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To describe the mechanical properties of the system of pipe pile-soil reasonably and accurately, the constitutive relations of the soil
around pile and pile core soil are characterized by the fractional derivative viscoelastic model. We assume that the radial and
circumferential displacements of the soil around the pile and pile core soil are the functions of r, θ, and z. 'e horizontal dynamic
control equations of soil layers are derived by using the fractional derivative viscoelastic model. Considering the fractional
derivative properties, soil layer boundary condition, and contact condition of pile and soil, the potential function decomposition
method is used to solve the radial and circumferential displacements of the soil layer.'en, the force of unit thickness soil layer on
the pipe pile and the impedance factor of the soil layer are obtained.'e horizontal dynamic equations of pipe pile are established
considering the effect of soil layers. 'e horizontal dynamic impedance and horizontal-swaying dynamic resistance at the pile top
are obtained by combining the pipe pile-soil boundary conditions and the orthogonal operation of trigonometric function.
Numerical solutions are used to analyze the influence of pile and soil parameters on the soil impedance factor and horizontal
dynamic impedance at pile top. 'e results show that the horizontal impedance factors of the soil layer and horizontal dynamic
impedance of pipe pile by using the fractional derivative viscoelastic model can be degraded to those of the classical viscoelastic
model and the elastic model. For the fractional derivative viscoelastic model of soil layer, the influence of soil around pile on the
dynamic impedance is greater than that of pile core soil.'emodel parameter TOa, the inner radius of pipe pile, and the pile length
have obvious effects on the horizontal impedance of the soil layer and pipe pile, while the influence of the pile core soil on the pile
impedance is smaller.

1. Introduction

As a new viscoelastic constitutive model, the fractional de-
rivative viscoelastic model has many advantages. For example,
the model parameters can be determined by through inversion
based on experiment data, numerical calculation, and software
fitting. 'e model can describe the mechanical properties of
materials under a relatively wide range of frequencies.
Moreover, the model can not only well reflect the process of
nonlinear gradual change at primary stage but also present
accurately at steady stage and accelerated stage under high
stress [1]. As a result, the model has been used in many fields
such as viscoelastic mechanics, wave propagation, turbulence,
control, stochastic diffusion, biomaterials, random wandering,
and molecular spectroscopy [2–7]. Soil is a viscoelastic

medium, but the application of fractional derivative viscoelastic
models to the geotechnical engineering has only just started.

In recent years, more and more scholars employ the
fractional derivative viscoelastic models to study the soil
creep, consolidation, and vibration. On the basis of creep
tests, Zhu et al. [8] proposed a fractional Kelvin–Voigt
model to account for the time-dependent behavior of soil
foundation under vertical line load based on the theory of
viscoelasticity and fractional calculus and derived an ana-
lytical solution of settlements in the foundation using
Laplace transforms; the results indicated that the settlement-
time relationship can be accurately captured by varying the
fractional orders of differential operator and the viscosity
coefficients. Yin et al. [9] used a fractional derivative vis-
coelastic model to derive the stress-strain relationships of the
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geomaterials under the condition of triaxial test. Based on
the Nishihara model, Li et al. [10] established a fractional
derivative-based creep model by the triaxial creep and shear
tests of deep artificial frozen soil under different confining
pressures and temperatures. Xu and Cui [11] proposed a
fractional derivative creep model to describe the time-
varying properties of Shanghai clay.

'e pile-soil system is an important foundation form,
which is widely used in civil and geotechnical engineering.
Studying the dynamic characteristics of pile foundations and
providing the theoretical basis for the design, construction,
and testing of pile foundations are important because the
pile foundations are subject to various dynamic loads. Some
research results have been obtained on the dynamic char-
acteristics of solid-core piles and the dynamic interaction of
pile-soil [12–18]. With the development and application of
pipe pile technology, the research on the dynamic charac-
teristics of pipe pile has attracted sufficient attention. Liu
et al. [19] studied the influence of soil plug effect on the
dynamic response of large-diameter pipe piles during low-
strain integrity testing and derived an analytical solution that
can consider the stress wave propagating both in the vertical
and circumferential directions in the frequency domain
using the transfer function method. Cui et al. [20] proposed
a new mechanical model for predicting the longitudinal
vibration of pipe piles in the layered viscoelastic foundations,
a dielectric viscous damping in the radial nonuniformity
media was proposed by extending Novak’s plane strain
model and the complex stiffness method, and the analytical
solutions for the system dynamic impedance, velocity
conductance, and reflected signals were also obtained. Wu
et al.[21] established the motion equations of the soil-pile
system in the conditions of small deformation by consid-
ering the effect of soil plugging and additional mass and
obtained the frequency-domain analytical solution of the
vertical dynamic response of the pipe pile using the Laplace
transform and the transfer function technique. A new
method for the dynamic interaction between large-diameter
floating pipe piles and the surrounding soil was proposed by
Meng et al. [22], and the corresponding analytical solution of
longitudinal complex impedance was obtained.

For the mechanical characteristics of pipe pile-soil
system, most studies treated the soil layers as an elastic
medium or a viscoelastic medium to derive the constitutive
relationships of the soil layers; however, the classical elastic
and viscoelastic methods have certain defects in describing
the soil material properties. To more reasonably describe the
constitutive relationships of the pile-soil system and in-
vestigate the mechanical properties of the pile-soil system
under the dynamic load, this paper adopts the fractional
derivative viscoelastic method to derive the horizontal dy-
namic control equations of pipe pile and soil layers. 'e
potential function decomposition method is used to solve
the radial and circumferential displacements of the pile-soil
system. Moreover, the horizontal dynamic impedance and
horizontal-swaying dynamic resistance at pile top are ob-
tained by combining the pipe pile-soil boundary conditions
and the orthogonal operation of trigonometric function.
Finally, numerical solutions are used to analyze the

influences of pile and soil parameters on the impedance
factor of soil layers and the horizontal dynamic impedance
of pipe pile.

2. Mathematical Models, Assumptions, and
Control Equations

As shown in Figure 1, the end-bearing pipe pile in the soil
vibrates horizontally under the horizontal dynamic load at
the pile top.

'e pipe pile is supported by the bedrock; the pipe pile
length and the soil thickness are allH; the density and elastic
modulus of the pipe pile are ρp and Ep, respectively; the inner
and outer radii of the pipe pile are rO and rI, respectively.'e
assumptions of the pipe pile-soil system are as follows: (1)
the pipe pile and soil layers exhibit small deformation; (2)
the pile core is completely filled with soil; (3) the pipe pile is
completely in contact with the soil and bedrock, without the
relative slip and dislodgement at the contact surface; and (4)
the pipe pile is regarded as the circular tube elements, and
the soil is regarded as viscoelastic media.

Because the classical viscoelastic model has certain de-
fects in the description of the mechanical behavior of soil
materials, the fractional derivative viscoelastic model is used
to describe the stress-strain relationships of soil around the
pile and the pile core soil [23]:

1 + ταββb

d
αβ

dt
αβ σβ � 1 + ταββa

d
αβ

dt
αβ  λβ εβ • I I + 2Gβεβ ,

(1)

where β�O and β� I denote the viscoelastic soil around the
pile and the pile core soil, respectively; σβ and εβ denote the
stress tensor and strain tensor of viscoelastic soil, respectively; I
is the unit matrix; τβa and τβb are the model parameters of the
fractional derivative viscoelastic model; and λβ and Gβ are the
Lamé constants for viscoelastic soil; λβ � 2μβ/1 − 2μβGβ,
where μβ is Poisson’s ratio of soil. Dαβ � dαβ /dtαβ is the αβ
(0< αβ < 1)-order of the Riemann–Liouville fractional deriv-
ative, where αβ is the order of the fractional derivative, and
theαβ-order Riemann–Liouville fractional derivative [24] is
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where Γ represents the gamma function.
For the microelement of viscoelastic soil layer, the

horizontal dynamic equations of fractional derivative vis-
coelastic soil layer [25] are
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where σβrr, σβθθ, σβrz, and σβθz are the radial, circumferential,
and shear stresses of the viscoelastic soil, respectively, and
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uβr and uβθ are the radial and circumferential displacements
of the viscoelastic soil, respectively.

'e strain-displacement relationship of viscoelastic soil
is

εβ �
1
2

graduβ + gradT
uβ . (4)

Ignoring the vertical displacement of the soil around pile
and the pile core soil, equation (3) can be expressed by
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where Δβ � 1/rz/zr(ruβr) + 1/rzuβθ/zθ, ωβz � 1/2r[z/zr

(ruβθ) − zuβr/zθ], and ρβ is the soil density.

3. Horizontal Dynamic Solutions of Soil Layers
Based on Fractional Derivative
Viscoelastic Model

Since the pipe pile-viscoelastic soil system undergoes a
steady-state vibration under the horizontal harmonic load of
the pipe pile top, the radial and circumferential displace-
ments of the soil around the pile, respectively, satisfy

uOr � uOre
iωtand uOθ � uOθe

iωt, where uOr and uOθ are the
radial and circumferential dynamic amplitudes of the soil
around the pile. 'e radial and circumferential displace-
ments of the pile core soil satisfy uIr � uIre

iωt and
uIθ � uIθe

iωt, where uIr and uIθ are the dynamic amplitudes
of the pile core soil. Substituting uOr � uOre

iωt,
uOθ � uOθe

iωt, uIr � uIre
iωt, and uIθ � uIθe

iωt into equations
(5) and (6), respectively, considering the properties of
fractional derivative, and reducing eiωt at both ends of the
equation, the horizontal dynamic control equations of soil
around the pile and the pile core soil can be expressed as
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where TOa � τOavO/H, ωβz � 1/2r[z/zr(ruβθ) − zuβr/zθ],
and β�O and β� I denote the viscoelastic soil around the
pile and the pile core soil, respectively.

As, r � r/H, z � r/H, ω � Hω/vO, uβr � uβr/H, uβθ
� uβθ/H, vO �

������
GO/ρO


, TOa � τOavO/H, TOb � τOb vO/H,

τ1 � τIa/τOa, τ2 � τIa/τOa, G � GI/GO, ρ � ρI/ρO, equations
(7) and (8) are dimensionless as follows:
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Decoupling equations (9) and (10),
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'e displacement of the soil at infinity is zero (when
r⟶∞, uOr⟶ 0, uOθ⟶ 0), and the stress at surface of
soil around the pile and the pile core soil is zero (when
z � H, σOrz � 0, σOθz � 0, σIrz � 0, σIθz � 0). Considering
the parity of the radial and circular displacements of soil, the
boundedness of the pile core soil displacement, and the
properties of the Bessel function, equations (12) and (13) can
be solved using the separation of variables method. 'e
series solutions of the potential function are

ϕO � cos θ 
∞

k�1
AOkK1 qOkr( sin αOkz( , (14)

ψO � sin θ 
∞
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2
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2
I − ζ2I ,

g2
I � α2Ik − η2I , αk � αOk � αIk � 2k − 1/2π, k � 1, 2, 3, . . .∞;

AOk, BOk, CIk, DIk are the coefficients to be determined by
the boundary conditions; and I1(·) and K1(·) are the first-
order modified Bessel functions of type I and type II,
respectively.

Considering equations (11) and (14)–(17), the series
solutions of the radial and circumferential displacement of
the soil layers are
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Since it is assumed that the pipe pile is in complete
contact with soil, considering the coordination of the pile-
soil system and the forms of soil displacements, the di-
mensionless horizontal displacement of the pipe pile satisfies

Up(z) � 
∞

k�1
Upk sin αkz( , (22)

where Upk is the model amplitude independent of z. Con-
sidering that the pile-soil displacement at the contact surface
satisfies uOr. � Up, when r � rO, θ � 0; uOθ � − Up, when
r � rO, θ � π/2; uIr. � Up, when r � rI, θ � 0; and
uIθ � − Up, when r � rI, θ � π/2. 'en, equations (18)–(21)
can be expressed by
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'e coefficients can be determined by solving equations
(23)–(26):

AOk � aOkUpk,

BOk � bOkUpk,

CIk � cIkUpk,

DIk � dIkUpk,

(27)

where aOk � − 2K1(gOkrO) + gOkrOK0(gOkrO)/eOk, bOk �

− 2K1(qOkrO) + qOkrOK0(qOkrO)/eOk, cIk � [gIkrII0 (gIkrI)

− 2I1(gIkrI)]/fIk, dIk � [qIkrII0 (qIkrI) − 2I1 (qIkrI)]/fIk,
eOk � qOkK0(qOkrO)K1(gOkrO)+ gOkK1 (qOkrO) K0(gOkrO)

+ qOkgOkrOK0(qOkrO) K0(gOkrO), and fIk � qIkgIkrII0
(qrI)I0(gIkrI) − gIkI1(qIkrI)I0(gIkrI) − qIkI1(gIkrI) I0
(qIkrrI).

Based on equations (18)–(21), the corresponding radial
stress and shear stress of the soil layers can be derived, and
the forces of per unit thickness soil around the pile and pile
core soil on pipe pile can be derived by the forms of series
solutions:
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'e resultant force of the unit thickness soil on the pipe
pile is

Px � π 
∞

k�1
hkUk sin αkz( , (29)
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(30)

where hk is the impedance factor of the soil layer [25] and the
real part and imaginary part of hk are the horizontal stiffness
factor and the horizontal damping factor of the soil layer,
respectively.

In this section, the dynamic solutions of the pile around
soil and pile core soil under the horizontal harmonic load are
obtained by the fractional derivative viscoelastic model. For
the soil layer under the harmonic load with different fre-
quencies, the variations of horizontal stiffness factor and the
horizontal damping factor can be analyzed and discussed by
equation (30).

4. The Numerical Analysis of Horizontal
Impedance Factor of Soil Layer

In equation (35), rO/H� 1/20, rI/H� 0.5/20, ρ� 1.0; G� 0.5,
ρp � 2.0, E� 1000, μO � 0.3, μI � 0.3, TOa � 10, TOa � 20,
τ1 � 0.5, τ2 � 0.5, αO � 0.5, and αI � 0.5. With the variation of
dimensionless frequency Hω/vOs, the variations of soil layer
impedance factor are shown in Figures 2–10. For the first-
order impedance factor, as the frequency Hω/vOs is smaller
than 1.8, the pile-soil interaction due to the pile top

excitation causes the soil vibration and wave propagation,
while the wave reflection and propagation in the vertical
direction of the soil cause the resonance. 'erefore, the
horizontal stiffness factor of the soil layer decreases sharply
with the increase of frequency. Near the frequency
Hω/vOs � 1.8, the impedance factor forms an obvious res-
onance point, while the horizontal damping factor is close to
the level. As the frequency Hω/vOs continually increases, the
horizontal stiffness factor and damping factor both increase
gradually. From Figure 2, the frequency at the resonance
point increases with the increase of the order k. At low
frequency, the horizontal stiffness factor shows more ob-
vious balance with the decrease of frequency, and the
horizontal section length of the damping factor is longer.

For the fractional derivative viscoelastic model, classical
viscoelastic model, and elastic model of soil, the comparison
curves of soil horizontal impedance factors are shown in
Figure 3. 'e impedance factor curves of fractional deriv-
ative viscoelastic model can gradually degenerate to the
classical viscoelastic model and elastic model, which verifies
the correctness of the results. Furthermore, the horizontal
impedance factor of the classical viscoelastic model is the
smallest, the horizontal impedance factor of the elastic
model is the largest, and the horizontal impedance factor of
the fractional derivative model is in between.

For different orders of the fractional derivative visco-
elastic model, the horizontal impedance factor curves of the
soil around the pile and the pile core soil are shown in
Figures 4 and 5. For different orders of fractional derivative,
the influence on the horizontal impedance factor of soil
around the pile is larger than that of the pile core soil. 'e
order of fractional derivative has almost no influence on the
horizontal damping factor of the pile core soil. As the order
of fractional derivative is larger, the stiffness factor and
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damping factor of soil around the pile are smaller; however,
the stiffness factor and damping factor of the pile core soil
are larger.

As shown in Figure 6, the effects of the dimensionless
model parameter TOa on the horizontal stiffness factor and
damping factor of soil around the pile are larger. As the
parameter TOa is larger, the stiffness factor and damping
factor of soil around the pile are smaller. For the soil around
pile and the pile core soil, the effects of model parameter
ratios τ1 � τIa/τOa and τ2 � τIb/τOb on the horizontal im-
pedance factor of soil layer are shown in Figures 7 and 8.'e
model parameters τ1 and τ2 have obvious effects on the
horizontal stiffness factor of soil layer, while there are almost
no effects on the horizontal damping factor. As the model
parameter ratio τ1 is larger, the horizontal stiffness factor is
smaller. However, the effects of model parameter ratio τ2 on
the horizontal damping factor and stiffness factor are
opposite.

'e influences of the pipe-pile sizes on the impedance
factor of soil layer are shown in Figures 9 and 10. As the
inner radius of the pipe pile is larger, the wall thickness of the
pipe pile is thinner, and the horizontal stiffness factor is

smaller.'e horizontal stiffness factor has a decreasing trend
when the inner diameter is larger and the frequency is
higher. However, the inner diameter has almost no influence
on the horizontal damping factor. 'e influence of the pipe-
pile length on the impedance factor of soil layer is larger. As
the pipe pile is longer, the horizontal impedance factor is
smaller.

5. Horizontal Dynamic Solution of Pipe Pile

To analyze the horizontal vibration of the pipe pile in soil
layers based on the fractional derivative viscoelastic model,
considering the dynamic equilibrium of pile microelement
and the soil force of equation (29), the horizontal dynamic
equation of pipe pile is

d
4
Up(z)

dz
− λ4Up(z) � −

4
E r

4
O − r

4
I 



∞

k�1
hkUk sin αkz( ,

(31)

where λ4 � 4ρpω2/E(r2O + r2I), ρp � ρp/ρO, and E � Ep/GO.
'e general solution of nonsingular equation (31) is

Up � C1cosh(λz) + C2sinh(λz) + C3 cos(λz) + C4 sin(λz) −
4

E r
4
O − r

4
I 



∞

k�1

1
α4k − λ4

hkUk sin αkz( . (32)

'e coefficients can be obtained from the boundary
conditions at the pile bottom and top.

Considering equations (22) and (32), the following re-
lationship can be established:

C1cosh(λz) + C2sinh(λz) + C3 cos(λz) + C4 sin(λz) −
4

E r
4
O − r

4
I 



∞

k�1

1
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hkUk sin αkz(  � 
∞

k�1
Uk sin αkz( . (33)
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Figure 1: 'e model of soil layers and pipe pile.
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Using the orthogonality of trigonometric functions,
equation (33) can be expressed as

Uk �
2E r

4
O − r

4
I  α4k − λ4 

E r
4
O − r

4
I  α4k − λ4  + 4hk

f1kC1 + f2kC2 + f3kC3 + f4kC4( , (34)
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Figure 2: 'e impedance factor curves of the first to fourth order. (a) Horizontal stiffness factor of the soil layer. (b) Horizontal damping
factor of the soil layer.
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Figure 3: 'e first-order impedance factor curves of different soil models. (a) Horizontal stiffness factor of the soil layer. (b) Horizontal
damping factor of the soil layer.
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where f1k � αk − (− 1)kλ sinh λ/λ2 + α2k, f2k � (− 1)k+1λ
cosh λ/λ2 + α2k, f3k � − αk + (− 1)kλ sin λ/λ2 − α2k, and

f4k � (− 1)kλ cos λ/λ2 − α2k.

Up(z) � cosh(λz) − 
∞

k�1
tkf1k sin αkz( ⎡⎣ ⎤⎦C1 + sinh(λz) − 

∞

k�1
tkf2k sin αkz( ⎡⎣ ⎤⎦C2

+ cos(λz) − 
∞

k�1
tkf3k sin αkz( ⎡⎣ ⎤⎦C3 + sin(λz) − 

∞

k�1
tkf4k sin αkz( ⎡⎣ ⎤⎦C4,

(35)
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Figure 4: 'e impedance factor curves of pile around soil under different fractional derivative orders. (a) Horizontal stiffness factor of the
soil layer. (b) Horizontal damping factor of the soil layer.
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Figure 5: 'e impedance factor curves of the pile core soil under different fractional derivative orders. (a) Horizontal stiffness factor of the
soil layer. (b) Horizontal damping factor of the soil layer.
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where tk � 8hk/E(r4O − r4I)(α4k − λ4) + 4hk.
For the end-bearing friction pile, since the bottom of the

pipe pile is in complete contact with the bedrock, the

displacement and rotation angle of the pile bottom are zero,
which leads to

1 0 1 0

− 
∞

k�1
tkαkf1k λ − 

∞

k�1
tkαkf2k − 

∞

k�1
tkαkf3k λ − 

∞

k�1
tkαkf4k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C1

C2

C3

C4

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�
0

0
 . (36)

When restraining the rotation of pile top, the shear force
and bending moment of pipe pile producing a unit hori-
zontal displacement are the horizontal dynamic impedance
Khh and the horizontal-swing dynamic impedance Krh of the

pipe pile, respectively. When the rotation of pile top is
restrained and the horizontal displacement of the pile top is
1, equation (36) can be expressed as

λ sinh λ λ cosh λ − λ sin λ λ cos λ

cosh λ − 
∞

k�1
tkf1k(− 1)

k+1 sinh λ − 
∞

k�1
tkf2k(− 1)

k+1 cos λ − 
∞

k�1
tkf3k(− 1)

k+1 sin λ − 
∞

k�1
tkf4k(− 1)

k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C1

C2

C3

C4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
0

1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(37)

Combining equations (36) and (37), the coefficients C1,
C2, C3, and C4 can be determined. 'en, the corresponding

shear force and bending moment can be determined, so that
the horizontal dynamic impedance Khh can be obtained as
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Figure 6: 'e impedance factor curves of soil layers under different model parameters (TOa). (a) Horizontal stiffness factor of the soil layer.
(b) Horizontal damping factor of the soil layer.
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Khh � −
πE r

4
O − r

4
I 

4
λ3 C1sinh(λ) + C2cosh(λ) + C3 sin(λ) − C4 cos(λ) . (38)

In this section, based on fractional derivative viscoelastic
model and the soil force of equation (29), the dynamic
equations of pipe pile under the horizontal harmonic load
are derived. For the pipe pile under the harmonic loads with

different frequencies, the variations of the horizontal dy-
namic impedance, horizontal-swing dynamic impedance,
sway dynamic impedance, and horizontal-swing can be
analyzed and discussed.
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Figure 7: 'e impedance factor curves of soil layers under different model parameter ratios (τ1 � τIa/τOa). (a) Horizontal stiffness factor of
the soil layer. (b) Horizontal damping factor of the soil layer.
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Figure 8: 'e impedance factor curves of soil layers under different model parameter ratios (τ2 � τIb/τOb). (a) Horizontal stiffness factor of
the soil layer. (b) Horizontal damping factor of the soil layer.
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6. The Numerical Analysis of Horizontal
Impedance Factor of Pipe Pile

In equation (38), the values of the relevant parameters are
rO/H� 1/20, rI/H� 0.5/20, ρ� 1.0, G� 0.5, ρp � 2.0, E� 1000,
μO � 0.3, μI � 0.3, TOa � 10, TOa � 20, τ1 � 0.5, τ2 � 0.5,
αO � 0.5, and αI � 0.5.'e influences of soil model, model
parameters, and pipe pile geometry parameters on the
horizontal dynamic impedance Khh of pipe pile are analyzed
by the numerical solutions.

For the fractional derivative viscoelastic model, classical
viscoelastic model, and elastic model of soil layer, the hori-
zontal impedance factor curves of pipe pile are shown in
Figure 11. 'e horizontal dynamic impedance curves of pipe
pile by using the fractional derivative viscoelastic model can
gradually degenerate to the solutions of the classical viscoelastic
and elastic models. Because the elastic model does not consider
the effect of damping, the horizontal dynamic impedance in the
fractional derivative viscoelastic model is in between the
classical viscoelastic model and the elastic model, and the
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Figure 9: 'e impedance factor curves of soil layers under different inner radii of pipe pile. (a) Horizontal stiffness factor of the soil
layer. (b) Horizontal damping factor of the soil layer.

0.2

0.3

0.4

0.5

0.6

Re
 (h

k)

5 10 15 200
Hω/vO

rO/H=1.0/20, rI/H=0.5/20
rO/H=1.0/25, rI/H=0.5/25

rO/H=1.0/30, rI/H=0.5/30
rO/H=1.0/35, rI/H=0.5/35

(a)

Im
 (h

k)

-0.2

0

0.2

0.4

0.6

5 10 15 200
Hω/vO

rO/H=1.0/20, rI/H=0.5/20
rO/H=1.0/25, rI/H=0.5/25

rO/H=1.0/30, rI/H=0.5/30
rO/H=1.0/35, rI/H=0.5/35

(b)

Figure 10: 'e impedance factor curves of soil layers under different lengths of pipe pile. (a) Horizontal stiffness factor of the soil
layer. (b) Horizontal damping factor of the soil layer.
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horizontal dynamic impedance is smaller than that of the
classical viscoelastic model and larger than that of the elastic
model. It can also be found from Figure 11 that the horizontal
dynamic impedance has little difference between the fractional
derivative viscoelastic model, classical viscoelastic model, and
elastic model when Hω/vO< 30; however, the results of the
three models are quite different at high frequency, the variation
curves of horizontal dynamic impedance with the frequency
variation show obvious fluctuation at high frequency
(Hω/vO> 30), and there is a resonance phenomenon in the
pipe pile-viscoelastic soil system.

In the fractional derivative viscoelastic model, the in-
fluence of the order on the horizontal dynamic impedance of
the pipe pile is shown in Figures 12 and 13. For different
orders of fractional derivative, the effect of soil around pile
on the pile impedance is larger, while the influence of the pile
core soil is smaller, which may be due to the fact that the pile
core soil has a smaller effect on the pipe pile. As the order of
fractional derivative increases, the real and imaginary part
peaks of the impedance increase with the increase of the
frequency, and the impedance curves fluctuate more
obviously.
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Figure 11: 'e horizontal dynamic impedance curves of pipe pile under different soil models. (a) Real part of horizontal dynamic
impedance. (b) Imaginary part of horizontal dynamic impedance.
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Figure 12:'e horizontal dynamic impedance curves of pipe pile under different orders of fractional derivative viscoelastic model of the soil
around pile. (a) Real part of horizontal dynamic impedance. (b) Imaginary part of horizontal dynamic impedance.
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For the fractional derivative viscoelastic model, the
effects of the model parameters on the horizontal dynamic
impedance of the pipe pile are shown in Figures 14– 16.
'e model parameter TOa of soil around pile has a greater
effect on the horizontal dynamic impedance of the pipe
pile, while the effects of model parameters τ1 � τIa/τOa and
τ2 � τIb/τOb of pile core soil are smaller. This indicates that
the viscosity and elasticity differences of soil around the
pile and the pile core soil have little effect on the hori-
zontal dynamic impedance of the pipe pile. As the soil
model parameter TOa is larger, the real and imaginary part

peaks of the dynamic impedance curves are smaller, and
the fluctuation of the curves is smaller.

'e influence of the geometric factor on the hori-
zontal vibration of pipe pile is shown in Figures 17 and
18. 'e pile core radius and the pile length have a greater
influence on the horizontal dynamic impedance of pipe
pile. As the pile length is larger, the horizontal dynamic
impedance is lower, the fluctuation of real and imaginary
part curves shows a gentle trend with the frequency
variation, and the influence of pile length on the pile
impedance is smaller.
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Figure 13:'e horizontal dynamic impedance curves of pipe pile under different orders of fractional derivative viscoelastic model of the pile
core soil. (a) Real part of horizontal dynamic impedance. (b) Imaginary part of horizontal dynamic impedance.
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Figure 14: 'e horizontal dynamic impedance curves of pipe pile under different model parameters (TOa). (a) Real part of horizontal
dynamic impedance. (b) Imaginary part of horizontal dynamic impedance.
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In this study, the dynamic equations of pipe-soil system
under the horizontal harmonic load are derived by the frac-
tional derivative viscoelastic method. 'e radial and circum-

ferential displacements of the pile-soil system are solved by the
potential function decomposition method, and the forces
between soil layers and pipe pile are obtained by the forms of
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Figure 15: 'e horizontal dynamic impedance curves of pipe pile under different model parameter ratios (τ1 � τIa/τOa). (a) Real part of
horizontal dynamic impedance. (b) Imaginary part of horizontal dynamic impedance.
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Figure 16: 'e horizontal dynamic impedance curves of pipe pile under different model parameter ratios (τ2 � τIb/τOb). (a) Real part of
horizontal dynamic impedance. (b) Imaginary part of horizontal dynamic impedance.
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series solutions. Furthermore, the numerical solutions are used
to analyze the influences of model parameters on the im-
pedance factor of soil layers and the horizontal dynamic im-
pedance of pipe pile. However, the influences of model
parameters on the horizontal-swing dynamic impedance, sway
dynamic impedance, and horizontal swing of the pipe pile will
be investigated in future works.

7. Conclusions

In this study, based on the fractional derivative viscoelastic
model and three-dimensional wave model, considering the
properties of fractional derivative and pipe pile-soil
boundary conditions, the impedance factors of soil layer and
the horizontal dynamic impedance of pipe pile are obtained
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Figure 17: 'e horizontal dynamic impedance curves of pipe pile with different inner radii. (a) Real part of horizontal dynamic impedance.
(b) Imaginary part of horizontal dynamic impedance.
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Figure 18: 'e horizontal dynamic impedance curves of pipe pile under different lengths of pipe pile. (a) Real part of horizontal dynamic
impedance. (b) Imaginary part of horizontal dynamic impedance.
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and analyzed by the mathematical-physical means. 'e
following conclusions are obtained:

(1) For the fractional derivative viscoelasticmodel, classical
viscoelastic model, and elastic model of soil layers, the
real part curves of the horizontal dynamic impedance
has more obvious sharp valleies at the low frequencies,
while the real part of the horizontal dynamic imped-
ance is close to a straight line; the impedance factor
curves of the soil layer show an obvious fluctuation at
the high frequencies, and there exists a resonance
phenomenon in the pipe pile-soil system.

(2) By using the fractional derivative viscoelastic model
of soil layer, for different orders of the fractional
derivative and soil model parameters, the influences
of pile around soil on the dynamic impedance are
larger than the influences of pile core soil on the
dynamic impedance.

(3) As the radius of pile core is larger, the horizontal
stiffness factors of soil layers are smaller, and the
horizontal dynamic impedance of pipe pile is larger.
As the length of pipe pile is larger, the soil horizontal
impedance factor is smaller, the horizontal dynamic
impedance of pipe pile is smaller, and the influence
of pile length on the pile impedance becomes
smaller.
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