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Tunnel boringmachine (TBM) tunneling data have been extensively collected to utilize TBM information technology by analyzing
and mining the data for achieving a safe and efficient TBM tunneling. Feature extraction of big data could reduce the complexity
for problems, but conventional indexes based on feature extraction, such as field penetration index (FPI), specific penetration
(SP), and boreability index (BI), have some disadvantages. ,us, we present novel boring indexes derived from tunneling data in
the Yinchao TBM project. Linear thrust-penetration and torque-penetration relationships in filtered ascending sections
(p≥ 2mm/r) are proposed using statistical features and through physical mechanism analysis of parameters in the TBM cyclic
tunneling process. Boring indexes, such as normal boring difficulty index, initial rock mass fragmentation difficulty index, and
tangential boring difficulty index, are defined using the coefficients of the linear thrust-penetration and torque-penetration
relationships. Subsequently, the defined boring indexes are verified using performance prediction of 291 cyclic tunneling
processes. Finally, a preliminary application of support measure suggestions is conducted using the statistical features of boring
indexes, where certain criteria are proposed and verified. ,e results showed that the criterion of boring indexes for support
measure suggestions could achieve a reasonable confirmation, potentially providing quantitative quotas for support measure
suggestions in the subsequent construction process.

1. Introduction

Tunnel boring machines (TBMs), a type of engineering
machinery, have been widely applied in the construction of
tunnels, such as water conveyance, highway, and railway
tunnels [1]. With the development of information tech-
nology [2] and construction of big data management plat-
forms [1], the Internet of ,ings technology for real-time
TBM data acquisition has been used widely. ,e method for
data acquisition has been used in the Yinsong TBM project
[3, 4] for effectively recording extensive data, including

cutterhead thrust, cutterhead torque, cutterhead rotation
speed, advance rate, and penetration, which are closely
related to rock mass fragmentation [5, 6]. ,erefore, the
analyzing and mining of TBM tunneling data can provide
valuable information regarding the rock mass [7].

TBM tunneling can be regarded as a large-scale field
linear cutting test [8]. ,e main characteristics of rock mass
fragmentation are the interaction between the TBM cutters
and rock mass, as well as loading the thrust and torque of the
cutterhead acting on the rock mass, which exceeds the ul-
timate strength of the rock mass [9]. ,e performance
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parameters are closely related to both the physical and
operational parameters of the rock mass; some of the related
studies in F-p and T-p relationships are [10–18]. Based on
the studies, many indexes have been derived from TBM
performance parameters to reflect the characteristics of rock
mass. Some of the proposed indexes are the field penetration
index (FPI) [19], specific penetration (SP) [20], boreability
index (BI) [5], and drilling efficiency index (TPI) [4], which
can be used for rock mass parameter prediction [21], rock
mass classification [22], and adverse geological diagnosis [4].
In addition, they can achieve better results based on the fine
relationships of thrust-penetration (F-p) and torque-pene-
tration (T-p). Regarding the F-p and T-p relationships, a
linear relationship between the normal force, rolling force,
and penetration was proposed in [6] using a stepwise test on
a linear cutting machine [23]; they concluded a comparable
linear relationship under different confining stresses. In field
tunneling tests, Liujie et al. [24] demonstrated the effec-
tiveness of the linear F-p relationship using field-stepped
tunneling tests in limestone strata. Existing studies con-
sidered the F-p and T-p relationships, providing simple, but
convenient, methods to describe the TBM parameters.
However, determining a linear relationship coefficient for
different rock masses has many disadvantages. First, the
laboratory tests make many simplifications; thus, the ob-
tained results might not be appropriate for field tunneling.
Second, the F-p and T-p relationships are acquired using
repeated stepped tunneling tests by adjusting different
penetrations that are not appropriate for continuous field
tunneling. ,erefore, field tunneling data to determine the
F-p and T-p relationships for rock mass evaluation should be
easy to acquire and have robust features, which are crucial
for improving the precision of relationships.

TBM big data had been collected during tunneling, from
which we could obtain valuable information about the rock
mass through data mining. However, an excessive amount of
TBM tunneling data would increase the complexity of the
problems, relationship analysis, and comprehensive index
extraction from big data, which could be helpful in de-
creasing the complexity. Conventional methods for the
determination of the F-p and T-p relationships have the
abovementioned disadvantages; therefore, comprehensive
index extraction may not yield a high accuracy. Big data
could provide sufficient proof about the F-p and T-p rela-
tionships and obtain acceptable results for comprehensive
index extraction. ,e key contribution of this study is
proposing a novel model and data hybrid-driven boring
indexes in cyclic tunneling processes, followed by a pre-
liminary application for support measure suggestions.

,is study introduces novel indexes for reflecting the
process of rock mass fragmentation, which differ from
conventional indexes, such as FPI and SP. Subsequently, a
preliminary application is adopted for support measure
suggestions. ,e remainder of this paper is organized as
follows. Section 2 describes the project and TBM and the
flowchart of this study. Section 3 describes the parameter
characteristics during TBM tunneling. Section 4 introduces
novel boring indexes and corresponding calculation
methods. Section 5 presents a preliminary application of

boring indexes for support measure suggestions. Section 6
discusses the application of the presented boring indexes.
Finally, Section 7 presents the conclusion of the study.

2. Description of the Project and
Study Flowchart

2.1. Project Overview. Chaoer River to Xiliao River water
conveyance project (Yinchao TBM project) is located in the
Hinggan League, northeast Inner Mongolia Autonomous
Region of China, with a total length of 173.76 km from
chainage K0+000 to K173+760 and a maximum water con-
veyance flow of 488millionm3 per year. Tunnel #2 has a length
of 58.5 km from chainage K10+300 to K68+805. ,e TBM
tunnel construction started on 9/20/2020, and 2.42 km between
chainages K66+138 and K63+718 had been completed within
3months. ,e main lithologies in the constructed tunnel are
Jurassic tuff, Jurassic lava, and Yanshanian granite, with amean
overburden depth of approximately 70m, as shown in Figure 1.

During the tunneling process, some adverse geology
conditions, such as fault fracture zone and weak rock mass,
exist. Rock reinforcement measures, such as rock bolt supports
[25] (Figure 2) and steel rib supports [26] (Figure 3), are widely
used to improve the safety against adverse geology conditions.
A total of 4 steel rib and 25 rock bolt support measures were
recorded completely in the studied sections (2.42 km), whereas
all support measures were several meters long. Based on the
statistical features of actual support measures and proposed
boring indexes in this study, quantitative advice could be
provided for support measure suggestions.

2.2. TBM Overview. Figure 4 shows that the main TBM
specifications include a diameter of 5.2m, 34 cutters, a data
acquisition frequency of 1Hz, and other specifications, as
listed in Table 1. ,e cutterhead thrust refers to the loading
of a cylinder, which includes the valid rock mass frag-
mentation thrust on the rock mass and the friction thrust to
overcome the friction of pulling the auxiliary equipment. So,
a field tunneling test was conducted to determine the friction
torque and thrust during the shield friction tests [5], and the
valid rock mass fragmentation thrust (torque) could be
calculated through total thrust (torque) subtracting to
friction thrust (torque).

2.3. Study Flowchart. To obtain novel boring indexes based
on TBM big data, a flowchart is proposed, as shown in
Figure 5. ,e three main steps are (1) data processing (used
for data production), (2) proposed boring indexes (dem-
onstrating the methods and including the verification of the
proposed boring indexes), and (3) application of boring
indexes in support measure suggestions.

3. Parameter Characteristics during the TBM
Cyclic Tunneling Process

In this study, the analysis of parameter characteristics during
a cyclic tunneling process is conducted, linear F-p and T-p
relationships in the ascending section are proposed, and a
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physical mechanism is introduced to verify the relationships.
Subsequently, a data processing method is proposed based
on the parameter characteristic analysis for achieving a
better cyclic segmentation.

3.1. Main Rock Mass Fragmentation Parameters during the
TBM Operation. In general, the main parameters reflecting
the characteristics of the TBM tunneling process include the
rotation speed, advance rate, penetration (denoted as p
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Figure 1: Stratigraphic profile of the study region.

(a) (b)

Figure 2: Rock bolt supports during adverse geology conditions: (a) fault fracture zone in chainage K66 + 010 and (b) fault fracture zone in
chainage K63 + 992.

(a) (b) (c)

Figure 3: Steel rib supports during adverse geology conditions: (a) weak rockmass in chainage K65 + 166, (b) fault fracture zone in chainage
K63 + 982, and (c) collapse in chainage K63 + 730.
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[mm/r] and expressed as p � v/n), cutterhead thrust, and
cutterhead torque. ,e rock mass is effectively broken under
a preset cutterhead rotation speed (denoted as n_set [r/min])
and advance rate (denoted as v_set [%]) by the TBM op-
erators and action of F and T by the TBM driver systems.
,erefore, operational and performance parameters are
acquired. ,e realization process is as follows.

Operational parameters (active parameters), including
cutterhead rotation speed and advanced rate, are the main
controlling parameters. By adjusting performance param-
eters (passive parameters), such as n_set and v_set, the
cutters penetrate the rock mass under the action of F and T.
,e values of performance parameters reflect the resistance
of rock mass fragmentation at a certain p, which can be
expressed as F and T�f(p) [27] for the same rock mass.

3.2. Parameter Characteristics and Section Segmentation for
TypicalTBMCyclicTunneling. Figure 6 shows the parameter
characteristics of a typical TBM cyclic tunneling process,
which includes processes among n, n_set, v, v_set, F, and T,
where the x-axis and y-axis represent the time and the

parameter values. Four sections were acquired in one cyclic
tunneling process according to changes in parameter
characteristics [4, 28], including idling, ascending, stable,
and descending sections.

,e parameter characteristics in each section are de-
scribed as follows:

(a) Idling section: the startup process of the cutterhead
with an increasing n and v is accompanied by no
effective rock mass fragmentation. ,is process is an
invalid rock mass fragmentation process.

(b) Ascending section: n and n_set remain constant,
whereas v, p, F, and T gradually increase with an
increasing v_set. Interaction in the TBM rock is
gradually accompanied by an effective rock mass
fragmentation, whereas this section lasts 2–5min
with a propel stroke of 100–200mm, during which
the rock mass rarely changes. Furthermore, this
section has two features according to the fluctuation
of different parameters at approximately 220 s. Prior
to that, F and T increase with few fluctuations, but
they also increase with severe fluctuations. ,e
corresponding cutterhead thrust is denoted by Fb.
,e first and second stages in the ascending section
are introduced to describe the features. ,is process
is a valid rock mass fragmentation process.

(c) Stable section: n_set and v_set remain constant, the
same as other parameters; however, they exhibit
some fluctuations until the maximum propel stroke.
,is is the main rock mass fragmentation process
during cyclic tunneling [3]. ,is process is a valid
rock mass fragmentation process.

(d) Descending section: at the end of a cyclic tunneling,
each parameter gradually decreases, and the cut-
terhead continues to rotate for a short period to clean
the muck in the cutterhead until the maximum
propel stroke. Subsequently, the TBM operators stop
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Figure 4: Schematic of the TBM [24].

Table 1: Main TBM specifications.

Parameters Values
Type Open TBM
Number of cutters, N 34 pieces
Cutterhead diameter, D 5,200mm
Maximum cutterhead thrust, F 11,340 kN
Maximum cutterhead torque, T 3,340 kNm
Maximum rotation speed, n 11.45 r/min
Maximum advance rate, v 120mm/min
Maximum propel stroke, L 1,800mm
Shield length, LS 4,200mm
Data collection frequency, f 1Hz
Friction torque, Tf 100 kNm
Friction thrust, Ff 3500 kN (total)/100 kN (single)
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the machine, retract the propel pumps, and prepare
for the next cyclic tunneling. ,is process is an
invalid rock mass fragmentation process.

3.3. Relationship between Different Parameters. Figure 7
shows the F-p and T-p relationships from the ascending
and stable sections in the valid tunneling process shown in
Figure 6.

Two linear F-p relationships exist according to the
fluctuations in the ascending section [20]: one has a higher
F-p slope in the first stage, but F fluctuates rarely, and the
majority of p is less than 2mm/r. ,e other has a lower F-p
slope [24] in the second stage, whereas F fluctuates severely
and the slope is less than the former (here, p exceeds 2mm/r
and F exceeds 6,900 kN). In the stable section, the F-p re-
lationship has a spindle shape, whereas p fluctuates more
than F does.,e linear F-p relationship of the second stage in
the ascending section could reflect the F-p relationship in the
stable section, whereas the F-p relationship of the first stage
in the ascending section could not. ,erefore, the second
linear F-p relationship reflects the valid rock mass frag-
mentation process and the stable section is a special process
of the second stage in the ascending section. ,e T-p re-
lationship is linear in all ascending sections [4], and the
intercept can be ignored. In summary, the linear F-p and T-p
relationships of the second stage in the ascending section can
reflect the general trend of the entire section during the valid
rock mass fragmentation process based on the statistical
features.

3.4. Physical Mechanism Analysis for Parameter
Characteristics. Two processes related to the two stages in
the ascending section are defined from the perspective of the
physical mechanism during rock mass fragmentation (re-
ferred to as the initial TBM-rock interaction process and
valid rock mass fragmentation process, respectively) to il-
lustrate the parameter fluctuation characteristics of the two
stages in the ascending section, as shown in Figure 6.

3.4.1. Initial TBM-Rock Interaction Process. Two principles
can be used to explain the initial TBM-rock interaction
process. ,e first principle proposed a crushed zone [9] in
the interaction of TBM rock in the early stages; the rockmass
would not break unless the loading was greater than the
ultimate strength [29]. ,e second principle proposed the
footing bearing capacity [30], which regarded the rock mass
as a footing. ,e rock mass was broken when the rock
penetration pressure was greater than the bearing capacity,
which is a function of physical parameters, such as cohesion
(c) and internal friction angle (φ), as shown in Figures 8(a)
and 8(c).

3.4.2. Valid Rock Mass Fragmentation Process. In the valid
rock mass fragmentation process, the rock mass is broken
under the interaction of the normal force (denoted by Fn,
provided by F) and tangential force (denoted by Fr, provided

by T) of the cutters, as shown in Figures 8(b) and 8(d) and
expressed in the following equation:

Fn �
F − Ff

N
,

Fr �
T − Tf 


N
i�1 Ri

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where Tf is the friction torque, Ff is the friction thrust, N is
the number of cutters in the cutter head, and Ri is the radius
of cutters installed in the cutter head.

For the disc cutter, Rostami and Ozdemir [31] defined
the rock mass fragmentation force as the product of the
uniaxial compressive strength and interaction area in the
normal and tangential directions, as expressed in (2) and
shown in Figure 9.

Fn � A1 · UCS � w ·

�������������

2rp − p
2

· UCS



,

Fr � A2 · UCS � w · p · UCS.

⎧⎪⎨

⎪⎩
(2)

As shown in Figure 9, when p is greater than 2mm/r and
less than 10mm/r, an acceptable linear relationship exists
between Fn and Fr with an increasing p, indicating a linear
relationship among Fr, Fn, F, and T.

3.5. Data Processing. After performing the parameter
characteristic analysis in cyclic tunneling processes, a data
processing method is proposed, which includes data ex-
traction, section segmentation, and adjustment of ascending
sections.

3.5.1. Data Extraction. Data extraction was aimed to extract
cyclic tunneling data and downtime processes from time
series TBM tunneling data, as shown in Figure 10.,e cyclic
tunneling processes are the main rock mass fragmentation
processes, and the downtime processes are invalid frag-
mentation processes. For the extraction of cyclic tunneling
processes, a comprehensive judgment method is adopted,
which combines the TBM operational features when F, T, n,
and v are greater than zero, as expressed in (3). ,erefore,
cyclic tunneling processes are obtained using (4) when C is
greater than 0, and the downtime processes are obtained
when C is less than or equal to 0.

C � n · v · F · T, (3)

C> 0, cyclic tunneling processes,
C≤ 0, downtime processes.

 (4)

3.5.2. Outlier Detection. In general, main parameters would
run under the maximum values, as presented in Table 1.
However, there may exist some outliers owing to the sensor
breakdown or other reasons, such as the outlier of v [32];
however, it could not break the tunneling processes. Other
parameters such as the outlier of T would break the
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tunneling processes because of the maximum electric cur-
rent of motors [28]. ,erefore, the outlier detection was
focused on v, and the method is expressed in the following
equation:

v> 120
mm

min
, outliers,

v≤ 120
mm

min
, normal.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

3.5.3. Section Segmentation. ,e ascending and stable sec-
tions of the cyclic tunneling process were obtained using the
data extraction method, as expressed in equation (4). In
many cases, the values of v, F, and T in the ascending section
are lower than those in the stable section, as shown in
Figure 6. In this study, the mean value method was proposed
for section segmentation in the ascending and stable sec-
tions. ,e above three parameters typically change together;
therefore, a single value of T is adopted to achieve section
segmentation. When the time series T is less than the mean
value Tm, it should be regarded as an ascending section;
otherwise, it is regarded as a stable section.

T>Tm, stable section,

T≤Tm, ascending section,
 (6)

and

Tm �
1
Q



Q

i�1
Ti, (7)

where Q is the duration of the ascending and stable sections,
Tm is the mean value of T in the ascending and stable
sections, and Ti represents the real-time T in the ascending
and stable sections.

3.5.4. Adjustment of the Ascending Section Data. From the
characteristic analysis of the cyclic tunneling process in
Figures 6 and 7, a p value of less than 2mm/r implies an
invalid rock mass fragmentation process. ,erefore, the
adjustment of ascending section data could adopt a method
that can be expressed as follows:

p< 2
mm

r
, invalid ascending section,

p≥ 2
mm

r
, valid ascending section.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

4. Feature Expression for the TBM Cyclic
Tunneling Process

4.1. Feature Expression. ,e analysis presented in Section 3
showed that linear F-p and T-p relationships in the as-
cending sections are clear according to the field tunneling
data and physical mechanism analysis. ,is concise and
practical method avoids complex forms.,e stable section is
a special stage of the second stage of the ascending section.
,erefore, three coefficients of the F-p and T-p relationships
(i.e., a, b, and k) are introduced to express the characteristics
of the rock mass fragmentation process as

F � (a · p + b) · N,

T � k · p · N,
 (9)

where a and b are the slope and intercept coefficients of the
linear F-p relationship, with the units of (kN/cutter)/(mm/r)
and kN/cutter, respectively; k is the slope coefficient of the
linear T-p relationship with a unit of (kNm/cutter)/(mm/r);
and the intercept of the linear T-p relationship can be ig-
nored owing to the minor effect on the linear relationship
[4].

Equation (9) is a simplified expression because it cal-
culates the coefficients by directly averaging the total thrust
and torque over the number of cutters, which may differ
from equation (1). For example, the definition of single
cutter torque and tangential force in the average torque of
cutter head shows that the coefficient between the single
cutter torque and tangential force is approximately 1.3 for
this case. However, equation (9) can still be considered a
secure and simple feature expression for the cyclic tunneling
process owing to the calculation convenience compared with
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the expressions presented in [33, 34] without considering
rock mass parameters.

4.2. Definition of Boring Indexes. Boring indexes are intro-
duced to reflect the physical characteristics of the coefficients
in the linear F-p and T-p relationships, which could reveal
the law from the mechanism perspective of rock mass
fragmentation and provide comprehensive information
concerning the rock mass:

(1) Normal boring difficulty index, a: the coefficient a in
the F-p slope reflects the required increment of
cutterhead thrust for a unit increment of penetra-
tion. A larger value corresponds to a harder rock
mass to overcome the resistance for a unit increment
of penetration, as reported in [24].

(2) Initial rock mass fragmentation difficulty index, b:
the coefficient b in the F-p intercept reflects the
required cutterhead thrust for initial penetration,
which supposing p � 0 is related to the rock mass
physical parameters [24]. Consequently, the rock
mass is broken unless p> pb and F> Fb. However, pb
is uncertain within the range of 1-2mm/r in this
project, and b is an intercept derived from the linear
F-p relationship, which can be conveniently deter-
mined. Meanwhile, the relationship between Fb and
b can be expressed as Fb � a·pb+ b; that is, b is in-
troduced in place of Fb.

(3) Tangential boring difficulty index, k: the coefficient k
in the T-p slope reflects the required increment of
cutterhead torque for a unit increment of penetra-
tion [4]. A larger value indicates more energy con-
sumed for fragmentation of a unit volume of rock
mass.

Some of the many advantages of the three indexes are (a)
higher accurate reflection of the rock mass characteristics,
such as the physical parameters in a user-friendly manner
[24]; (b) faster recognition of characteristics for the use of
data in ascending section during the cyclic tunneling pro-
cess; and (c) obtaining F and Tat different p values, which is
crucial for adjusting and optimizing different operational
parameters for safe and efficient tunneling.

4.3. Determination of Boring Indexes. ,e ascending section
is the start of the valid cyclic tunneling process, the pa-
rameters of which have a large range from zero to a stable
value, as shown in Figure 6. Section 3.5 presents the data
processing method, where the ascending section data could
be obtained readily. ,us, the boring indexes could be ac-
quired through linear regression using the F-p and T-p data
in ascending sections, which can quickly reflect the char-
acteristics of the rock mass during tunneling. ,erefore, the
boring indexes were obtained. In general, the coefficient of
determination R2 of linear regression is introduced to select
valid ascending section data, whereas R2 is set to be greater
than or equal to 0.6 [4].

4.4. Influence of Boring Indexes in Different Rock Masses.
Two sets of tunneling processes were selected, distributed
between chainages K64 + 310 to K64 + 304 (Yanshanian
granite) and K65 + 483 to K65 + 478 (Jurassic tuff), to an-
alyze the influence of boring indexes in different rock
masses. ,e length of each set of tunneling processes is
approximately 5.3m, comprising three adjacent cyclic
tunneling processes, within which the rock mass conditions
of each set could be considered constant (Figure 11). Based
on the flowchart presented in Figure 5, boring indexes are
obtained in cyclic tunneling processes, as shown in Table 2.

Boring indexes a, b, and k in the same set of cyclic
tunneling sections can be regarded identical. For example,
boring indexes in the three cyclic tunneling processes of each
set have minor deviations, indicating that boring indexes are
unique under the same rockmass conditions. Boring indexes
differ for various rock masses, and each of their mean values
exhibits a large deviation (Table 2). For example, the mean of
index a for each set is 9.5 and 8.1 (kN/cutter)/(mm/r), re-
spectively, with a low absolute error of 1.4 (kN/cutter)/(mm/
r) and relative error of 15%.,emean of index b is 192.6 and
115.3 kN/cutter for each set, respectively, with a moderate
absolute error of 77.3 kN/cutter and relative error of 40%.
,emean of index k for each set is 4.7 and 2.4 (kNm/cutter)/
(mm/r), respectively, with a high absolute error of 2.3 (kNm/
cutter)/(mm/r) and relative error of approximately 100%.
,ese results confirm that boring indexes vary for different
rock masses.

4.5. Verification of Boring Indexes Using Performance
Prediction

4.5.1. Significance. ,e proposed boring indexes were ver-
ified using performance prediction to illustrate the ratio-
nality of the proposal. ,e calibration of model was
performed using the data of F, T, and p in the ascending
section (linear relationships are proposed in (9)), and ver-
ification of the model was carried out using the data in the
stable section of the same cyclic tunneling processes. ,e
rock mass could be assumed identical for a cyclic tunneling
stroke of approximately 1,800mm, as described in Section
4.4. However, it is difficult to determine the physical pa-
rameters of the rock mass in a timely manner, thus con-
ventional methods [10–15] are difficult to be used for
performance prediction. Based on the fine linear F-p and T-p
relationships expressed by boring indexes in the ascending
sections, as shown in Figure 7, accurate performance pre-
diction models can be determined for the cyclic tunneling
process.

,us, boring indexes could be used for the following. (1)
Adjusting the presetting operational parameters in stable
sections in advance: different performance parameters can
be obtained with various operational parameters, and TBM
operators can select the proper operation parameters in
stable sections based on the performance prediction models.
(2) Optimizing operational parameters subjected to different
constraint conditions: the performance prediction models
provided relationships of different parameters, and TBM

Advances in Civil Engineering 9



operators could optimize operational parameters using the
maximum values of performance parameters. (3) Adverse
geology conditions diagnosis: when the predicted and actual
performance parameters have large prediction deviations in
different operational parameters, there might be adverse
geology conditions.

4.5.2. Main Characteristics of Boring Indexes for Performance
Prediction. For the cyclic tunneling process in this project,
boring indexes a, b, and k were acquired for 291 cycles using
the proposed method. ,e main characteristics are listed in
Table 3, in the range of 1.1–20.8 (kN/cutter)/(mm/r) for
index a, 79–224 kN/cutter for index b, and 1.8–5.4 (kNm/
cutter)/(mm/r) for index k, demonstrating some random-
ness and deviation, indicating some differences in rock mass
during the TBM tunneling.

4.5.3. Model Evaluation Indicators. ,e evaluation indica-
tors were introduced to assess the accuracy of performance
prediction, as expressed in equation (10). Here, the mean
absolute error (MAE) indicates the absolute error and mean
absolute percentage error (MAPE) indicates the absolute
percentage error of the actual and predicted performance
parameters as follows:

MAE �
1
N

× 
N

i�1
yi − yi


,

MAPE �
1
N

× 
N

i�1

yi − yi




yi

× 100%,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where yi is the actual performance parameter, yi is the
predicted performance parameter, and N is the number of
cyclic tunneling processes.

4.5.4. Performance Prediction. ,e mean values of p, F, and
T in stable sections of the cyclic tunneling process and the
predicted values of F and T using boring indexes and p, as
expressed in equation (9), are shown in Figure 12.,e actual
and predicted results for F have an MAE and MAPE of
14.2 kN and 6.7%, respectively, indicating a close average
predicted thrust to the actual values, with an error of
14.2 kN. ,e actual and predicted results of T have an MAE
and MAPE of 3.14 kNm and 10.7%, respectively. ,e ob-
tained results could be attributed to the appropriateness of
the linear of F-p and T-p relationships in ascending sections
owing to a small error between actual and predicted
performances.

5. Support Measure Suggestions Based on
Boring Indexes

5.1. Significance. ,e TBM shield shown in this project has a
length of 4,200mm, during which the rock mass cannot be
directly observed; however, the quality of the rock mass on
the shield surface and tunnel face is important for safety
construction [35]. ,ere are less significant methods for the
real-time detection of rock mass on shield surfaces owing to
the narrow space [36], and a quick diagnosis of adverse
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Figure 11: Boring indexes in different rock mass: (a) chainage 64310.1 to 64304.8 and (b) chainage 65483.6 to 65478.3.

Table 2: Boring indexes.

Row

Boring indexes
K64 + 310 to
K64 + 304

K65 + 483 to
K65 + 478

a b k a b k
1 9.5 185 4.6 8.2 112 2.5
2 9.7 195 4.7 9.5 120 2.5
3 9.3 198 4.8 6.6 114 2.2
Mean values 9.5 192.6 4.7 8.1 115.3 2.4
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Table 3: Statistical results of the boring indexes.

Index Mean Std. Min 1st quartile 2nd quartile 3rd quartile Max Count
a 10.8 3.2 1.1 8.6 10.8 12.8 20.8 291
b 143.9 31.9 79.0 119.0 142.0 168.0 224.0 291
k 3.5 0.9 1.8 2.8 3.6 4.3 5.4 291
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Figure 12: Performance prediction in different cyclic tunneling processes: (a) thrust prediction and (b) torque prediction.
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geology could be helpful for suggesting support measures
during continuous tunneling. ,e tunneling data reflecting
the rock mass could provide a useful method for adverse
geological diagnosis and support measure suggestions.

5.2. Main Characteristics of Boring Indexes in Support
Measures Sections. Table 4 presents geological descriptions
of the 29 typical support measures sections and corre-
sponding characteristics of boring indexes a, b, and k. In-
deed, 133 valid cyclic tunneling processes exist in 29 typical
support measures sections.

Table 5 presents the statistical results of boring indexes
in the 29 typical support measures sections. ,e value of
index a is in the range of 1.1–16.5 (kN/cutter)/(mm/r),
and the mean value is 7.89 (kN/cutter)/(mm/r), demon-
strating a significant difference in various support mea-
sures sections. Meanwhile, the value of index b is in the
range of 89–146 kN/cutter, and the mean value is 115 kN/
cutter, which is close to the friction thrust (Ff � 100 kN),
indicating that the rock mass can be easily broken after the
cutterhead thrust exceeds the friction thrust. ,e value of
index k is in the range of 1.6–5.1 (kNm/cutter)/(mm/r),
and the mean value is 2.9 (kNm/cutter)/(mm/r), dem-
onstrating a significant difference in various support
measures sections.

Table 6 presents the statistical results of boring indexes
for 133 support measure processes. ,e total support sec-
tions have small randomness and variability in the range of
1.1–20.8 (kN/cutter)/(mm/r) for index a, 85–219 kN/cutter
for index b, and 1.8–5.4 (kNm/cutter)/(mm/r) for index k.
,e distribution of boring indexes in the 133 support
measure processes is similar to that of the 29 typical support
measures sections.

5.3. Criterion for Support Measure Suggestions. In general,
higher boring indexes mean more difficulty for rock mass
fragmentation. Also, a criterion should be adopted to
provide quantitative quotas for support measure sugges-
tions; reasonable criterion could yield precise results. ,e
selection of criterion is random and no theory. 3rd quartile,
also called the larger quartile, is a widely used method to
describe the distribution of data. In this study, a criterion for
support measures is proposed based on the values of the 3rd
quartile of boring indexes in the 29 typical support measures
sections:

(1) ,e criterion for index a adopts a 3rd quartile value of
10.05 (kN/cutter)/(mm/r). It is advisable to conduct
support measures when index a is less than 10.05 kN/
cutter/mm/r.

(2) ,e criterion for index b adopts a 3rd quartile value of
127 kN/cutter. It is advisable to conduct support
measures when index b is less than 127 kN/cutter.

(3) ,e criterion for index k adopts a 3rd quartile value of
3.3 (kNm/cutter)/(mm/r). It is advisable to conduct
support measures when the index k is less than 3.3
(kNm/cutter)/(mm/r).

Moreover, a parallel relationship exists between the three
indexes, confirming that support measures should be
implemented if one of the three indexes meets the
requirements.

5.4. Model Evaluation Indicators. ,e criterion for support
measure suggestions based on boring indexes is a classifier,
and the adaptability of criterion can be assessed using in-
dicators such as precision (P), recall (R), and F1-score (F1),
which are derived from indicators P and R, where higher
values of F1 indicate higher accuracy of the classifier [37].

P �
TP

TP + FP
,

R �
TP

TP + FN
,

F1 �
2 · P · R

P + R
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where TP represents the number of actual and suggested
truly support measures (suggested truly), FP is the number
of actual and not suggested truly support measures (sug-
gested incorrectly), and FN is the number of actual but
suggested falsely support measures (suggested falsely).

5.5. Results of Support Measure Suggestions

5.5.1. Suggestion Results Using One Single Index in the Entire
Process. For the criterion mentioned in Section 5.3, boring
indexes in the entire process (291 cycle processes in Section
4.5.2, which contains support and nonsupport measures) are
analyzed for support measure suggestions, and the evalua-
tion indicators are introduced to assess the accuracy. Fig-
ure 13 shows the characteristics of boring indexes along the
tunnel and the criterion for different indexes.

,e support measures identified using different index
criteria in different lithologies are listed in Table 7, and the
accuracies for different indicators are presented in Table 8.
According to Table 7, the total number of support measures in
tuff lithology was 13; that is, TP-a was 9, FP-a was 1, and FN-a
was 4, indicating 9 suggested truly, 1 suggested incorrectly, and
4 suggested falsely using index a, for a P-a of 90%, R-a of 69%,
and F1 of 78%. Specifically, F1 is 35 and 74% using index b and
k, respectively, indicating that index a has a higher accuracy
based on F1 in tuff lithology. In lava lithology, the total number
of support measures was 57; that is, TP-a was 50, FP-a was 13,
and FN-awas 7 using index a, for a P-a of 79%,R-a of 88%, and
F1 of 83%. In addition, F1 is 78% using index b and k; that is,
index a has a higher accuracy based on F1 in lava lithology. In
granite lithology, the total number of support measures was 67,
TP-a was 37, FP-a was 7, and FN-a was 26 using index a, for a
P-a of 84%, R-a of 59%, and F1 of 69%. In addition, F1 is 54 and
63% using index b and k, indicating that index a has a higher
accuracy based on F1 in granite lithology. Furthermore, in lava
lithology, evaluation indicators are higher compared to tuff and
granite lithologies, confirming a higher suggested accuracy.
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,erefore, Liujie et al. [24] proposed a linear regression
relationship between index a and Jv rock mass volumetric
joint count (number/m3), expressed as a� 0.02 J2v −1.22Jv

+19.83. Here, Jv is greater than or equal to 0, whereas a higher
value of Jv corresponds to a lower index a. In the support
measures sections, as shown in Figures 2 and 3, many weak

Table 5: Main characteristics of boring indexes of 29 typical support measures sections.

Index Mean Std. Min 1st quartile 2nd quartile 3rd quartile Max Count
a 7.89 3.51 1.1 5.45 7.6 10.05 16.5 29
b 115 14.7 89 104 112 127 146 29
k 2.90 0.84 1.6 2.35 2.8 3.3 5.1 29

Table 6: Statistical results of boring indexes in 133 support measures.

Index Mean Std. Min 1st quartile 2nd quartile 3rd quartile Max Count
a 8.2 3.3 1.1 5.7 7.5 10.2 20.8 133
b 129.7 31.7 85.0 105.0 124.0 144.5 219.0 133
k 3.1 0.9 1.8 2.3 2.8 3.7 5.4 133
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Figure 13: Results of support measure suggestions using one single index.

Table 7: Results of support measure suggestions using one single index.

Lithology Total number of cycles Total number of support
Suggestions results in the entire process

TP-a FP-
a FN-a TP-b FP-

b FN-b TP-k FP-
k FN-k

Tuff 28 13 9 1 4 4 6 9 10 4 3
Lava 135 57 50 13 7 45 13 12 54 28 3
Granite 128 63 37 7 26 24 10 39 16 11 47
“–a” indicates the result judged by index a, “–b” indicates the result judged by index b, and “–k” indicates the result judged by index k.
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and fragmented rock masses exist, which contain the number
of joints accompanied by increased Jv. ,us, index a in the
support measures sections has lower values, which achieved
better results for support measure suggestions using index a.

5.5.2. Suggestions Results Using Cree Indexes in the Entire
Process. One single index may adversely influence other
indexes; a combination of three indexes, where all indexes
shouldmeet the criterion for support measures, is conducted
to examine the results compared to that of a single index.
Figure 14 shows the results of a combination of the three
indexes, whereas the accuracies are presented in Table 9.

For the 13 supportmeasures in tuff lithology,TPwas 10, FP
was 7, and FN was 3, indicating 10 suggested truly, 7 suggested
incorrectly, and 3 suggested falsely using a combination of the
three indexes, for a P of 59%, R of 77%, and F1 of 67%. For the
57 support measures in lava lithology, TP was 56, FP was 36,
and FN was 1, for P� 61%, R� 98%, and F1� 75%. For the 63

support measures in granite lithology, TP� 45, FP� 14, and
FN� 18, for P� 76%, R� 71%, and F1� 74%.

Compared with results listed in Tables 7 and 8, Table 9
shows better suggestion results in granite lithology, with F1 of
74% using a combination of three indexes and 69, 49, and 36%
using a single index, where accuracies were highly enhanced.
However, in tuff and lava lithologies, TP and FP exhibited a
slight enhancement, resulting in a higher R, lower P, and lower
F1 compared with that of a single index. All the achieved results
indicate that a combination of the three indexes could improve
the accuracy of support measure suggestions in granite li-
thology. However, slight changes in tuff and lava lithologies
occur, and index a could still acquire better accuracy sugges-
tions in tuff and lava lithologies.

6. Discussion

Boring indexes reflect three characteristics of rock mass
fragmentation precisely. ,erefore, we proposed a

Table 8: Evaluation indicators using one single index.

Lithology
Evaluation indicators

P-a (%) R-a (%) F1-a (%) P-b (%) R-b (%) F1-b (%) P-k (%) R-k (%) F1-k (%)
Tuff 90 69 78 40 31 35 71 77 74
Lava 79 88 83 78 79 78 66 95 78
Granite 84 59 69 71 38 49 59 25 36
Average 84 72 77 63 49 54 65 66 63
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Figure 14: Results of support measure suggestions using a combination of the three indexes.
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preliminary application for support measure suggestions
based on the statistical features of boring indexes.

,e recommended operational parameters for AI-
aided tunneling are shown in Figure 15. ,e similarity
methods of boring indexes, such as cosine and Euclidean
distance similarities, were used to select the maximum
similarity samples from the set of samples and actual
operating values, such as cutterhead rotation speed n and
advance rate v, whereas the controlling parameters could
be set as the corresponding values of the similarity
samples.

vmax � n · pmax � n · min
Fmax − b

a
,
Tmax

k
,
vmax

n
 . (12)

Moreover, the operational parameters for manual op-
eration tunneling (expressed in equation (12)) were opti-
mized. ,e optimum control parameters are effective for
improving the advance rate, and the use of boring indexes to
predict cutterhead thrust and torque provides a reasonable
choice for selecting the advance rate v, which could achieve
promising optimization results during manual operation
tunneling.

In addition, rock masses can be classified using different
project data (Figure 15). Determining the classification of
rock mass is based on the actual situation of rock mass and
experience of construction workers. Furthermore, many
uncertain factors exist because of the complexity of the rock
mass and subjectivity of humanity, and quantitative indexes
are required to accurately assess the classification. ,e de-
scribed similarity methods of using boring indexes to
identify the similarity samples from different projects could

determine the best matching rock mass and improve the
accuracy and operability in rock mass classification, as
shown in Figure 15.

7. Conclusions

(1) ,e second stages of ascending sections (p≥ 2mm/r)
are valid fragmentation processes, and the first stages
of ascending sections (p< 2mm/r) are invalid
fragmentation processes in the Yinchao TBM proj-
ect. Linear F-p and T-p relationships in the second
stages of ascending sections are more appropriate for
the expression of valid fragmentation processes.

(2) Boring indexes derived from the coefficient of linear
F-p and T-p relationships could illustrate the features
during TBM-rock mass fragmentation. For instance,
index a reflects the initial rock mass fragmentation
difficulty, index b reflects the normal boring diffi-
culty, and index k reflects the tangential boring
difficulty.

(3) Boring indexes could be used for support measure
suggestions, with criterion values of 10.05 (kN/
cutter)/(mm/r), 127 kN/cutter, and 3.3 (kNm/cut-
ter)/(mm/r) for indexes a, b, and k, respectively,
whereas support measures should be adopted when
boring indexes are lower than the criterion.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Table 9: Results and evaluation indicators using a combination of the three indexes.

Lithology Total number of cycles Total numberof support
Suggestions results in the entire process

TP FP FN P (%) R (%) F1 (%)
Tuff 28 13 10 7 3 59 77 67
Lava 135 57 56 36 1 61 98 75
Granite 128 63 45 14 18 76 71 74
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Figure 15: TBM recommendation systems for different goals based on boring indexes.
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