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Timely and accurate prediction of structural settlement is of great significance to eliminate the hidden danger of structural and
prevent structural safety accidents. Since the deformation monitoring data usually is nonstationary and nonlinear, the defor-
mation prediction is a difficult problem in the structural monitoring research. Aiming at the problems in the structural de-
formation prediction model and considering the internal characteristics of deformation monitoring data and the influence of
different components in the data on the prediction accuracy, a combined prediction model based on the Empirical Mode
Decomposition, Support Vector Regression, and Wavelet Neural Network (EMD-SVR-WNN) is proposed. EMD model is used to
decompose the structure settlement monitoring data, and the settlement data can be effectively divided into relatively stable trend
terms and residual components of random fluctuation by energy matrix. According to the different characteristics of random
items and trend items, WNN and SVR methods are, respectively, used for prediction, and the final settlement prediction is
obtained by integrating the prediction results. The measured ground settlement data of foundation pit in subway construction is
used to test the performance of the model, and the test results show that the prediction accuracy of the combined prediction model
proposed in this paper reaches 99.19%, which is 77.30% higher than the traditional SVR, WNN, and DBN-SVR models. The

experimental results show that the proposed prediction model is an effective model of structural settlement.

1. Introduction

With the rapid development of information technology,
automatic monitoring of structural deformation has be-
come an important way to ensure structural safety [1-3].
Based on the monitoring data, the prediction of structural
deformation to prevent potential safety hazards during
construction and operation of large buildings (such as
subway, tunnel, and bridge) has become a research hotspot
of structural deformation monitoring in recent years [4].
As the scale of the project increases, higher requirements
are put forward on the construction and operation safety of
the structure. The processing of the real-time monitoring in
the field of structural deformation monitoring also be-
comes especially important. According to the accurate and
effective analysis of the real-time structural monitoring
data, the structural deformation prediction model can be

effectively established, which is of great significance to
ensure the structural safety.

At present, the prediction models in the field of struc-
tural deformation prediction can be roughly divided into
single prediction models and combined prediction models.
The single prediction methods such as regression analysis
method, time series analysis [5], grey system theory [6], and
artificial intelligence method [7-10] are commonly used in
the structural deformation prediction [11]. Li et al. [12]
applied the GM (1, 1) grey system theory model to the
prediction of subgrade deformation and explained the ap-
plication conditions of the theory with engineering exam-
ples. However, the grey system requires the data sequence to
have nonnegative characteristics, and the data accumulation
has the rule of grey index, which limits the wide application
of Grey Theory in structural deformation prediction.
Zhenget al. [13] proposed the applicability principle of
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predicting the deformation of highway high slope based on
stepwise regression analysis and verified the proposed
method is an effective prediction method. Time series
analysis requires the data to be linear and stable, and the
deformation monitoring data in practical engineering are
complex and nonlinear, which will affect the prediction
accuracy. Chen and Wei [14] introduced fuzzy time series
into deformation analysis and prediction. Experimental
results show that fuzzy time series can be effectively applied
to deformation prediction, and the prediction accuracy is
improved. Liu and Hao [15] used the wavelet neural network
to establish the prediction model. The result shows that this
method has the great nonlinear function approaching ca-
pability. However, there are some shortcomings in the ap-
plicability and generalization of the single model. In view of
the problems of a single model, some improved models
[16, 17] and combined models have achieved better results.

In order to further improve the prediction accuracy of
structural deformation monitoring data, researchers have
proposed a hybrid model that combines two or more pre-
diction models, which can correspondingly optimize the
processing of nonstationary time series signals. Liu et al. [18]
proposed a Least-Square Support Vector Machine (LS-SVM)
model based on the phase space reconstruction for forecasting
nonlinear time series of dam deformation, and the experi-
mental results indicate that the forecasting performance of the
proposed method is significantly superior to that of the
traditional multiple regression method. Jingzhou et al. [19]
established the Kalman-ARIMA-GARCH (Generalized
Autoregressive Conditional Heteroskedasticity) model to
predict bridge structural deformation, and the results showed
that the modified model can effectively improve the pre-
diction accuracy. Su et al. [20] established a deformation
prediction model by combining support vector machine,
phase space reconstruction, wavelet analysis, and Particle
Swarm Optimization (PSO). The results show that the method
has high modeling efficiency and prediction accuracy. Jiang
et al. [21] proposed the Least-Squares-Support Vector Ma-
chine-Markov Chain (LS-SVM-MC) model, which was based
on the Markov Chain predicted by Least-Square Support
Vector Machine (LS-SVM) to correct the error, and applied
the model to the deformation analysis of an arch dam. The
results show that the model has high prediction accuracy.
Zhao et al. [22] proposed an enhanced empirical wavelet
transform (MSCEWT) based on the maximum-minimum
length curve method. This method is used to decompose the
signal into a series of intrinsic mode functions (IMFs). Cao
et al. [23] proposed a combined prediction model for dam
deformation prediction. The model uses the EMD method to
decompose the original signal and then uses the correlation
vector machine and ARIMA model to predict the decom-
posed components, respectively. Ren et al. [24] used the EMD
method to decompose the original deformation monitoring
data into subcomponents with different characteristics and
then used GA algorithm to optimize the parameters of the
WNN model to predict the values of different components,
and finally fuse the predicted values of each subsequence. In
summary, when predicting deformation monitoring data,
decomposing the signal into internal components with
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different characteristics is of great significance to the im-
provement of prediction accuracy.

Aiming at the poor applicability of a single model and
the characteristics of deformation data, this paper proposes a
combined prediction model based on Empirical Mode
Decomposition, Support Vector Regression, and Wavelet
Neural Network (EMD-SVR-WNN). Firstly, the EMD
model is used to decompose data into different components
with different physical characteristics. EMD decomposition
can effectively decompose monitoring data into trend and
random fluctuation term according to energy distribution.
Secondly, the Support Vector Regression (SVR) prediction
model [25] can overcome the shortcomings caused by high-
dimensional model construction in dealing with nonlinear
problems. Thirdly, the Wavelet Neural Network (WNN)
prediction model [26, 27] is used to predict the trend term.
The WNN prediction model combines the advantages of
wavelet transform and neural network model, and it com-
bines good time-frequency localization characteristic and
self-learning functions of neural network theory, which
makes it have the best ability of function approximation and
fault tolerance and overcome the shortcomings of slow
learning speed and low network training success rate in
traditional neural networks. Finally, the prediction results of
the SVR model and WNN model are fused to obtain the final
model prediction results. The results show that the EMD-
SVR-WNN model proposed in this paper can achieve good
results and has high prediction accuracy, and it is an effective
structural deformation prediction model, which can provide
important decision support for structural safety prevention.

The rest of this paper is organized as follows. Section 2
reviews the related work in the prediction of structural
settlement and gives a brief introduction to the related
methodology. The EMD-SVR-WNN ' prediction model is
introduced in Section 3. Section 4 discusses the prediction
results and performance analysis. Section 5 makes the
conclusion of this paper and gives some recommendations.

2. Methodology

2.1. Empirical Mode Decomposition. Empirical Mode De-
composition (EMD) is an adaptive signal decomposition
method, which can adaptively decompose nonlinear and
nonstationary time series into trend and random terms,
including several Intrinsic Mode functions (IMF) with the
same characteristic scale and a residual component. IMF
must satisfy two conditions at the same time when
decomposing [28-30]. Firstly, the total number of extreme
points is equal to or at most one different point from the total
number of zero crossing points in all time periods of
decomposing signals. Secondly, in any time period, the mean
value of the upper envelope composed of local maximum
points and the lower envelope composed of local minimum
points is 0. For any structural deformation sequence, the
specific decomposition procedure is as follows:

(1) Find the extreme point of the original signal x(n),
and all the extracted local maximum and minimum
points were interpolated by cubic spline
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interpolation to obtain the upper (U, (1)) and

lower (V ,;, (1)) envelopes.

(2) Calculate the mean value of the upper and lower
envelope, and equation (1) is obtained:

Umax (1’1) + Vmin (T’l)

5 (1)

m(n) =

(3) Calculate the difference between the signal and the
mean value of the envelope, and equation (2) is
obtained:

T (n) = x(n) —m(n). (2)

(4) Determine whether T (n) satisfies the above two IMF
conditions. If the condition is met, take T (1) as the
first component of x (n), i.e., ¢;. If the above con-
dition is not met, T (n) will be taken as the new
original signal to continue the iteration until the
above conditions are met.

(5) Calculate the value of the residual component, it can
be noted as follows:

ry(n) = x(n) —c. (3)

(6) Take the residual component r, (1) as the original
signal and repeat steps (1) to (5). Then, continuously
decompose the 1, 2..., m IMF components that satisfy
the condition, and the iteration stops until the re-
sidual component is a monotonic function. It can be
noted as follows:

x(n) =Y cir,, (n). (4)

i=1

2.2. Support Vector Regression. Support Vector Machine
(SVM) is a pattern recognition method based on statistical
theory [31-33], which was first used to solve the classifi-
cation problem in pattern recognition. Support Vector
Regression (SVR) is the application of support vector in the
field of function regression. SVR is a typical nonlinear
forward feed network with hidden units, which can realize
regression prediction of time series. The structure settlement
data is time series data with random, nonstationary, and
complex characteristics. The SVR model can overcome the
defects caused by the construction of high-dimensional
model. And it also has a solid statistical theory, and fewer
data samples can be used to train data [34]. Therefore, the
SVR model is widely used to deal with nonlinear and
nonstationary time series regression prediction problems.
The main idea of support vector regression is to map data
to a high-dimensional feature space through nonlinear
mapping and then conduct linear regression on the data in
this high-dimensional space [35]. Given a set of data points
(x5 1) (X35 ¥2)5 wer (%> ¥,,,) fOr prediction model, where
x; € R", y; € R", and m is the total number of the sampling
points. A linear regression function can be noted as follows:

f(x)=w' ®(X;)+b, weR,bER, (5)
where w is weight vector and b is bias value; the w and b can
be obtained by minimizing the following function:

. 1 2 . *
min |:E||w|| + C; &+ & ],

(wx; +b) — y;<e+¥¢ (6)
s.t. v —(wx; +b)<e+§;
§,E0>0,e>0,

where |w|? is the expression that controls the function
capacity, C is the penalty coeflicient, ¢ is the insensitive loss
function [33], and &, & are, respectively, the upper and
lower training error subject to the e. The optimization
problem of the above can be expressed as the following
nonlinear regression function:

1

fx) = Z (o = Bi)K (x> x) + b, (7)
i=1

st0<e; <C,0<B,<C,

where «; and f5; are Lagrange operators and
K(x;,x) = (O (x;),D(x)) is kernel function. The kernel
functions commonly used at present include polynomial
kernel function, radial basis kernel function, and sigmoid
kernel function.

Different kernel functions have different advantages;
choosing the appropriate kernel function is very important
for constructing nonlinear regression prediction models. In
the field of machine learning, the radial basis kernel function
can effectively realize the nonlinear mapping from input
space to high-dimensional feature space. The convergence
domain of the radial basis kernel function is wide and the
performance is stable, and it is suitable for arbitrary dis-
tributed samples. Therefore, combined with the character-
istics of structural settlement deformation data, the radial
basis kernel function is selected as the kernel function of the
support vector regression model in this paper.

2.3. Wavelet Neural Network. Wavelet neural network
(WNN) is based on the topology of BP neural network, the
Wavelet basis function is selected for the transmission signals
of hidden layer nodes in the Neural Network. WNN combines
wavelet transform with neural network, and the advantages of
them are fully utilized. The structure diagram of the wavelet
neural network model is shown in Figure 1, where x,, is the
input parameter of the wavelet neural network, y,, is the
output parameter of the wavelet neural network, and g; (x) is
the wavelet basis function. When the signal /1 (x) is input in
the wavelet neural network, the wavelet basis function g is
used for fitting, and equation (8) is obtained:

N —
h(x) = ang(xa b“), (8)

n=1 n




Input layer

Hidden layer Output layer

FiGure 1: Wavelet neural network model structure.

where 71 (x) is the fitted function, N is the number of wavelet
bases, w,, is the weight of input layer and hidden layer, a,, is
the scale factor of the wavelet basis function, and b,, is the
translation factor of wavelet basis function.

The prediction process of the wavelet neural network
model can be divided into two parts: training process and
prediction process. The training process of the network is to
find the parameters that make the network converge. The
prediction process is to use the parameters obtained by
network training to obtain the predicted value of the whole
network. The training process of wavelet neural network is
similar to the neural network method, which combines the
forward propagation of signals with the backpropagation of
errors. Wavelet neural network has strong learning ability
and function approximation ability, and it overcomes the
shortcomings of traditional neural network such as slow
learning speed and low success rate of network training
[36, 37]. In view of these characteristics of wavelet neural
network, this paper selects the wavelet neural network model
to predict the trend term of monitoring data.

3. Structural Settlement Deformation
Prediction Model

3.1. EMD-SVR-WNN Prediction Model. The EMD-SVR-
WNN prediction model proposed in this paper is based on
empirical mode decomposition, support vector regression,
and wavelet neural network model. The EMD decomposi-
tion model decomposes structural deformation data into
different components with different physical characteristics
and reduces the nonstationary characteristic of deformation
monitoring data to a large extent. Then, different prediction
models are constructed according to the internal charac-
teristics of different components. SVR prediction model
overcomes the shortcomings of neural network model, such
as overfitting and easy to fall into local optimum. It is
considered as an alternative method of artificial neural
network [38] and has great advantages in dealing with
nonstationary and nonlinear time series. Therefore, the SVR
model is selected to predict the random term of the
decomposed monitoring data. WNN prediction model
combines the advantages of wavelet transform and BP neural
network and has strong self-learning ability and localization
of wavelet transform [39]. Therefore, the WNN model is
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adopted to predict the trend term of decomposed moni-
toring data.

In actual projects, monitoring data are generally ob-
tained by automatic monitoring equipment. It is assumed
that the original deformation monitoring data can be
expressed as a two-dimensional matrix X, where m is the
number of sensors and n is the number of sampling points
for each sensor; then, the original data matrix can be
expressed as X € R™. Suppose the kth column of the
original data is selected for analysis, which is recorded as
X =[x X010 X3 - - > X). Then, it is decomposed by
EMD:

p
X = Y IMF, +r,, 9)

i=1

where p represents the number of Intrinsic Mode Functions
(IMF) of different feature scales and r, represents the re-
sidual component. In the process of signal decomposition,
the frequency and energy distribution of the original signal
will change. In order to further determine the trend term and
random term of the signal, analyze the energy changes of
different IMF components and extract the features of each
different IMF component. The specific energy characteristic
matrix solution steps are as follows:

(1) Firstly, the energy of p IMF components is calculated
according to

E = Z [IME?, (i=1,2,...,p) (10)

—00

(2) Then, the energy of each IMF component is nor-
malized according to

(11)

1
I
M
=

Il
—

(3) The energy characteristic matrix can be expressed as
follows:

—[EEE] (12)
E'E E

Assuming that the energy feature matrix values of the
IMF components of the front f layer are less than the energy
threshold ¢, the IMF components of the front f layer are
used as the random term X,, and the remaining IMF
components are used as the trend term X,:

f
X, =) IMF,

o (13)
X, = ) IMF,

i=f+1
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SVR and WNN models are used to predict the random
term X, and trend term X,, respectively. The final model
prediction result can be obtained by fusing the prediction
result X, of the random term and the prediction result X, of
the trend term:

S=X,+X, (14)
If d,, is the target output value, the mapping relationship

between target input X and target output Y is R® — R, and
the data matrix X and Y is as follows:

[ drl dr2 dr3 . drz -
drz dr3 dr4 o dr,‘ﬁ1
j\( = d1’3 d’,4 dr5 e dr,z+2 ,
_dr n—z d,, N—z— d’, ez " drn i
Pt (15)
dz+1
dz+2
i; = dz+3 .
-dn+1 -

In formula (15), nis the length of the data sequence and z
is the embedding dimension.

The specific steps and flow charts of the EMD-SVR-WNN
prediction model proposed in this paper are shown in Fig-
ure 2. The implementation process of the method is as follows:

Stepl: by performing EMD decomposition on the
structural settlement monitoring data, low-frequency
components and high-frequency components are ob-
tained. The value of the energy characteristic matrix is
used to determine whether the IMF component belongs
to trend X, or random data X,, according to formulas
(10)-(13).

Step2: the random term X, uses the SVR prediction
model to predict; select the first z data samples in the
sample as the training set to predict n — z data, and the
random term prediction result is recorded as X,.

Step 3: the trend term X, uses the WNN prediction
model to predict; select the first z data samples in the
sample as the training set to predict n — z data, and the
trend term prediction result is recorded as X,.

Step 4: the prediction results of random and trend term
are fused to obtain the final prediction results according
to formula (14).

3.2. Performance Evaluation Criteria. The evaluation criteria
to measure the error of the prediction results included root
mean square error (RMSE), mean absolute error (MAE),
mean square percentage error (MSPE), and mean absolute
percentage error (MAPE). The RMSE and MAPE are se-
lected as evaluation criteria of EMD-SVR-WNN model in
this paper. The formulas are as follows:

Structural settlement monitoring data

'

EMD decomposition

]
L] v v L]

IMF, IMF, IMF, IMF

Y IMF;
1

l

SVR prediction
model

WNN prediction
model

Result fusion

!

Prediction result

Figure 2: EMD-SVR-WNN prediction model flowchart.

1 N
RMSE = | Y (i-3)% (16)
i=1

Yi— Vi

Yi

1 N
MAPE = N Z x 100%. (17)

i=1

where y; is the real value of the structural deformation, y; is
the predicted value of the structural deformation, and N is
the number of predicted samples.

4. Prediction Results and Performance Analysis

To evaluate the effectiveness of the proposed model, the
experiment was carried out using the ground settlement data
of a subway station in TianJin, and the settlement data
contained 1000 sampling points. It can be seen from Figure 3
that the monitoring data reflects the actual characteristics of
cumulative vertical displacement of the surface. In this
paper, the cumulative variation of surface settlement of 800
sampling points in a section of a construction subway is
selected for experimental testing. The first 500 data are
selected as training samples to predict the last 300 data.

4.1. Analysis of EMD-SVR-WNN Model Results. In order to
illustrate the necessity of EMD decomposition, the ampli-
tude-frequency characteristics of the settlement monitoring
data to be tested are analyzed firstly, and the Fast Fourier
Transform method is used to transform the time domain
into the frequency domain. It can be seen from Figure 4 that
the settlement monitoring data is mainly concentrated in the
low-frequency part. This phenomenon shows that the data
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fluctuation caused by external factors or the characteristic
information of the settlement data itself contains different
frequencies.

In order to further analyze the characteristics of the
settlement monitoring data, the power spectral density of the
data is analyzed, as shown in Figure 5. Through the analysis
of Figure 5, this shows that the set of settlement data can be
decomposed into multiple components with different fre-
quencies. At the same time, because the set of settlement data
changes slowly and is nonlinear and unstable, selecting a
suitable decomposition method can reduce the instability of
the signal and extract the characteristic information of the
signals at different frequencies. Data prediction based on the
abovementioned signal decomposition can greatly improve
the prediction accuracy.

EMD decomposition method is suitable for processing
nonlinear and nonstationary signals. The settlement signals
are decomposed into high-frequency components and low-
frequency components by EMD decomposition, and then
different components are predicted by appropriate predic-
tion methods, so as to reduce the impact of the instability of
settlement data on the prediction results. The trend and
random terms of data are obtained by EMD decomposition.
The decomposition results are shown in Figure 6.

It can be seen from Figure 6 that the EMD decompo-
sition divides the data into 5 layers, of which the first few
layers show obvious high-frequency characteristics, and the
higher the level of the data, the lower the frequency. At the
same time, the data after EMD decomposition becomes
more stable and smooth, and the data is adaptively divided
into trend items and random items. This paper extracts the
energy features of the abovementioned 5-layer IMF com-
ponents and normalizes the energy values of different IMF
components to construct an energy feature vector matrix.
The constructed energy feature vector is shown in Table 1.

It can be seen from the energy characteristic values in
Table 1 that the energy value of the 5th layer IMF component
accounts for the largest proportion and can be regarded as
the main energy of the signal. From the perspective of signal
decomposition, the trend term, that is, the low-frequency
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component contains the main energy of the signal, and the
high-frequency component accounts for the secondary
energy of the signal. Therefore, in this article, the IMF5
component is used as the low-frequency component, and the
remaining IMF components are superimposed as the high-
frequency component of the data sequence. The result is
shown in Figures 7 and 8.

After the EMD decomposition of the deformation
monitoring data, the data is divided into four IMF com-
ponents and one residual IMF5. The components after EMD
decomposition show more obvious physical characteristics.
The analysis and prediction of settlement deformation data
can achieve better results on the basis of the EMD de-
composition. In this paper, the first four IMF components
are firstly predicted by the SVR model. After superimposing
the first four layers components, the first 500 data are se-
lected as training samples, while the last 300 data are selected
as test samples, and the predicted results are compared with
the real values. The predicted results of SVR model are
shown in Figure 9.

It can be seen from Figure 9 that the predicted value of
the SVR model is very close to the real value of the
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TaBLE 1: Signal energy characteristic value of each layer.
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decomposition result.

monitoring data, and only the prediction results at the
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absolute error between the predicted value and the real value
is 0.3090 mm, and the minimum absolute error between the

Settlement value (mm)

300 400 500 600 700
Simple points

100 200 800

FiGure 7: The first four layers’ component.

predicted value and real value is 0.00007 mm. The result
shows that the trend of the predicted deformation value is
basically consistent with the real value. After the prediction
of the random term, the trend term is predicted by the WNN
model. The first 500 data of the fifth layer component are
selected as training samples to predict the last 300 data. The
predicted results of the WNN model are shown in Figure 10.

It can be seen from Figure 10 that the predicted value of
the WNN model is almost identical with the real monitoring
value, and the prediction accuracy is high. The maximum
absolute error between the predicted value and the real value
is 0.0898 mm, and the minimum absolute error between the
predicted value and the real value is 0.00003 mm.

Finally, the prediction results of SVR and WNN are fused
to obtain the final prediction results of the EMD-SVR-WNN
model. The final prediction results are shown in Figure 11.

It can be seen from Figure 11 that the prediction results
of the proposed model are very close to real values, and the
prediction accuracy is very high. It can be concluded from
the experimental results that the RMSE of the proposed
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FiGureg 11: EMD-SVR-WNN prediction result.

model is 0.0531 mm and the precision reaches 99.19%, which
indicates that the proposed model is an effective settlement
prediction model. The result also indicates that the EMD-
SVR-WNN model can be well applied to the field of
structural deformation prediction and achieve higher pre-
diction accuracy.

4.2. Performance Analysis. In order to evaluate the effec-
tiveness of our proposed approach, the SVR, WNN, and
DBN-SVR models are selected to compare with the EMD-
SVR-WNN model proposed in this paper. In the SVR model,
the nuclear function is configured as “rbf,“ the number of
iterations is 10,000, and the penalty factor is taken as 0.01. In
the WNN model, the number of iterations is 1000, the
number of the hidden layer nodes is 3. In the DBN-SVR
model, the number of network layers in the DBN model is
set as 3, the number of iterations is 200, the kernel function
of the SVR classifier is “rbf,“ the number of iterations is
10,000 and the penalty factor is 0.01. The computer con-
figuration for the experiment is shown Table 2.

Under the experimental environment and the parameter
conditions in this paper, the performance comparison of
different prediction models is shown in Table 3 and the
comparison of different prediction models with real values is
shown in Figure 12.

It can be seen from Figure 12 that the SVR model has the
worst prediction performance; the DBN-SVR and WNN
model are better than the SVR model, while they show
weakness compared with the EMD-SVR-WNN model. The
prediction value of the proposed model is almost coincided
with the monitoring data. The experimental results show
that the proposed EMD-SVR-WNN prediction model has
better prediction performance, and it is an effective model
for structural deformation prediction.

It can be seen from Table 3 that the prediction accuracy
of the EMD-SVR-WNN model, respectively, improves
87.10%, 81.46%, and 63.35% compared with the SVR, WNN,
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TaBLE 2: Experimental environment.

CPU Intel(R) core (TM) i5-6200U @2.30 GHZ
RAM 4GB
Operating system Window (64)

Matlab R2018a

TaBLE 3: Performance comparison of different prediction models.

Model MAPE RMSE Running time (s)
SVR 0.0628 0.5669 68.2459
WNN 0.0437 0.2730 7.2856
DBN-SVR 0.0221 0.3946 192.6416
EMD-SVR-WNN 0.0081 0.0531 73.3579

Settlement value (mm)

0 50 100 150 200 250 300
Simple points

—— EMD-SVR-WNN —— SVR
—— Real value —— DBN-SVR
--- WNN

FIGURE 12: Comparison of different prediction models.

and DBN-SVR models. The average prediction accuracy is
77.30% higher than other prediction models. Computation
complexity is also an important criterion for model evalu-
ation. It usually refers to the resources required at runtime
after being written into an executable program. The higher
the complexity of the model, the longer the running time;
running time is used to discuss computation complexity in
this paper. DBN-SVR and WNN models have the longest
and shortest running time, respectively, but the accuracy is
low. The proposed model has a relatively short running time
while ensuring prediction accuracy. The experimental results
show that the proposed EMD-SVR-WNN prediction model
has higher prediction accuracy than other prediction
models, and it is an effective structural deformation pre-
diction model.

5. Conclusions and Recommendations

Structural deformation is inevitable during the construction
process, so it is of great significance to avoid accidents
through structural deformation prediction. Most of the
existing structural deformation prediction models lack the

mining of internal features within the data, and there is a
lack of discussion on the applicability of the prediction
model. Aiming at the above problems, this paper proposes a
combined prediction model based on Empirical Mode
Decomposition, Support Vector Regression, and Wavelet
Neural Network (EMD-SVR-WNN). Based on the analysis
of the measured data at Tianjin Station, the following
conclusions can be drawn:

(1) The data is decomposed into different components
with different physical characteristics through the
EMD decomposition method. According to the
different characteristics of different signal compo-
nents, the appropriate prediction model is selected,
which can effectively improve the accuracy of de-
formation prediction.

(2) According to the characteristics of random items and
trend items, the SVR model has great advantages in
dealing with nonlinear problem and can overcome
the defects caused by high-dimensional model
construction. The WNN prediction model combines
the advantages of wavelet transform and neural
network model. SVR and WNN are finally selected
for prediction, respectively.

(3) Finally, the prediction results of the SVR model and
WNN model are fused to obtain the final model
prediction results. Combined with practical engi-
neering, the results show that the EMD-SVR-WNN
model proposed in this paper can achieve good
results and has high prediction accuracy; this is of
great significance to the study of structural defor-
mation in engineering.
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