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Fractured rocks exist widely in nature. (e fracture network is an effective storage space and main seepage channel of low-
permeability oil and gas reservoirs, which controls the seepage system of low-permeability oil and gas reservoirs. (e connection
characteristics of fracture networks are complex and evolve dynamically with time. (e rise of complex network research can
provide reliable analysis for the relationship between network structures and network behaviors. In this work, the fracture
network is considered as a hierarchical network with self-similarity, and complex network theory is applied to analyze the
permeability of fractured rocks. According to the power-law relationship of degree distribution of network nodes, the number of
nodes is corresponding to the number of network edges and a new power-law distribution relationship of edges with degree of
nodes is proposed. Eventually, the permeability model of fractured rocks is derived and it is found that permeability of fractured
rocks is a function of degree of maximum node kmax, self-similarity index c, power index dk, and other structural parameters.
Compared with the existing numerical simulations, the validity of the model is verified. By calculating the influence of model
parameters on the permeability, the following results are obtained: (1) fracture porosity is directly proportional to permeability; (2)
fracture surface density is linearly increasing with permeability; (3) power index is inversely proportional to permeability; and (4)
permeability is exponentially increasing with the maximum degree of a node.

1. Introduction

(e networks of rock fracture are formed by structural
deformation and physical diagenesis [1]. On the inner
surface of rock stratum, the scale of naturally formed
fracture network is expanding and redistributing randomly
with different fracture development degrees, which is always
difficult to identify. However, researchers usually use the dip
angle and azimuth to determine the spatial orientation of
fractures. (e structural characteristics are consistent with
the two directional attributes of structural geology: tendency
and trend. In geological objects, the complex trace analysis is
used to calculate the obliquity estimation of the three-di-
mensional data body, i.e., steering cube [2], and then gets the

dip angle and azimuth information of each data point. (e
permeability of fractured reservoirs is very low, and the
fracture network controls the fluid flow [3]. Hence, it has an
important influence on oil or gas exploitation [4] and
geothermal energy extraction [5].

In recent years, researchers around the world have
studied permeability characteristics of fracture networks and
put forward corresponding models [6–8]. Snow [9] in his
study established the parallel plate model and obtained a
tensor analytical formula of permeability of fracture net-
work. Koudina et al. [10] studied the permeability of fracture
network in three-dimensional space by means of numerical
simulation. (e fracture network was composed of polyg-
onal shapes and the flow of fluid in each fracture satisfied
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Darcy’s law, while comparing it with Snow’s model. Xia [11]
established the dynamic model of permeability and opening
of fracture network under different confining pressures. Van
Stappen et al. [12] also connected the seepage model with
fracture opening by determining the relationship between
fracture permeability and confining pressure. Li et al. [13, 14]
broke away from the traditional practice of thinking frac-
tured reservoirs as dual media and established a percolation
model with equivalent continuum suitable for low-perme-
ability fractured shale reservoirs. De Dreuzy et al. [15]
studied the permeability of randomly generated two-di-
mensional fracture network by numerical and theoretical
methods and compared it with natural fractures to verify the
accuracy of the model. Klimczak et al. [16] used the parallel
plate model to obtain the permeability formula of a single
crack under conditions that the fracture length and opening
satisfied the power-law relationship and verified the accu-
racy of the model through numerical simulations. Wei et al.
[17] derived a forecasting model of permeability using the
electrokinetic relationship between fluid flow and current in
microfractures and analyzed the influence of connectivity
between fractures on permeability. Li [18] proposed a new
model considering fracture connectivity according to the
hydraulic fracture morphology of raw coal, the “matchstick”
seepage model and the cubic law. However, the above
models do not quantitatively relate the permeability of
fracture network with porosity, surface density, and mi-
crostructural parameters of fracture network, such as frac-
ture connectivity, openness, the dip angle, and azimuth.

(e randomly distributed fracture networks in rocks
have been shown to have statistical self-similarity, which is a
basic feature of fractal. Interested readers may consult
[19–26] for details. Watanabe and Takahashi [5] used the
fractal theory to study the permeability of fracture networks
and the extraction of heat in dry hot rocks, but they did not
put forward a permeability expression with micro param-
eters. Yu et al. [27] based on the study of seepage charac-
teristics of porous media in fracture networks by using
fractal methods put forward an explicit expression with
micro parameters, such as the structure of fracture network
and porosity, and then gave the scaling relationship between
permeability and the structure of fracture network. Li et al.
[28] established the mathematical model of equivalent
permeability tensors in fractured reservoirs, based on
fracture statistics, the simulation technique of fracture
network, and equivalent flow assumption, and then obtained
the equivalent permeability tensor of fractured media by
using boundary element method. Jafari and Babadagli [29]
obtained fractal permeability expressions of random frac-
tures by using multiple regression analysis based on logging
data but their empirical relationship contained many em-
pirical constants. Recently, Miao et al. [6] obtained the
analytical expression of fracture network permeability
according to the basic fractal theory. (is model quantita-
tively connected the fracture length, aperture, the fracture
dip angle, and fracture azimuth with permeability of frac-
tured rocks, which did not include any empirical constant.

Most of the above models initiate from the statistical
parameters of isolated fractures and macroscopic

homogenization. (e connectivity of fracture networks is
not considered, particularly the influence of the connectivity
of a small number of local fractures (maximum degree) on
the overall permeability. Starting from the topological
structure of fracture network and based on the complex
network theory, this paper establishes the network perme-
ability model of fractured rocks and probes into the internal
mechanism of the influence of structure parameters of
fracture network on permeability, including fracture po-
rosity ∅M, fracture density D, power index dk, and the
maximum node degree kmax.

2. Self-Similarity of Complex Networks

2.1.DegreeDistribution ofHierarchicalNetworks. In order to
illustrate the modularity, local clustering, and scale-free
topological characteristics of many complex network sys-
tems, it is necessary to assume that the modules generate a
hierarchical network in some iterative way [30]. Recent
studies show that [31] some of the topology modules are well
organized hierarchically in the network. (e hierarchical
network seems to have a very conspicuous feature; that is,
the local is similar to the whole in a sense, i.e., the self-
similarity. Hierarchical network integrates scale-free to-
pology with internal module structure. Song et al. [32]
further reveal that self-similarity and degree distribution of
scale-free hold true at all coarse-grained stages of the net-
work by adopting renormalization procedure and the degree
distribution P(k) of the renormalized network is invariant
under renormalization. (e power-law relationship can be
expressed as follows [32]:

P(k)∝ k
−c

, kmin ≤ k≤ kmax, (1)

where P represents the total number of nodes in the network
with degree k, k represents the number of other nodes
connected to a node, and c represents the self-similarity
index with the range of 1–3, which is transformed by the
exponential formula [32].

2.2. Basic Features of Fractals. Most of the trace length of the
fracture satisfies the power-law (scale-free) distribution
[33, 34]. (e fractal power-law distribution refers to the fact
that the fracture length in nature is random and disordered,
showing the characteristics of similarity and fractal. (e
power-law expression is [35]

N(≥ l)∝ l
− Df , (2)

where Df is the fractal dimension of fracture length, l is the
track length of fracture, and N is the total number of
fractures. (is is the basic expression of fractal scaling law
and basis of box counting method.

2.3. Power-Law Expression of Fracture Complex Networks.
Covariant analogy is also known as mathematical similarity
analogy. Power-law relations (1) and (2) have obviously
similar functional relations and equation (1) multiplied by k

can be analogous to equation (2). (e number of edges of
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complex network is associated with the number of edges of
fracture network. (e following expression is obtained:

l
− Df � k

1−c
. (3)

(e relationship between c in power-law distribution
formula (1) and Df in power-law expression (2) is as follows
[32]:

c � 1 +
Df

dk

, (4)

where the power exponent dk is 1.5 times of Df [32].
Substitute equation (4) into equation (3) to get a propor-
tional relationship:

l � k
1/dk . (5)

(e parallel plate model is usually used to represent the
effective aperture of the fracture and the relationship be-
tween crack length and effective aperture has also been
studied by a large number of researchers [36, 37]. (is re-
lationship is given by

a � βl
n
, (6)

where β is the proportionality coefficient, which is related to
the mechanical properties of the medium around the
fracture in the range of 10− 3 ∼ 10−1 [16]. a is the effective
aperture of the fracture and n is the power exponent.

When the power exponent n � 1, the fracture network
has the characteristics of self-similarity and fractal [37]. So,
for the fracture network with self-similarity [16], equation
(6) can be rewritten as

a � βl. (7)

Equation (1) can be rewritten as

M(k) � kP(k) � αk
1− c

, (8)

where M represents the number of network edges, and α is
the proportionality coefficient.

Differentiating equation (8), we can get the number of
edges whose node degrees are in the range k to k + dk:

−dM(k) � −k dP(k) � αck
− c dk, (9)

wherein the negative sign indicates that the number of edges
of a complex network decreases with the increase of node
degree, which is in line with the actual situation and
−dM(k)> 0.

(e probability density of an edge with node degrees k is
expressed as

−dM(k)

Mt

�
α

Mt

ck
− cdk, (10)

where Mt represents the total number of edges the network
has, and f(k) � (α/Mt)ck−c is the probability density
function of the edge with node degrees k, which satisfies the
normalization principle:


kmax

kmin

f(k)dk � 
kmax

kmin

α
Mt

ck
−cdk � 1. (11)

(us, it can be obtained that

α
Mt

c

c − 1
1

k
c−1
min

1 −
kmin

kmax
 

c− 1
⎡⎣ ⎤⎦ � 1. (12)

Evidently, when kmin≪ kmax, equation (12) can be
expressed as

α � Mtk
c−1
min 1 −

1
c

 , (13)

generally, kmin/kmax ≤ 10−2 can be taken and complex net-
works in nature usually meet this requirement.

Yu [38, 39] studied the power-law relation of fractal
distribution of pores in porous media. Likewise, Majumdar
and Bhushan gave the cumulative size distribution of islands
on the Earth’s surface [40]:

N(> s) �
smax

s
 

D/2
, (14a)

where N is the total number of islands with the largest area
smax greater than s, and D is the fractal dimension for the size
distribution of islands. Equation (14a) indicates that there is
the largest island on the Earth’s surface; in addition,
Majumdar and Bhushan [40] used this power-law formula to
describe the contact points on engineering surfaces, where
the maximum point area smax � gλ2max, a point area s � gλ2
with λ being the diameter of a point and g being a geometry
coefficient.

Since self-similarity is one of the basic characteristics of
fractal, the self-similarity of porous media with fractures
needs to satisfy a certain power-law relationship [41]. Hence,
equation (14a) is used to describe islands on the Earth’s
surface and points on the engineering surface can be ex-
tended to describe the size distribution of nodes on the
surface of a fracture network. In the complex network
theory, the characteristic size of a single node includes out-
degree and in-degree [30]:

N(> s) �
komaxkimax

koki

 

c/2

, (14b)

where komaxkimax represents the maximum node size with
komax and kimax, respectively, being the maximum out-degree
and maximum in-degree, koki is a node size with the out-
degree and in-degree being ko and ki, respectively. When the
direction of the degree is ignored, equation (14b) can be
simplified as

N(> s) �
kmaxkmax

kk
 

c/2

. (14c)

From equation (14c), the cumulative number of nodes
whose degrees are greater than k can be expressed as
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N(> k) �
kmax

k
 

c

, (14d)

where N is the cumulative number of nodes in a fracture
network.

From equation (14d), the total number of nodes in a
complex fracture network is obtained:

Nt �
kmax

kmin
 

c

. (15)

Because the contribution of one edge to degree is 2, the
average degree of complex networks is

kav �
2Mt

Nt

. (16)

Inserting equation (15) into equation (16),

Mt �
1
2

kmax

kmin
 

c

kav. (17)

Inserting equation (17) into equation (13) to get the
proportionality coefficient,

α �
1
2

k
c
max

kmin
1 −

1
c

 kav. (18)

(en, we insert equation (18) into equation (9) which
gives

−dM(k) � −kdP(k) �
1
2

(c − 1)
k

c
max

kmin
kavk

− cdk. (19)

Equation (19) is an important power-law distribution
relation of edges with certain node degree in complex
networks. Furthermore, by the same logic, the average de-
gree of complex networks can be obtained as

kav �
c

2(c − 1)
kmin 1 −

kmin

kmax
 

1− c

⎡⎣ ⎤⎦. (20)

2.4. Surface Porosity of Fracture Networks. Self-similarity is
closely related to the fractal. Yu and Li [42] deduced the
relationship between porosity and fractal dimension in
porous media based on the fractal theory:

∅m �
λmin

λmax
 

dE− Dp

, (21)

where λmin and λmax are, respectively, the minimum pore
diameter and the maximum pore diameter. Dp is the fractal
dimension of pores. dE is the Euclidean dimension: in two
dimensions, dE � 2; in three dimensions, dE � 3.

Equation (21) is appropriate not only for precise fractal
geometry but also for statistical fractal geometry. As long as
the pores of porous media fall within the self-similar range of
λmin ∼ λmax, forming a fractal set, equation (21) holds ac-
curate regardless of the shape of the pores. (erefore, in a
hierarchical complex network, it is embedded into the
matrix as a fracture, forming a network model with fracture

properties. (e edges of the complex network, that is, the
fractures with a node, satisfy the above equation (21) within
the self-similar range of kmin ∼ kmax and are independent of
the shape of the node. It can be rewritten as

c � dE −
ln∅M

ln kmin/kmax( 
, (22)

where ∅M is the effective porosity of fractures in the rock
and kmin and kmax are the minimum and maximum of the
nodes, respectively.

On the cross section of the representative elementary
volume, the surface porosity of the fracture network is
defined as [6]

∅M �
APM

AM

, (23)

where AM represents the cross-sectional area of the repre-
sentative elementary volume in which the fracture network
is located, and APM represents the total area of fracture pores
on this area.

According to equations (5), (7), and (19), we can get the
total cross section area of the fracture [6]:

APM � − 
kmax

kmin

a · l · dM(k)

�
1
2

(c − 1)β
kav

kmin

k
2/dk+1
max

2/dk(  − c + 1
1 −

kmin

kmax
 

2/dk(− c+1)

⎡⎣ ⎤⎦.

(24)

Inserting equation (22) into equation (24),

APM �
1
2

(c − 1)β
kav

kmin

k
2/dk+1
max

2/dk(  − c + 1
1 −∅1/dk

M , (25)

where the porosity∅M is used in the two-dimensional space
of equation (22), i.e., dE � 2.

3. RelationshipbetweenSurfaceDensity and the
Self-Similarity Index

According to equation (5), the total length of fractures on the
cross section of the representative elementary volume is as
follows:

Ltotal � − 
kmax

kmin

l · dM(k)

�
1
2

(c − 1)
kav

kmin

k
1/dk+1
max

1/dk(  − c + 1
1 −

kmin

kmax
 

1/dk(− c+1)

⎡⎣ ⎤⎦.

(26)

Inserting equation (22) into equation (26),

Ltotal �
1
2

(c − 1)
kav

kmin

k
1/dk+1
max

1/dk(  − c + 1

· 1 −∅ 1/dk(−c+1)( )/ 2/dk(−c+1)( )
M .

(27)
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In the two-dimensional fracture network, the surface
density refers to the density of the cross section in a unit cell
of fractures (not a single fracture), which is defined by [43]

D �
Ltotal

AM

, (28)

where D is the surface density of fractures, and Ltotal is the
total length of all fissures on the cross section of the rep-
resentative elementary volume body, which is related to the
complex network model.

Equations (23), (25), and (27) are inserted into equation
(28) to get the surface density of the fracture, i.e.,

D �
2/dk − c + 1(  1 − ∅M( 

1/dk(− c+1)( )/ 2/dk(−c+1)( ) ∅M

1/dk − c + 1(  1 − ∅M( 
1/dk βk

1/dk

max

.

(29)

Equation (29) shows that the surface density in the two-
dimensional complex fracture network is a function of the
fracture porosity∅M, self-similarity index c, power index dk

related to fractional dimension, proportion coefficient β, and
the degree kmax of the largest node.

In order to study the relationship between the surface
density of these four fracture networks and the self-simi-
larity index, the prediction results of the surface density for
the complex fracture network are compared with the four
random fracture networks generated by Zhang and
Sanderson [43] through the numerical method of self-
avoiding walking. In their simulation, the critical fractal
dimensions lie in a narrow range from 1.22 to 1.38 (average
1.30) for those critical clusters with variations in the lower
limit of length from 0.005 to 1.5m, in the dispersion angle
of fracture direction from 0 to 50°, and in exponents from
1.2 to 1.8. (erefore, during calculation, the minimum
degree of the node is taken to be 1 and the maximum degree
is taken to be 300 according to the same ratio coefficient.
Meanwhile, the average power index is 2 and the average
self-similarity index is 1.65 through equation (4), and the
average porosity ∅M is calculated through equation (22).
From Figure 1, it can be observed that the predicted results
are in good agreement with numerical simulations.
Meanwhile, Figure 1 shows that the surface density of
fracture network increases with the increase of fracture
self-similarity index.

Figure 2 shows the relationship between fracture surface
density and porosity when the maximum degree of node
kmax is 300 and β is 0.006. It can be observed from Figure 2
that the surface density of fracture network increases with
the increase of fracture porosity. (is is because the larger is
the porosity, the greater will be the pore area of the fracture
network. Under certain conditions of β, the longer is the
total length of the fracture, the stronger the connectivity will
be as mentioned. (is result is consistent with the simula-
tions by Miao et al. [6]. It can be explained that the change of
numerical values will not affect the general trend between
them.

4. Complex Network Model of Permeability of
Fractured Rocks

Generally, the production of low-permeability reservoirs
often depends on the seepage system of fracture network.
When there are differences of temperature and pressure in
the system, there will be fluid flow or heat transfer between
the fracture networks. In these processes, however, the laws
of mass, momentum, and energy transfer among fluids are
very complicated. Moreover, the geometric aspects of
fractures cannot be determined relatively, including density
and surface roughness. For fractured reservoirs, we can
proceed from macroheterogeneity, because the degree dis-
tribution, length, aperture, and orientation of the fracture
are often random and disordered. Complex network can
provide an effective method for representing irregular
objects.

(e topological model of complex networks normally
considers the positional relationship between nodes but not
their shape and size. (erefore, network space determined
by the azimuth and dip angle has an important influence on
the seepage characteristics of fracture network. Nevertheless,
the spatial orientation of fractures is usually random and the
number of fractures in space is so large that it is almost
impossible to express the orientation of each fracture pre-
cisely [44]. Generally, the statistical method in the field of
engineering has been adopted to show the location of
fracture network, which is to take the average value of
fracture dip angle and fracture azimuth [45], and this is often
used in petroleum engineering, shale gas exploitation, and
geothermal energy extraction. (erefore, in this paper, we
assume that the average dip angle of the complex fracture
network is θ and the average azimuth of the fracture is α, as
shown in Figure 3.

(e cubic law of single fracture is based on the model of
parallel plate, which becomes the basic theory of network
seepage of fractured rocks and this is usually considered
simple and effective. (e flow rate along the flow direction
through a fracture can be described by the famous cubic law
[46, 47]:

q(l) �
a
3
l

12μ
Δp
L0

, (30)

where L0 denotes the length of the representative elementary
volume, a denotes the fracture aperture, l denotes fracture
trace length, Δp denotes the pressure drop across a fracture
along flow direction, and μ denotes dynamic viscosity co-
efficient of the fluid.

If the spatial orientation of fracture is considered, the
flow rate of a single fracture can be expressed as [6, 48]

q(l) �
a
3
l 1 − cos2 α sin2 θ 

12μ
Δp
L0

. (31)

(e total flow rate of fluid through a set of complex
fracture networks can be obtained by integrating equation
(31) from minimum degree to maximum degree in a unit
cross section; i.e.,
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Q � − 
kmax

kmin

q(l)dM(k)

�
β3

12μ
(c − 1)

2
1 − cos2 α sin2 θ 

4/dk(  − c + 1
Δp
L0

kav

kmin
k
4/dk+1
max

· 1 −
kmin

kmax
 

4/dk(− c+1)

⎡⎣ ⎤⎦.

(32)

In general, kmin≪ kmax. According to equation (4) and
[35], since 1< c< 2.3 in the two-dimensional plane, and
(kmin/kmax)

4/dk(− c+1)≪ 1, consequently, equation (32) can be
simplified as

Q �
β3

12μ
(c − 1)

2
1 − cos2 α sin2 θ 

4/dk(  − c + 1
Δp
L0

kav

kmin
k
4/dk+1
max . (33)

It can be seen from equation (33) that the total flow rate
of fluid in the complex fracture network is related to the
index of self-similarity c, fractional-dimension related
power index dk, fracture azimuth α, and fracture dip angle θ
and the flow rate is very sensitive to the maximum degree
kmax of nodes.

Darcy’s law for Newtonian fluid flow in porous media is
given by [6]

Q �
KAM

μ
Δp
L0

. (34)

(e permeability of complex fracture network can be
obtained by inserting equation (33) into equation (34):

K �
β3

24AM

(c − 1) 1 − cos2 α sin2 θ kav

4/dk(  − c + 1( kmin
k
4/dk+1
max . (35)

Fracture

Flow direction

x

y

Horizontal plane

α
θ

Figure 3: (e average orientation of fractures in the three-di-
mensional space, the plane of the coordinate axis is the horizontal
plane and the direction of water flow is along the x-axis. (e in-
cluded angle between the fracture direction and y-axis is α, that is,
the azimuth of the fracture. (e θ angle between the fracture plane
and the horizontal plane is the dip angle of the fracture.

Equation (29)
Group A 
Group B 

Group C 
Group D 

D
 (m

/m
2 )

1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

γ

Figure 1: A comparison between theoretical model prediction and numerical simulation of surface density of complex fracture network [43]
(β � 0.011). Groups A–D represent the four-component fracture network generated in the numerical simulation.

D
 (m

/m
2 )

0 0.2 0.4
ØM
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50

40
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0

Figure 2: (e density of fracture surface varies with the porosity of
fracture network.
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By inserting equation (28) and equation (29) into
equation (35), the permeability of fracture network can be
expressed by the surface density of fracture:

K �
β3 · D

12
1/dk(  − c + 1( 

4/dk(  − c + 1( 

k
3/dk

max 1 − cos2 α sin2 θ 

1 − ∅M( 
1/dk(−c+1)/2/dk(−c+1)

 
.

(36)

Equation (36) suggests that permeability is a function of
self-similarity index c, power index dk, structural parameters
(maximum degree of a node kmax, fracture surface density D,
fracture azimuth α, and fracture dip angle θ), and fracture
porosity ∅M in a medium formed by a complex fracture
network. Equation (36) further reveals that permeability is
strongly dependent on the maximum degree kmax of the
node. (e higher is the node degree, the stronger is the
connectivity of fracture network.(e fluid capacity increases
with increase of the flow path, leading to higher perme-
ability. (erefore, this model has more advantages than the
traditional model and can better explain the influence of
node failure on fluid flow in the fracture network.

5. Results and Discussion

Jafari and Babadagli [49] analyzed 22 different fracture
networks in nature. (e digitized fracture patterns were
exported to commercial fracture modeling software
(FRACA) to calculate their equivalent fracture network
permeability. A 3D model with a grid block size of
100m× 100m× 10m was constructed. Each digitized 2D
fracture pattern (i.e., the digitized mapped fracture traces
from outcrops) was imported into the 3D model in such a
way that all fractures were considered to be vertically
touching the top and the bottom of the layer, wherein the
maximum fracture length is 2m and the dip angle of the
fracture is 0°. (erefore, in the calculation, the minimum
degree of the node is 1, and the maximum degree is 6.
Furthermore, since the model of parallel plate mainly de-
pends on the effective aperture of a single fracture, the actual
tortuosity of the fracture is not considered by using this
simplified model. Via equation (4) and equation (20), the
average power index and the average degree of the node are
calculated. All the structural parameters used in theoretical
calculations are listed in Table 1. Figure 4 shows that the
predicted values of our model are in good agreement with
the results of numerical simulations.

We discuss the influence of model parameters on per-
meability. From equation (36), it is observed that the pa-
rameters that play a decisive role mainly include fracture
porosity∅M, fracture dip angle θ, fracture surface density D,
power index dk, and maximum node degree kmax. Figure 5
shows the relationship between permeability and fracture
porosity of the complex network model at different dip
angles. In the calculation, the maximum degree kmax � 398 of
the fracture node (at β� 0.006) is taken. It can be seen from
Figure 5 that the permeability of fracture network increases
with the increase of fracture porosity. In addition, with the
same porosity, the larger is the fracture dip angle, the smaller
is the permeability of fracture network. (is is because the
flow resistance of fluid increases with the increase of the
fracture dip angle.

Figure 6 shows the relationship between permeability
and fracture surface density in the complex network model.
In this calculation, the maximum degree kmax � 398 of
fracture node, fracture dip angle θ� 45°, fracture azimuth
α� 0°, and β� 0.006 are taken. It can be seen from Figure 6
that the permeability of fracture network increases with the
increase of fracture surface density. (is is because as the
density of fracture surface increases, the porosity of fracture
also increases. Hence, the permeability of fracture network
increases.

Figure 7 shows the relationship between permeability of
complex network model and the power index. In the cal-
culation, the minimum and maximum degrees of fracture

Table 1: Structural parameters of fractured rock media.

Structural parameters Value Description of parameters
kmin 1 Minimum degree
kmax 6 Maximum degree
dk 2.6 Average power index
kav 4 Average degree of fracture network
θ (°) 0 Average dip angle of fracture network
α (°) — Azimuth average value of fracture network
β 0.001 Ratio of fracture aperture to length
AM (m2) 10000 Cross-sectional area of the 3D model
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Figure 4: Comparison of permeability between model prediction
and numerical simulation results of complex fracture network [49]
( β� 0.001).
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network nodes as 1 and 6 are taken, respectively. Equations
(4) and (20) are used to calculate the average self-similarity
index cav � 1.67 and the average degree of node kav � 4 and
we take the dip angle of fracture θ� 0° and β� 0.001. It can
be seen from Figure 7 that the permeability of fracture
network decreases slowly with the increase of power index.
Miao et al. [6] have verified that the permeability of the
fractal fracture network model increases slowly with the
increase of fractal dimension. By considering equation (4),
that is, the internal correlation between scale-free property
of complex networks and fractal scaling law, it can be
concluded that there will be a competitive relationship
between the inhibition of seepage flow by power index and
the promotion of seepage flow by fractal dimension.
Henceforth, it leads to the discontinuous phase that is not
always occurring.

Figure 8 shows the relationship between the permeability
of complex network model and the maximum node degree.
When a node in a network has multiple edges connected to
it, the number of edges is the degree of the node, regardless
of its direction. In the calculation, we take the dip angle
(from 0° to 180°) of fracture θ� 45°, azimuth of the fracture
α� 0°, β� 0.006 with the range of 0.001∼0.1 [16], and average
surface density D � 10 (m/m2). It can be seen from Figure 8
that permeability of fracture network increases sharply with
the increase of the maximum degree of nodes. Since con-
nectivity of the entire fracture network is strongly dependent
on maximum degree of a node, it is equivalent to the
connection hub of entire complex network. When a small
number of edges are removed from the network, the overall
connectivity of the network will not be greatly affected.(us,
the complex network has a high robustness to the node
destruction. At the same time, if a node with the maximum
degree is deliberately attacked, the entire network will
paralyze quickly and the fluid can only flow through a few
paths. (is is also the vulnerability of complex network to
deliberate attacks on nodes.

6. Conclusion

(is paper applies the complex network theory and topo-
logical model to fractured rocks, while describing the

dk
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Figure 7: (e relationship between fracture permeability and
power index.
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Figure 5: (e relationship of fracture permeability with porosity at
different dip angles.
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Figure 6: (e relationship between fracture permeability and
fracture surface density.
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Figure 8: (e relationship between fracture permeability and
maximum node degree.
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fracture network as a hierarchical network with self-simi-
larity. Meanwhile, the fracture network model of surface
density is obtained based on the power-law distribution
relation of network edges. (en, the permeability model of
fractured rocks is deduced in accordance with the famous
cubic law, Darcy’s law, and complex network theory.

Compared with the existing numerical simulations, the
predicted results show that the above models are accurate.
Besides, the effect of structural parameters on the perme-
ability of fractured media is also discussed. (e permeability
of fracture networks increases with the increases of porosity
and surface density. (e permeability of fracture networks
increases exponentially with the increase of the maximum
node degree and its power exponent is 3/dk.
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