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For the first time, the finite integral transformmethod is introduced to explore the accurate bending analysis of orthotropic rectangular
thin plates with two adjacent edges free and the others clamped or simply supported. Previous solutions mostly focused on plates with
simply supported and clamped edges, but the existence of free corner makes the solution procedure much complex to solve by
conventional inverse/semi-inverse methods. Compared with the conventional methods, the employed method eliminates the need to
preselect the deflection function, which makes it more reasonable and theoretical for calculating the mechanical responses of the plates.
Moreover, the approach used can also analyze static problems of moderately thick plates and thick plates with the same boundary
conditions investigated in this article. Finally, comprehensive analytical results obtained in this paper illuminate the validity of the
proposed approach by comparing with the previous literature and finite element method by using (ABAQUS) software.

1. Introduction

Due to the better structural performance such as superior
strength-to-weight ratios and stiffness-to-weight ratios,
composite materials are widely applied in engineering fields
such as mechanical engineering, civil and structural engi-
neering, naval, and aerospace. Orthotropic rectangular plate
is considered as the fundamental structural application of
composite materials. ,us, the research on the mechanical
behavior of orthotropic plate aroused the interest of sci-
entists and engineers for more than a century.

Literature surveys reveal that numerical methods such as
finite difference method [1], spline element method [2],
boundary element method [3], meshless method [4], finite
element method (FEM) [5], boundary particle method [6],
isogeometric collocation method [7], discrete singular
convolution method [8–11], and differential quadrature
method [12, 13] are competent to analyze the bending of
plates with different edge conditions, loading patterns, and
material properties. However, the aforementioned

numerical methods satisfy the engineering requirements
with acceptable error, but approximate solution is obtained,
which is the main disadvantage of the numerical methods.

Compared with numerical methods, analytical solution
is relatively sparse, which is due to the mathematical
complexity in choosing proper trial function to satisfy the
governing equation and the boundary conditions simulta-
neously. It is known that the classic traditional semi-inverse
methods [14–17] such as Navier solution and Levy solution
can only deal with the static problem of plate with two
opposite simply supported edges. Superpositionmethod [18]
can be applied for static problems of plates with various
boundary conditions. However, the method involves com-
plex solving procedure.

Among the combinations of boundary conditions of
rectangular plate, it is very difficult to obtain analytical
solution for plate with at least two adjacent edges free. Most
previous research studies dealt with the plate with simply or
clamped boundary conditions; however, the existence of two
adjacent free edges creates a free corner, which eventually
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makes the solution procedure much complex. ,e classical
superposition method cannot deal with the title problem
because of requiring the plate deflections to vanish at the free
corner. ,e existing solutions are very few, and the solution
procedure is much more difficult which needs a thorough
knowledge of mathematics and mechanics. Recently, a
Green’s function approach is utilized to solve the free vi-
bration problems of circular thin plates [19–21]. ,is ap-
proach allows obtaining the analytical frequency equations
as power series fast convergent to exact eigenvalues for
different number of nodal diameters. ,e symplectic su-
perposition method is developed which is the combination
of superposition method as stated above and symplectic
elasticity approach [22–25], and applied systematically to the
bending [26, 27], buckling [28, 29], and free vibration
[30, 31] problems of plate. ,is method has attracted wide
attention, including plate; it is also applicable to solve shell
problems [32]. However, the method involves complex
mathematical manipulations, which require skilled per-
sonnel in the fields of mathematics and mechanics. ,ere-
fore, researchers are still exploring new analytical methods
to analyze the title problem with a more effective way and to
develop accurate analytical solutions for validating other
numerical/approximate solutions.

Recently, the finite integral transform method [33], an
effective mathematical method, is developed which is suc-
cessfully implemented to solve the bending [34–37] and free
vibration [38–40] plate problems with different boundary
conditions. Unfortunately, there is no report available which
presents the solution of the title problem using finite integral
transform. For the reason, this study adopts a simpler and
more general, finite integral transformation to investigate
the title problem. In the solution process, after finite integral
transformation, using some inherent properties of the in-
tegral kernel, the bending governing equation is transformed
into a fully regular infinite system of simultaneous linear
algebraic equations with the unknowns determined by
satisfying associated boundary conditions. ,en, through
some mathematical manipulation, the analytical solution is
elegantly achieved in a straightforward procedure. “Com-
pared with the traditional semi-inverse methods (e.g., the
Navier method, Levy method, and superposition method),
the present one is simpler and more rational. A semi-inverse
method normally fails to yield a unified solution procedure
since it requires case-by-case trial functions to satisfy both
the governing equation and boundary conditions. By using
finite integral transformation, the high-order partial dif-
ferential equation is transformed into a system of linear
algebraic equations, and the solution of these equations is
achieved in a straightforward way. ,e present results are
believed to present a benchmark for validation of other
numerical and analytical methods and can be useful for
engineers and scientists for academic and practical appli-
cations. ,e succinct but effective technique presented in
this study may provide an easy-to-implement theoretical
tool to seek more analytic solutions of buckling and free
vibration problems of thin plates.”

,e three complex boundary value problems, i.e., CCFF,
CSFF, and SSFF, are studied, where F denotes free edge, S

denotes simply supported edge, and C denotes clamped
edge, and the boundary conditions are taken in clockwise
direction.

2. Application of Finite Integral
Transformation for Bending Analysis of
Orthotropic Rectangular Thin Plates

Figure 1 shows the orthotropic thin plate with dimensions of
a × b × h. ,e bending governing equation of classical
Kirchhoff plate theory is expressed as follows [37]:

Dx

z4W(x, y)

zx4 + 2H
z4W(x, y)

zx2zy2 + Dy

z4W(x, y)

zy4 � q(x, y),

(1)

where W(x, y) and q(x, y) are the deflection of plate
midplane and the distributed transverse load, respectively;
Dx and Dy are the flexural rigidities in the x and y directions,
respectively; H � D1 + 2Dxy is defined as the effective tor-
sional rigidity, where Dxy is the torsional rigidity, D1 �

μyDx � μxDy is defined with Poisson’s ratios μx and μy; the
internal forces of orthotropic plates can be expressed in
terms of W(x, y) as follows:
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zx zy
,
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(2)

Vx � −
z

zx
Dx

z2W

zx2 + H + 2Dxy􏼐 􏼑
z2W

zy2􏼢 􏼣,

Vy � −
z

zy
Dy

z2W

zy2 + H + 2Dxy􏼐 􏼑
z2W

zx2􏼢 􏼣.

(3)

,e CCFF rectangular plate is clamped at two adjacent
edges x � 0 and y � 0, and the other edges are free; the
boundary conditions of the plate are as follows:

W|x�0 � W|y�0 � 0, 2Dxy

zW2

zx zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�a,y�b

� 0, (4a)

zW

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�0
� 0, Mx

􏼌􏼌􏼌􏼌x�a
� Vx

􏼌􏼌􏼌􏼌x�a
� 0,

zW

zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� 0, My

􏼌􏼌􏼌􏼌􏼌y�b
� Vy

􏼌􏼌􏼌􏼌􏼌y�b
� 0.

(4b)

2 Advances in Civil Engineering



If W(x, y) is a function of the two independent variables
x and y, defined in a rectangle 0≤x≤ a, 0≤y≤ b, the double
finite sine integral transform is described as follows:

Wmn � 􏽚
a

0
􏽚

b

0
W(x, y)sin

αmx

2
sin

βny

2
dxdy

(m � 1, 3, 5, . . . , n � 1, 3, 5, . . .).

(5)

,e inversion is expressed as

W(x, y) �
4

ab
􏽘

∞

m�1,3
􏽘

∞

n�1,3
Wmn sin

αmx

2
sin

βny

2
, (6)

where αm � mπ/a and βn � nπ/b.
,e high-order partial derivatives ofW(x, y) in equation

(1) are derived as follows:
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􏽚
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(7)
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(8)

,e second term of equation (1) can be divided into two
parts. In the first part, we consider the partial derivative of x
first:
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(9)

In the second part, we first consider the partial derivative
of y:
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0
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(10)

By applying one-dimensional finite sine integral trans-
form on the effective shearing forces Vx of edge x� a, we will
obtain

y

bz

o

a

x

q

Figure 1: Schematic illustration of thin plate.
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Dx 􏽚
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Similarly, after employing one-dimensional finite sine
integral transform on the effective shearing forces Vy of edge
y� b, we will obtain
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qmn is defined as the transform of the load function
q(x, y):

qmn � 􏽚
a

0
􏽚

b

0
q(x, y) sin

αmx

2
sin

βny

2
dxdy. (13)

By substituting equations (7)–(13) and boundary con-
dition of equation (4a) into equation (1), we can obtain the
following equation:

Dx
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2
􏽚

b

0

z2W
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2
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􏽚

a

0
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αmx

2
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2 Dx
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2
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2
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2
􏼠 􏼡

2
⎡⎣ ⎤⎦ 􏽚

b

0
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�a
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2
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2
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2
+
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2
􏼠 􏼡

2
⎡⎣ ⎤⎦ 􏽚

a

0
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�b
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αmx

2
dx

+ Dx

α4m
16

+ H
α2mβ

2
n

8
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β4n
16

􏼢 􏼣Wmn � qmn.

(14)

Some parts of equation (14) are definite integral, which
are constants. Let

Im � 􏽚
a

0

zW

zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 y�b sin
αmx

2
dx, Jm � 􏽚

a

0

z2W

zy2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 y�0 sin
αmx

2
dx,

Kn � 􏽚
b

0

zW

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌 x�a sin
βny

2
dy, Ln � 􏽚

b

0

z2W

zx2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌 x�0 sin
βny

2
dy.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

,e unidentified constants Jm and Ln have evident
physical meaning. When the plate is clamped, or simply
supported at edges x � 0, y � 0, we can easily obtain the
following equation:

z2W

zy2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�0
� 0,

z2W

zx2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� 0. (16)

Substitution of equation (16) into Jm and Ln leads to

Jm � 􏽚
a

0

z2W

zy2 + μx

z2W

zx2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
y�0

sin
αmx

2
dx ,

Ln � 􏽚
b

0

z2W

zx2 + μy

z2W

zy2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
x�0

sin
βny

2
dy.

(17)

Obviously, the integrands of − DyJm and − DxLn are
Fourier coefficients of the bending moments of edges y � 0
and x � 0, respectively. Similarly, Im and Kn are Fourier
coefficients of the slopes of free edges y � b and x � a,
respectively. As to the simply supported edges, the corre-
sponding unknowns will be zero. Accordingly, equation (14)
is expressed by an unidentified constants Im, Jm, Kn, and Ln

as follows:

Wmn � Cmn qmn +(− 1)
(n− 1/2)

DyRmnIm − Dy

βn

2
Jm􏼢

+(− 1)
(m− 1/2)

DxPmnKn −
αm

2
DxLn􏼕,

(18)

where Cmn � (1/(Dx(α4m/16) + H(α2mβ
2
n/8) + Dy(β4n/16))),

Rmn � μx(α2m/4) + (β2n/4), and Pmn � (α2m/4) + μy(β2n/4).
By substituting equation (18) into equation (6), the

expression for W(x, y) is obtained as follows for
m � 1, 3, 5, . . .∞ and n � 1, 3, 5, . . .∞:

W(x, y) �
4
ab

􏽘

∞

m�1,3
􏽘

∞

n�1,3
Cmn

qmn +(− 1)(n− 1/2)DyRmnIm − Dy

βn

2
Jm

+(− 1)(m− 1/2)DxPmnKn −
αm

2
DxLn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
sin

αmx

2
sin

βny

2
. (19)

Case 1. For the CCFF rectangular plate, equation (19) has
satisfied the boundary conditions W|x�0 � W|y�0 � 0,
Vx|x�a � Vy|y�b � 0, and zW2/zx zy|x�a,y�b � 0. By
substituting W(x, y) into the other boundary conditions

zW/zx|x�0 � zW/zy|y�0 � 0 and Mx|x�a � My|y�b � 0, and
taking the differentiation technique of trigonometric series
[41], we can obtain
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􏽘

∞

m�1,3
(− 1)

(n− 1/2)
DyCmnRmnαmIm − 􏽘

∞

m�1,3
DyCmnαm

βn

2
Jm + 􏽘

∞

m�1,3
(− 1)

(m− 1/2)
DxCmnPmnαmKn

− 􏽘
∞

m�1,3
DxCmnαm

αm

2
Ln � − 􏽘

∞

m�1,3
Cmnαmqmn n � 1, 3, 5 . . . ,

(20)

􏽘

∞

m�1,3
(− 1)

(m− 1/2)
(− 1)

(n− 1/2) μy − DyCmnRmnPmn􏽨 􏽩Im + 􏽘
∞

m�1,3
(− 1)

(m− 1/2)
DyCmnPmn

βn

2
Jm

+ 􏽘
∞

m�1,3
(− 1)

m− 1 1 − DxCmnP
2
mn􏽨 􏽩Kn

+ 􏽘
∞

m�1,3
(− 1)

(m− 1/2)
DxCmnPmn

αm

2
Ln � 􏽘

∞

m�1,3
(− 1)

(m− 1/2)
CmnPmnqmn n � 1, 3, 5 . . . ,

(21)

􏽘

∞

n�1,3
(− 1)

(n− 1/2)
DyCmnRmnβnIm − 􏽘

∞

n�1,3
DyCmnβn

βn

2
Jm + 􏽘

∞

n�1,3
(− 1)

(m− 1/2)
DxCmnPmnβnKn

− 􏽘
∞

n�1,3
DxCmnβn

αm

2
Ln � − 􏽘

∞

n�1,3
Cmnβnqmn m � 1, 3, 5 . . . ,

(22)

􏽘

∞

n�1,3
(− 1)

n− 1 1 − DyCmnR
2
mn􏽨 􏽩Im + 􏽘

∞

n�1,3
(− 1)

(n− 1/2)
DyCmnRmn

βn

2
Jm

+ 􏽘
∞

n�1,3
(− 1)

(n− 1/2)
(− 1)

(m− 1/2) μx − DxCmnRmnPmn􏼂 􏼃Kn

+ 􏽘
∞

n�1,3
(− 1)

(n− 1/2)
DxCmnRmn

αm

2
Ln � 􏽘

∞

n�1,3
(− 1)

(n− 1/2)
CmnRmnqmn m � 1, 3, 5 . . . ,

(23)

,e constants Im, Jm, Kn, and Ln (m, n� 1, 3, 5, . . .) can
be obtained by solving the infinite linear simultaneous
equations described by equations (20)–(23). In calculation, a
finite number of terms are taken in each set of equations and
solved for a finite number of constants, i.e., m� 1, 3, 5, . . .,
M, and n� 1, 3, 5, . . ., N, where M and N are any positive
integers. Here, the same term t is chosen for m and n, with

their upper limit taken as M � (2t − 1)/2 and
N � (2t − 1)/2. By substituting the above constant solutions
into equation (19), we finally get the analytical bending
solutions for plate with two adjacent edges free and the other
two edges clamped.

,e bending moment along the clamped edge can be
easily found by the following equation:

Mx � − Dx

z2W

zx2 + μy

z2w

zy2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
x�0

� − Dx

z2W

zx2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�0
� − Dx

2
b

􏽘

∞

n�1,3
Ln sin

βny

2
,

My � − Dy

z2W

zy2 + μx

z2W

zx2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
y�0

� − Dy

z2W

zy2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� − Dy

2
a

􏽘

∞

n�1,3
Jm sin

αmx

2
.

(24)

Case 2. For the rectangular plate clamped at edge x � 0,
simply supported at edge y � 0, and free at edges x � a and

y � b, the undetermined unknowns Jm will be zero, and the
deflection of the plate reduces to

W(x, y) �
4
ab

􏽘

∞

m�1,3
􏽘

∞

n�1,3
Cmn

qmn +(− 1)(n− 1/2)DyRmnIm

+(− 1)(m− 1/2)DxPmnKn −
αm

2
DxLn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
sin

αmx

2
sin

βny

2
. (25)
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By substituting W(x, y) into the other boundary con-
ditions zW/zx|x�0 � 0 and Mx|x�a � My|y�b � 0, and taking

the differentiation technique of trigonometric series [41], we
achieved

􏽘

∞

m�1,3
(− 1)

(n− 1/2)
DyCmnRmnαmIm + 􏽘

∞

m�1,3
(− 1)

(m− 1/2)
DxCmnPmnαmKn − 􏽘

∞

m�1,3
DxCmnαm

αm

2
Ln

� − 􏽘
∞

m�1,3
Cmnαmqmn n � 1, 3, 5 . . . ,

(26)

􏽘

∞

m�1,3
(− 1)

(m− 1/2)
(− 1)

(n− 1/2) μy − DyCmnRmnPmn􏽨 􏽩Im + 􏽘
∞

m�1,3
(− 1)

m− 1 1 − DxCmnP
2
mn􏽨 􏽩Kn

+ 􏽘
∞

m�1,3
(− 1)

(m− 1/2)
DxCmnPmn

αm

2
Ln � 􏽘

∞

m�1,3
(− 1)

(m− 1/2)
CmnPmnqmn n � 1, 3, 5 . . . ,

(27)

􏽘

∞

n�1,3
(− 1)

n− 1 1 − DyCmnR
2
mn􏽨 􏽩Im + 􏽘

∞

n�1,3
(− 1)

(n− 1/2)
(− 1)

(m− 1/2) μx − DxCmnRmnPmn􏼂 􏼃Kn

+ 􏽘
∞

n�1,3
(− 1)

(n− 1/2)
DxCmnRmn

αm

2
Ln � 􏽘

∞

n�1,3
(− 1)

(n− 1/2)
CmnRmnqmn m � 1, 3, 5 . . . .

(28)

,e constants Im, Kn, and Ln (m, n� 1, 3, 5, . . .) can be
obtained by solving the infinite linear simultaneous equa-
tions described by equations (26)–(28) in a similar way to
that in the Case 1.

Case 3. For the rectangular plate simply supported at edges
x � 0 and y � 0 and free at edges x � a and y � b, the
undetermined unknowns Jm and Ln will be zero, and the
deflection of the plate reduces to

W(x, y) �
4
ab

􏽘

∞

m�1,3
􏽘

∞

n�1,3
Cmn qmn +(− 1)

(n− 1/2)
DyRmnIm +(− 1)

(m− 1/2)
DxPmnKn􏼣sin

αmx

2
sin

βny

2
.􏼢 (29)

Equation (29) has to satisfy the remaining boundary
conditions Mx|x�a � My|y�b � 0, and by taking the differ-
entiation technique of trigonometric series [41], we can get

􏽘

∞

m�1,3
(− 1)

(m− 1/2)
(− 1)

(n− 1/2) μy − DyCmnRmnPmn􏽨 􏽩Im + 􏽘
∞

m�1,3
(− 1)

m− 1 1 − DxCmnP
2
mn􏽨 􏽩Kn

� 􏽘
∞

m�1,3
(− 1)

(m− 1/2)
CmnPmnqmn n � 1, 3, 5 . . . ,

(30)

􏽘

∞

n�1,3
(− 1)

n− 1 1 − DyCmnR
2
mn􏽨 􏽩Im + 􏽘

∞

n�1,3
(− 1)

(n− 1/2)
(− 1)

(m− 1/2) μx − DxCmnRmnPmn􏼂 􏼃Kn

� 􏽘
∞

n�1,3
(− 1)

(n− 1/2)
CmnRmnqmn m � 1, 3, 5 . . . .

(31)

,e unknown constants Im and Kn (m, n� 1, 3, 5, . . .)
can be obtained by solving equations (30)–(31) in a similar
way to that in the Case 1 section.

3. Numerical Results and Discussion

Comprehensive examinations on the isotropic/orthotropic
rectangular plates under three different support conditions are
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conducted to validate the present approach and examine the
accuracy of the obtained results. ,e selected aspect ratio b/a
for rectangular plates ranges from 0.5 to 4. Parametric analysis
(effects of aspect ratios, Poisson’s ratio, and boundary restraint)
on bending characteristics of CCFF, CSFF, and SSFF isotropic/
orthotropic rectangular plates is also conducted. It is note-
worthy that, for an isotropic plate, H � Dx � Dy � D,
Dxy � (1 − μ)D/2, and μx � μy � μ where μ and D are
Poisson’s ratio and flexural stiffness of plate, respectively.

(1) An isotropic square CCFF plate with various Poison
ratios, under uniform load (q(x, y) � q0)

(2) An orthotropic rectangular CCFF plate under line-
arly varying load (q(x, y) � q0 · x/a), where
Dy � 4Dx, Dxy � 0.85Dx, μx � 0.075, and μy � 0.3.

(3) An isotropic rectangular CSFF plate with Poison
ratio μ � 1/3, under uniform load (q(x, y) � q0).

(4) An orthotropic rectangular CSFF plate under central
concentrate load (q(x, y) � P), where Dy � 4Dx,
Dxy � 0.85Dx, μx � 0.075, and μy � 0.3.

(5) An isotropic rectangular SSFF plate with Poison ratio
μ � 1/3, subjected to a uniform load (q(x, y) � q0).

(6) An orthotropic rectangular SSFF plate under sinu-
soidal load (q(x, y) � q0 sin(πx/a)), where
Dy � 4Dx, Dxy � 0.85Dx, μx � 0.075, and μy � 0.3.

As shown in Table 1, the obtained nondimensional
bending solutions (deflections and bending moments at
specific points) of CCFF square isotropic rectangular plates
increased with the increase of Poisson’s ratio. It is clear that
the obtained bending solutions of SSFF plate are always larger
than those of CSFF and CCFF plates for each aspect ratio; the
bending solutions of CSFF plate is always larger than those of
CCFF plate, which indicates plates with clamped edges
possess lower deform capability than plates with simply
supported edges. Finally, it is also observed that the bending
solutions of isotropic/orthotropic plates under three different
support conditions decreased with the decreasing aspect ratio.
,e above parametric studies reveal that aspect ratios,
Poisson’s ratio, and boundary restraint have a significant
influence on the bending characteristics of plates.

Table 1: Deflections and bending moments of CCFF isotropic square plate subjected to uniform loading with various Poisson’s ratios.

Poisson’s ratio
μ Method Number of

terms
W(q0a

4/D), y � b My(q0a
2), y � 0

x � a x � 0.75a x � 0.50a x � 0.25a x � 0.75a x � 0.50a x � 0.25a

0

Present

t� 10 0.034972 0.027382 0.017034 0.0060965 − 0.20029 − 0.12256 − 0.041199
t� 30 0.035778 0.027647 0.017274 0.0062238 − 0.19607 − 0.12255 − 0.042982
t� 50 0.035943 0.027730 0.017321 0.0062381 − 0.19730 − 0.12254 − 0.042474
t� 100 0.036067 0.027780 0.017356 0.0062543 − 0.19689 − 0.12254 − 0.042645
t� 200 0.036129 0.027807 0.017374 0.0062618 − 0.19689 − 0.12254 − 0.042644
t� 300 0.036150 0.027816 0.017380 0.0062643 − 0.19689 − 0.12254 − 0.042644
t� 500 0.036166 0.027823 0.017384 0.0062660 − 0.19689 − 0.12254 − 0.042644

Liu and Li [42] 0.036237 — — — − 0.19284 — − 0.042656
Huang and
Conway [43] 0.03619 — — — — — —

FEM 0.036196 0.027836 0.017392 0.0062687 − 0.19499 − 0.12166 − 0.042779
x � a x � 0.75a x � 0.50a x � 0.25a — — —

0.3

Present

t� 10 0.041986 0.032229 0.019507 0.0066292 − 0.23929 − 0.16565 − 0.095009
t� 30 0.043062 0.032583 0.019801 0.0067455 − 0.23910 − 0.16552 − 0.094859
t� 50 0.043278 0.032691 0.019858 0.0067528 − 0.23898 − 0.16549 − 0.094845
t� 100 0.043441 0.032756 0.019901 0.0067648 − 0.23892 − 0.16548 − 0.094837
t� 200 0.043523 0.032791 0.019922 0.0067700 − 0.23889 − 0.16547 − 0.094835
t� 300 0.043550 0.032803 0.019930 0.0067717 − 0.23889 − 0.16547 − 0.094834
t� 500 0.043572 0.032812 0.019935 0.0067728 − 0.23889 − 0.16547 − 0.094834

Liu and Li [42] 0.043601 0.032828 0.019945 0.006774 − 0.242318 — − 0.096808
Fo-van [44] 0.043678 0.032872 0.019993 0.006771 − 0.23400 — − 0.09102

FEM 0.043611 0.032829 0.019945 0.0067745 − 0.23650 − 0.16426 − 0.094810
x � a x � 0.75a x � 0.50a x � 0.25a — — —

1/3

Present

t� 10 0.043044 0.032965 0.019878 0.0067015 − 0.21694 − 0.13156 − 0.045939
t� 30 0.044156 0.033329 0.020178 0.0068145 − 0.22696 − 0.13164 − 0.041677
t� 50 0.044379 0.033441 0.020236 0.0068203 − 0.21987 − 0.13165 − 0.044603
t� 100 0.044548 0.033508 0.020280 0.0068314 − 0.22272 − 0.13167 − 0.043406
t� 200 0.044632 0.033544 0.020302 0.0068362 − 0.22274 − 0.13166 − 0.043410
t� 300 0.044660 0.033556 0.020309 0.0068378 − 0.22274 − 0.13166 − 0.043409
t� 500 0.044668 0.033566 0.020315 0.0068391 − 0.22274 − 0.13166 − 0.043409

Liu and Li [42] 0.044665 0.033579 0.020316 0.006787 − 0.225449 — − 0.042035
Leissa and

Niedenfuhr [45] 0.04055 — 0.018969 — − 0.20753 — − 0.04332

FEM 0.044709 0.033573 0.020319 0.0068382 − 0.22071 − 0.13103 − 0.042797
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,rough Tables 1–6, it can be seen that the obtained
results of deflections and bending moments agree very well
with those from the literature and, especially, those by FEM
results. ,e validity of the employed method and the ac-
curacy of the obtained results are illuminated through the
above examples, which means that the present approach is
competent for analyzing the bending problems of ortho-
tropic rectangular thin plates with the title boundary
condition.

Table 1 shows the convergence study and results for
deflection and bending moment obtained with the accuracy
of five significant figures. It is theoretically exact for the

results when t⟶∞, while in the present paper the ob-
tained analytical results suffice for the title problem by
taking the series terms (t� 500). It is beyond the expec-
tation that convergence rates of the bending moments are
faster than ones of the transverse deflection. ,is is at-
tributing to the fact that the present deflection results are at
free edges.,e slower convergent results are due to the final
solution expressed by double sine Fourier series. However,
the linear simultaneous equations can be easily calculated
via Mathematica software, and above all, the value of the
employed method lies in its merits of rational solution
procedure and simple mathematical manipulation that

Table 2: Deflections and bending moments of CCFF orthotropic rectangular plate under linear loading (Dy � 4Dx, Dxy � 0.85Dx,

μx � 0.075, μy � 0.3).

Method b/a
W(q0a

4/Dx), y � b Mx(q0a
2), x � 0

x � a x � 0.75a x � 0.50a x � 0.25a y � 0.75b y � 0.50b y � 0.25b

Present 0.5 0.0014045 0.0011974 0.00081803 0.00033817 − 0.012265 − 0.0052803 − 0.00077096
FEM 0.0014051 0.0011978 0.00081832 0.00033825 − 0.012287 − 0.0052763 − 0.00079197
Present 1.0 0.012793 0.010023 0.0062899 0.0022584 − 0.065799 − 0.032091 − 0.0064661
FEM 0.012804 0.010028 0.0062931 0.0022593 − 0.065586 − 0.031816 − 0.0064944
Present 2.0 0.051082 0.035948 0.020085 0.0062465 − 0.019256 − 0.12485 − 0.039702
FEM 0.051098 0.035953 0.020082 0.0062464 − 0.19107 − 0.12423 − 0.039649
Present 3.0 0.075008 0.050613 0.026856 0.0078044 − 0.27312 − 0.21195 − 0.089978
FEM 0.075010 0.050615 0.026855 0.0078025 − 0.27087 − 0.21034 − 0.090173
Present 4.0 0.084869 0.056324 0.029256 0.0082630 − 0.30949 − 0.26530 − 0.13949
FEM 0.084838 0.056321 0.029253 0.0082595 − 0.30702 − 0.26318 − 0.13898

Table 3: Deflections and bending moments of CSFF isotropic square plate under uniform loading with Poisson’s ratio μ � 1/3.

Method b/a
W(q0a

4/Dx), y � b Mx(q0a
2), x � 0

x � a x � 0.75a x � 0.50a x � 0.25a y � 0.75b y � 0.50b y � 0.25b

Present 0.5 0.029137 0.023545 0.015447 0.0057435 − 0.21714 − 0.14227 − 0.074437
FEM 0.029145 0.023548 0.015448 0.0057428 − 0.21621 − 0.14211 − 0.074837
Present 1.0 0.073524 0.052971 0.030484 0.0096223 − 0.34599 − 0.25601 − 0.14954
FEM 0.073563 0.052976 0.030485 0.0096193 − 0.34440 − 0.25567 − 0.14891
Present 2.0 0.11539 0.077393 0.040624 0.011296 − 0.47278 − 0.41166 − 0.27960
FEM 0.11540 0.077372 0.040600 0.011286 − 0.46779 − 0.40738 − 0.27711
Present 3.0 0.12262 0.081040 0.041686 0.011250 − 0.50257 − 0.46955 − 0.35885
FEM 0.12261 0.081010 0.041663 0.011234 − 0.49749 − 0.46475 − 0.35525
Present 4.0 0.12347 0.081403 0.041722 0.011201 − 0.50624 − 0.48994 − 0.41077
FEM 0.12347 0.081369 0.041695 0.011182 − 0.50116 − 0.48499 − 0.40652

Table 4: Deflections and bending moments of CSFF orthotropic square plate subjected to central concentrated load
(Dy � 4Dx, Dxy � 0.85Dx, μx � 0.075, μy � 0.3).

Method b/a
W(Pa2/Dx), y � b Mx(P), x � 0

x � a x � 0.75a x � 0.50a x � 0.25a y � 0.75b y � 0.50b y � 0.25b

Present 0.5 0.025644 0.024551 0.019873 0.0084041 − 0.33149 − 0.21000 − 0.10442
FEM 0.025655 0.024562 0.019880 0.0084065 − 0.33043 − 0.21026 − 0.10339
Present 1.0 0.035436 0.029660 0.020200 0.0073935 − 0.28753 − 0.22909 − 0.12999
FEM 0.035458 0.029670 0.020204 0.0073936 − 0.28347 − 0.22620 − 0.12963
Present 2.0 0.033743 0.023512 0.012874 0.0037013 − 0.20785 − 0.25596 − 0.14027
FEM 0.033746 0.023510 0.012864 0.0036989 − 0.20600 − 0.25154 − 0.13967
Present 3.0 0.023279 0.014747 0.0070937 0.0016934 − 0.14649 − 0.26115 − 0.11393
FEM 0.023271 0.014741 0.0070888 0.0016910 − 0.14595 − 0.25654 − 0.11378
Present 4.0 0.014617 0.0087457 0.0038585 0.00079266 − 0.10166 − 0.25972 − 0.084991
FEM 0.014602 0.0087393 0.0038539 0.00079059 − 0.10103 − 0.25506 − 0.085080
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enable the method to serve as an easy-to-implement the-
oretical tool in exploring analytical bending solutions of a
plate.

4. Conclusion

,is paper investigates the analytical bending solution of
orthotropic rectangular thin plates with two adjacent edges
free and the others clamped or simply supported. ,e
significant merits of the adopted method differing from
typical semi-inverse ones are as follows: (1) it provides a
rigorous and theoretical solution procedure for precise
plate bending analysis without assuming the solution
forms; (2) based on integral transform theory, it reduces the
mathematical difficulty of plate problem by converting the
boundary value problems of higher-order partial differ-
ential equation into solving linear algebra equations; (3) the
present approach allows more precise analytical solutions
for static problems of moderately thick and thick plates
under similar boundary conditions. ,e obtained results
are expected to serve as an accurate solution for validation
of other numerical methods.
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