistics of equivalent samples and AIC test, as
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Figure 6: PDFs and CDFs of c under different marginal distribution types.
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Figure 7: PDFs and CDFs of φ under different marginal distribution types.
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shown in Table 7. It can be seen in Table 7 that the statistics
corresponding to different copulas are almost similar and
close to those of observed data. However, Gaussian copula
coupling ID distribution can reproduce the statistics of

original data with the minimum AIC values, indicating a
relatively high accuracy.

Notably, Gaussian copula has been validated to be the
best candidate function to characterize the underlying

Table 5: Copulas selected in this study.

Copula type C(u, v; θ) c(u, v; θ) θ
Gaussian Φθ(Φ−1(u),Φ−1(v)) Φ((Φ−1(u2)− θΦ−1(u1))/(

�����
1− θ2


)) [−1, 1]

Plackett (S−
�������������
S2 − 4uvθ(θ− 1)


)/(2(θ− 1)),

S � 1 + (θ− 1)(u + v)

(1/2)− ((1 + (θ− 1)u1 − (θ + 1)u2)/
(2 [1 + (θ− 1)(u1 + u2)]− 4u1u2θ(θ− 1) ))

(0, +∞)\{1}

Frank −(1/θ)ln[1 + (((e−θu − 1)(e−θv − 1))/(e−θ − 1))] (e−θu(e−θv − 1))/((e−θ − 1) + (e−θu − 1)(e−θv − 1)) (−∞, +∞)\{0}

No. 16 (S +
������
S2 + 4θ

√
)/2

S � u + v− 1− θ((1/u) + (1/v)− 1)

(1/2)(1 + (θ/u2))[1 + S(S2 + 4θ)−(1/2)]

S � u + v− 1− θ((1/u) + (1/v)− 1)
[0, +∞)

Table 6: Related parameters of copulas for c and φ.

Copula type Pearson τo Θ τU PU τX PX SED AIC
Gaussian

−0.8767 −0.7843

−0.9432 −0.7764 −0.9332 −0.7764 −0.8887 0.0112 243.898
Plackett 0.0103 −0.7865 −0.9177 −0.7865 −0.8459 0.3551 −40.115
Frank −16.7225 −0.7817 −0.9382 −0.7817 −0.8863 0.0139 −37.198
No. 16 0.0017 −0.7896 −0.9319 −0.7896 −0.8760 0.0130 −35.735
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Figure 8: Scatter plots of simulated pairs using different copulas. (a) Gaussian copula. (b) Plackett copula. (c) Frank copula. (d) No. 16 copula.
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dependence structure among the insite data. However, it is
only responsible for the site-specific data in this study.
Whether it holds in other cases should be reanalyzed.

5.4. Backward Analysis for Marginal Distribution of Equiv-
alent Sample. As previously discussed, Gaussian copula is
the most probable bivariate joint distribution of the original
pair (c, φ). 0en, via information diffusion approach, the

equivalent sample can be accurately simulated, as shown in
Figure 9(a). Nevertheless, after encountering multiple
mathematical treatments, whether the equivalent sample
holds consistency with original data needs to be further
validated. To this end, a backward analysis for the proposed
model is desirable.

For comparison, the aforementioned conventional
marginal distributions are implemented simultaneously
coupling the four candidate copulas. Figures 10–13 portray
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Figure 9: Scatter plots of equivalent samples generated by different copulas coupling ID margins. (a) Gaussian copula. (b) Plackett copula.
(c) Frank copula. (d) No. 16 copula.

Table 7: Parameters of different marginal distributions coupling Gaussian copula.

Copula function
C φ

μc σc covc AIC μφ σφ covφ AIC
Gaussian 56.03 9.291 0.1658 3560.24 41.78 2.029 0.0486 1915.84
Plackett 56.79 9.437 0.1662 3571.15 41.72 2.056 0.0493 1938.89
Frank 56.53 9.478 0.1677 3589.63 41.77 2.028 0.0486 1951.95
No. 16 56.82 9.524 0.1676 3605.30 41.69 1.996 0.0479 1932.66
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the scatter plots of equivalent samples yielded by four
candidate copulas coupling different conventional margins.
It can be clearly observed that there are significant differ-
ences in dependence structures associated with the four
candidate copulas even though the same margins and
correlation coefficients are utilized. 0ese are in accor-
dance with the studies of Li et al. [22] and Zhang et al. [7].
It can also be seen that the equivalent samples corre-
sponding to different margins have a larger discrepancy.
For instance, associated with the first subplots of
Figures 9(a)–13(a), the same dependence structure is
modeled by Gaussian. However, the shapes of scatter plots
differ noticeably from each other. 0is is mainly due to
different marginal distribution structures of c and φ. Next,
some deviations in discrete degree can be observed from
the scatter distributions. In Figures 10–13, four subplots
corresponding to Gaussian copula illuminate that the
scatters become concentrated gradually from both tails to

the middle. Some original points distribute along the edges
of distribution domains, or even disperse beyond these
domains, especially in Figure 13(a). However, in terms of
Figure 9(a), concentrated distribution and discrete dis-
tribution of scatters appear alternately. 0is behavior
obviously follows the true distribution state owing to
heterogeneity of rock and soil. Furthermore, the equivalent
samples in Figure 9(a) have the highest coverage rate and
have similar scatterings as initial data. Such a difference is
dictated by copula function, marginal distributions, and
the interaction between them. Similar results can be drawn
by comparing other subplots.

0e corresponding distribution statistics of equivalent
samples and AIC values of candidate distributions are
computed and tabulated in Table 8. Comparing Table 7 with
Table 8, it is evident that no matter how the copulas and
margins be incorporated, the means, standard deviations,
and coefficients of variation of equivalent samples barely
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Figure 10: Scatter plots of equivalent samples generated by different copulas coupling Truncnormal margins. (a) Gaussian copula. (b)
Plackett copula. (c) Frank copula. (d) No. 16 copula.
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change and basically cater to those of observed data. All the
conventional margins and ID distribution can reproduce the
statistics of original database with a high enough accuracy.
However, the AIC values vary significantly in a comparative
sense. Assuredly, coupling similar copula function, different
marginal distributions have marginal impacts on estimation
of equivalent samples. It is clear that Gaussian copula
coupling ID distribution has the minimum AIC values,
indicating its best approximation and consistency.

From the above analysis, it can be derived that Gaussian
copula coupling ID distribution not only can capture the
broad shape of initial sample better but also gives more
reasonable overall result.

For a more intuitive comparison, Figures 14 and 15 give
the univariate PDFs and CDFs of equivalent samples
reproduced by Gaussian copula coupling different margins,
along with the histogram of site-specific data. It is noticeable

that PDF plots of c and φ recreated by ID technique retain
fluctuating changes with multiple peaks, coinciding with the
tendency and volatility of their distribution histograms.
Contrarily, conventional cases cannot represent the volatility
noticeably. It can also be observed that the CDF plots as-
sociated with ID distribution are closest to the empirical
distribution, further exemplifying the superiority of the
proposed approach.

Consequently, all the above results demonstrate that
marginal distribution has a considerable impact on the
parameter estimation. Neglecting the base distribution and
the property of random volatility might lead to unbiased
estimation and inevitable uncertainty. Fortunately, ID ap-
proach provides a robust analysis on the base distribution
of individual shear strength parameter. It enables the in-
formation extraction and propagation from initial data
efficiently. Particularly, it assists in capturing random
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Figure 11: Scatter plots of equivalent samples generated by different copulas coupling Lognormal margins. (a) Gaussian copula. (b) Plackett
copula. (c) Frank copula. (d) No. 16 copula.
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volatility of shear strength parameters, which cannot be
ignored in reality.

6. Conclusions

0is paper developed an information diffusion technique to
estimate the marginal distribution of shear strength pa-
rameters, in conjunction with the copula theory employed to
model the joint distribution between c and φ using a small
sample.0e proposed approach was illustrated and validated
by actual observations from the laboratory test for Bukit
Timah area in Singapore. Several outstanding conclusions
can be drawn from this study:

(1) Under incomplete probability information, conven-
tional distributions cannot describe properties of the
actual distribution sufficiently, especially random
volatility. In contrast, information diffusion technique

is capable of incomplete probabilistic information.
Via capturing and diffusing the internal information,
marginal distribution can be credibly expressed. In
comparison with the conventional marginal distri-
butions, the proposed approach result in a more
reasonable estimate of shear strength parameters and
characterize the random volatility better, which make
sure that marginal distribution can extremely reflect
actual state.

(2) Mathematically, copula theory has been extended to
model the underlying interdependency between c and
φ, and then the equivalent sample has been obtained
by coupling information diffusion distribution. 0e
results show that the Gaussian copula has the mini-
mum SED and AIC value simultaneously, indicating
that it is the most probable function for matching the
dependence structure between the site-specific data.
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Figure 12: Scatter plots of equivalent samples generated by different copulas coupling Tunnc Gumbel margins. (a) Gaussian copula. (b)
Plackett copula. (c) Frank copula. (d) No. 16 copula.
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Figure 13: Scatter plots of equivalent samples generated by different copulas coupling Weibull margins. (a) Gaussian copula. (b) Plackett
copula. (c) Frank copula. (d) No. 16 copula.

Table 8: Statistics and AIC values of equivalent samples associated with four candidate copulas coupling different conventional margins.

Margin Copula
C φ

μc σc covc AIC μφ σφ covφ AIC

Truncnormal

Gaussian 56.09 9.419 0.1679 3662.71 41.80 2.021 0.0484 2123.74
Plackett 56.89 9.419 0.1656 3662.71 41.72 2.040 0.0489 2133.03
Frank 56.57 9.419 0.1665 3662.71 41.76 2.004 0.0480 2115.23
No. 16 56.79 9.419 0.1659 3662.71 41.69 1.986 0.0476 2106.13

Lognormal

Gaussian 56.09 9.455 0.1686 3638.42 41.80 2.019 0.0483 2122.25
Plackett 56.89 9.610 0.1689 3652.54 41.72 2.040 0.0489 2129.60
Frank 56.57 9.452 0.1671 3646.85 41.76 2.001 0.0479 2112.87
No. 16 56.79 9.520 0.1676 3650.73 41.69 1.984 0.0476 2102.11

Gumbel

Gaussian 56.11 9.588 0.1709 3565.14 41.79 2.024 0.0484 2034.85
Plackett 56.90 9.831 0.1728 3593.99 41.73 2.042 0.0489 2030.89
Frank 56.56 9.466 0.1674 3582.21 41.75 1.958 0.0469 2020.97
No. 16 56.78 9.657 0.1701 3590.05 41.69 1.960 0.0470 1998.74

Weibull

Gaussian 56.10 9.434 0.1682 3646.36 41.80 2.070 0.0495 2057.28
Plackett 56.88 9.257 0.1627 3633.73 41.71 2.046 0.0491 2078.69
Frank 56.57 9.386 0.1659 3638.12 41.77 2.007 0.0481 2053.89
No. 16 56.78 9.345 0.1646 3634.3 41.70 1.981 0.0475 2055.81
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Figure 14: PDF and CDF plots of c′ reproduced by Gaussian copula coupling different margins.
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Figure 15: PDF and CDF plots of φ′ reproduced by Gaussian copula coupling different margins.
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(3) 0e performances of the candidate copulas coupling
conventional marginal distributions and ID distri-
bution have been further discussed. In spite of
identical copula function and correlation coefficients
adopted to characterize the dependence structure,
equivalent samples transformed by different margins
exhibit major difference. As a result, Gaussian copula
coupling ID distribution stands out attributed to
minimum AIC values and optimal scatter distribu-
tion. 0e corresponding probability distributions
of shear strength parameters validate the ability and
accuracy of capturing random volatility of the
proposed method.
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