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Soil cohesion (C) is one of the critical soil properties and is closely related to basic soil properties such as particle size distribution,
pore size, and shear strength. Hence, it is mainly determined by experimental methods. However, the experimental methods are
often time-consuming and costly. �erefore, developing an alternative approach based on machine learning (ML) techniques to
solve this problem is highly recommended. In this study, machine learning models, namely, support vector machine (SVM),
Gaussian regression process (GPR), and random forest (RF), were built based on a data set of 145 soil samples collected from the
Da Nang-Quang Ngai expressway project, Vietnam. �e database also includes six input parameters, that is, clay content,
moisture content, liquid limit, plastic limit, specific gravity, and void ratio. �e performance of the model was assessed by three
statistical criteria, namely, the correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE). �e
results demonstrated that the proposed RF model could accurately predict soil cohesion with high accuracy (R� 0.891) and low
error (RMSE� 3.323 and MAE� 2.511), and its predictive capability is better than SVM and GPR.�erefore, the RF model can be
used as a cost-effective approach in predicting soil cohesion forces used in the design and inspection of constructions.

1. Introduction

�ecohesion (C) of the soil is created by the bonds between the
compounds, the particles, and the viscosity of the water-glue
film that surrounds them. Along with the internal friction
angle, the cohesion force is part of the shear resistance (slip
resistance) of the cohesive soil, used to calculate the load ca-
pacity of the ground soil. Cohesion force is usually measured
based on the Mohr–Coulomb theory. In the stress plane of the
shear effect normal stress, the soil cohesion is the intercept on
the shear axis of the Mohr–Coulomb shear resistance line
[1–3]. �e soil cohesion of the soil greatly depends on the
composition of particles in the soil, soil texture, and moisture
[4]. In the design of geotechnical constructions such as
foundations, slopes, or open-pit pits, the precise determination
of the soil cohesion is of great concern [5]. �is important
parameter can be determined in the field or laboratories [3].
Tests for soil cohesion determination are usually carried out as
a direct shear test (slow cut, quick cut, and fast consolidation)
or indirect soil shear test with a triaxial compressor [6].

However, the experiments to determine this parameter are
often cumbersome, expensive, and time-consuming [7]. With
field estimation, a team of skilled and experienced engineers is
required [8–10]. To overcome the above difficulties, technical
designmodels have been proposed based on useful correlations
that exist between indicator properties obtained fromfield tests.
Several studies have employed models to predict different soil
properties and characteristics, for example, Masada’s [11] study
for clay and silt embankments, Mofiz and Rahman [12] for
Barind soils, Cola and Cortellazo [13] for peaty soils, and
Hajarwish and Shakor [14] for mudrock. However, soil is an
extremely complex material, and the geological conditions in
each region are different, so it is not possible to apply these
models thoroughly to different regions [15].�is confirmed the
need to propose a general method to be able to predict soil
cohesion under different conditions.

More recently, machine learning (ML) or artificial in-
telligence (AI) based on computer science has gradually
become popular and applied inmany different fields [16–18].
�e wide applications of ML have been applied in areas of
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the construction industry, such as determining the critical
force of steel [19]. Many dependent variables are affecting
the critical force of steel [20] and the mechanical properties
of the soil [21]. �erefore, the application of artificial in-
telligence to determine soil cohesion is completely feasible.
Kovačević et al. [22] used a support vector machine (SVM)
to estimate the chemical and physical properties of soil and
classify soil types. Guo et al. [19] used Artificial Neural
Network (ANN) and Generalized Linear Model (GLM) to
predict soil aggregate stability. Moufiz and Rahman [12]
used and compared different ML models, including Linear
Regression (LR), ANN, SVM, random forest (RF), and M5
Tree (M5P) for prediction of Standard Penetration Test
(SPT) based N-value of soil in the state of Haryana, India. In
general, the ML models are proved as potential and highly
accurate tools for the prediction of soil properties [23, 24].

In this study, the main aim of this study is to apply one of
the most popular ML models, namely, random forest (RF)
[25–27], for predicting the cohesion force of the soil quickly,
avoiding costly and time-consuming experiments. Database
of soil properties was constructed from the experimental
results of the Da Nang-Quang Ngai expressway project,
Vietnam. Two other ML models, namely, support vector
machine (SVM) and Gaussian process regression (GPR),
have been used for comparison.

2. Database Collection and Preparation

In this study, the testing results of 145 data of soil samples
collected from Da Nang-Quang Ngai expressway project,
located in the Central South part of Vietnam (Figure 1), were
used to construct the database for modeling soil cohesion
force prediction. In the modeling, we considered six input
parameters, namely, clay content, moisture content, liquid
limit, plastic limit, specific gravity, and void ratio, and one
output parameter of soil cohesion force. �e detailed de-
termination of input and output parameters is calculated
according to the formulas in the published works [28, 29].

�e data in this study are randomly divided into two
subsets using a uniform distribution, in which 70% of the
data is used as a model training set, and 30% is used to test
the performance of the model. All data are scaled to the
range [0; 1] to reduce numeric error while processing with
ML algorithms, as Witten et al. [30] recommended. �is
process ensures that the training phase of the AI models can
be performed with functional generalization capabilities.
Such proportions are represented by

xn �
x − xmin

xmax − xmin
, (1)

where xmax and xmin are the maximum and minimum values
of the considered variable and xn is the normalized value of
the variable x.

3. Modeling Approaches

3.1. Random Forest. Random forest (RF) is one of the most
commonly usedML algorithms for its simplicity and variety.
�is is a supervised learning model used for classification

and regression problems proposed by Breiman in 2001 [30].
RF is an integrated learning method that gathers results from
single decision trees, thereby improving predictive efficiency
through the form of majority voting or averaging results
depending on each specific problem.

Suppose that there is an input data set X� x1, x2, x3, ..., xn
where n is the number of data dimensions or the number of
predictive variables. AnRFmodel would be a set ofT treesT1(X),
T2(X), T3(X),. . ., Tn(X). �e prediction result of these decision-
making trees is Y

⌢

1, Y
⌢

2, ..., Y
⌢

n. For the regression problem, the
final result of the RF model will be the average of all the pre-
diction results of the above trees. �e development of tree
growing is done with the principle of dividing the initial training
sets into smaller training sets, and in each split, only a few
predictive variables are selected randomly. Decision trees are
continuously developed without pruning to predetermined
stopping criteria by the programmer. Commonly used tree
growth stops are RMSE, Gini Diversity Index, or Mean Square
Error. Trees with low predictive results are then discarded, and
only plants with sufficient predictive value are selected in the
final RF model.�e random selection of predictor variables and
the result set of decision trees eliminate the overfitting problem
of the single decision tree model [30, 31]. �e structure of the
random forest is depicted in Figure 2. In this study, the RFmodel
was trained and validated using the tools in MatLab application.

3.2. Support Vector Machine. Support vector machine
(SVM), proposed by Vapnik since 1995 [32], is an effective
and popular learning model for classification of linear and
nonlinear regression problems. SVM machine learning
model gives accurate prediction results and stable, good
noise tolerance and is practical for high-dimensional feature
spaces [33, 34]. Many successful SVM applications with
classification and regression problems have been published
in different fields [35–37]. �e basic theory of SVM is
summarized as follows.

A training dataset (xi, yi), i � 1, 2, ..., N􏼈 􏼉 is selected for
an SVM model as shown in Figure 3, where
xi � [x1i, x2i, ..., xni] ∈ Rnh is the input data, yi ∈ Rnm is the
output data corresponding to xi, and N is the number of
training samples. �e SVM aims to find an optimal hy-
perplane function f (x) (determined by the weight vector w

and the offset b), passing through all the data elements with
the insensitive loss coefficient ε (based on two supporting
hyperplanes, w.x – b� ε and w.x – b� -ε).

In the case of nonlinear regression, the function f (x) is
determined as follows:

f(x) � 􏽘
n

i�1
αi − α∗i( 􏼁K xi, xj􏼐 􏼑 + b. (2)

with

􏽘

n

i�1
αi − α∗i( 􏼁 � 0, C≥ αi, α

∗
i ≥ 0,∀i, (3)

where C is the penalty constant used to control the penalty
error, αi, α∗i are the Lagrange multipliers, and K (xi, xj) is the
kernel function defined as follows:
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K xi, xj􏼐 􏼑 �〈Φ xi( 􏼁,Φ xj􏼐 􏼑〉. (4)

With F being a nonlinear mapping function. Linear, poly-
nomial, sigmoid, and Gaussian functions are the most
commonly used kernel functions:

Linear kernel function : K xi, xj􏼐 􏼑 � xi.xj,

Polynomial kernel function : K xi, xj􏼐 􏼑 � cxi.xj + c􏼐 􏼑
d
,

Gaussian kernel function : K xi, xj􏼐 􏼑 � exp −c xi − xj􏼐 􏼑
2

􏼒 􏼓
d

,

Sigmoid kernel function : K xi, xj􏼐 􏼑 � tanh cxi.xj + c􏼐 􏼑
d
.

(5)

3.3. Gaussian Process Regression. Gaussian process regres-
sion (GPR) is a nonparametric, Bayesian approach applied
to regression problems. GPR has several advantages,
working well on small datasets and having the ability to
provide uncertainty measurements on the prediction values.

Given the training data set D � (xi, yi)􏼈 􏼉
N
i�1, where N is

the training set’s dimension, xi ∈ RDrepresent input data,
and yi ∈ R is the corresponding output value. In data set D,
random variables corresponding to input data set xi􏼈 􏼉

N
i�1

compose set f(x1), f(x2), ..., f(xN)􏼈 􏼉 and are subjected to
the joint Gaussian distribution. For the simplest case, the
relation between the latent function f (x) and the observed
target y is

y � f(x) + ε; f(x) � x
T

.wwherew ∼ N 0,ΣP( 􏼁; ε ∼ N 0, σ2n􏼐 􏼑,

(6)

where w denotes the weight, ε is the independent noise, σ2n is
the variance of the noise, and ΣP is covariance. �e distri-
bution in the Gaussian process is represented by a mean
function, denoted asm (x), and a covariance kernel function,
denoted as K (x, x’) [38]:

f(x) ∼ GP m(x), K x, x′( 􏼁􏼂 􏼃, (7)
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Figure 2: Random forest (RF) structure.
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Figure 3: Support vector machine for a regression problem.
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Figure 1: Location of Da Nang-Quang Ngai expressway project, Vietnam.
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where x and x′∈ RD are random numbers of random var-
iables. For the basic GPR,m (x) is set to be zero, and formula
(1) can be rewritten as

f(Xx) ∼ GP 0, K x, x′( 􏼁􏼂 􏼃, (8)

where x is the learning sample whose measure in the GP is
the finite-dimensional distribution of the GP. As defined by
the GP, the finite-dimensional distribution is a normal joint
distribution as

f x1( 􏼁, f x2( 􏼁, . . . , f xn( 􏼁􏼂 􏼃
T ∼ N(m, K). (9)

�e noise e is free from f (x), and it is subject to the
Gaussian distribution. When f (x) is an object of the
Gaussian distribution, and y is also subjected to the Gaussian
distribution. �en, the prior distribution of the observed
target value y is inferred as:

y ∼ N 0, K(x, x) + σ2nI􏼐 􏼑. (10)

With given test sample points (x∗, y∗), the joint probability
distribution of the observed target value y and prediction
value y∗ at test points is expressed as

y

y
∗􏼢 􏼣 ∼ N 0,

K(x, x) + σ2nI K x, x
∗

( 􏼁

K x
∗
, x( 􏼁 K x

∗
, x
∗

( 􏼁

⎡⎣ ⎤⎦⎛⎝ ⎞⎠, (11)

where K (x, x) � (Kij) is a positive defined symmetry matrix
of size N × N; Kij �K (xi, xj) are the elements in the matrix,
respectively, to measure the correlation of xi and xj; K (x, x∗)
is the matrix of covariance of the training set and the testing
set.

Applying the conditional distribution properties of the
Gaussian distribution, an equation is proposed:

p y
∗
|x, y, x

∗
( 􏼁 � N y

∗
|y
∗
, cov y

∗
( 􏼁( 􏼁, (12)

where

y
∗

� K x, x
∗

( 􏼁
T

K(x, x) + σ2nI􏽨 􏽩
− 1

y,

cov y
∗

( 􏼁 � K x
∗
, x
∗

( 􏼁 − K x, x
∗

( 􏼁
T

K(x, x) + σ2nI􏽨 􏽩
− 1

K x, x
∗

( 􏼁.

(13)

�e mean value y∗ is the estimation value of y∗; cov(y∗) is
the variance matrix of test samples, which reflects the es-
timation value’s reliability.

3.4. Model Evaluation. �e application of modeling tools in
the field of geotechnical engineering is increasingly popular
and effective. However, to assess the ability of these models
to make an accurate prediction still needs to be tested by
appropriate model evaluation indicators. In this study, 3
indicators are used to evaluate the quality of the model
compared to data collected from the experimental results,
including mean absolute error (MAE), root mean square
error (RMSE), and correlation coefficient (R) [39, 40].

MAE is calculated by Equation (2), which evaluates the
difference between actual data and is calculated from the
model [28]. However, it does not tell the bias trend of the

predicted and experimental values. When MAE� 0, the
value of the model completely coincides with the actual
value, and the model is considered “ideal.” MAE value is in
the range (0, +∞).

MAE �
1
n

􏽘

n

i�1
y0,i − yt,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (14)

RMSE is one of the basic quantities and is commonly
used for evaluating the results of predictive models [41].
RMSE is often used to denote the mean magnitude of the
error. In particular, the RMSE is extremely sensitive to large
error values. �erefore, the closer the RMSE is to the MAE,
the more stable the model error is. Just like MAE, RMSE also
does not indicate the deviation between forecast value and
actual value. RMSE is determined by formula (3), and the
value of RMSE is in the range (0, +∞).

RMSE �

��������������

1
n

􏽘

n

i�1
y0,i − yt,i􏼐 􏼑

2

􏽶
􏽴

. (15)

R is the correlation coefficient representing the data’s
suitability with the algorithm, a measure commonly used in
ML algorithms [42].�e equation for calculating the value of
R is presented in equation (4). �e R values range from -1 to
1. �e absolute value of R equal to 1 represents a perfect
distribution between the simulated and real values, while a
value of 0 indicates no correlation.

R �

����������������������������

􏽐
n
i�1 y0,i − y0􏼐 􏼑 yt,i − yt􏼐 􏼑

��������������������������

􏽐
n
i�1 y0,j − y0􏼐 􏼑

2
Σni�1 yt,i − yt􏼐 􏼑

2
􏽱

􏽶
􏽴

, (16)

where n is the number of database, y0 and y0are the actual
experimental value and the average real experimental value,
and yt and yt are the predicted value and the average
predicted value, calculated according to the model forecast.

3.5.Methodological Flowchart. �e process of implementing
the methodology is depicted in Figure 4, including the
following basic steps:

(i) Data acquisition: in this step, soil sample data
collected from the Da Nang-Quang Ngai express-
way project is used to build the model. On the basis
of the data set collected, determine the input and
output parameters to be defined.

(ii) Database preprocessing: this is one of the most
critical steps in ML to help build a more accurate
ML model. Some techniques are used to process
data, such as transforming data, ignoring missing
values, and filling in missing values. After that, the
data set is randomly divided into two parts: the
training part and the testing part.

(iii) Select the model best suited to the data type: in this
study, a random forest (RF) algorithm is used to
estimate soil cohesion. �e results of RF model are
also compared with the support vector machine

4 Advances in Civil Engineering



(SVM) [32] and Gaussian regression process (GPR)
[43].

(iv) Train and test the model on data: in this step, train
the tuple and tune the parameters using the
“training database,” and then test the performance
on the unseen “testing database.” An important
point to note is that the test dataset is not used in the
training process.

(v) Model evaluation: model evaluation is an indis-
pensable part of the model development process,
helping find the model to predict the best results.

4. Results and Discussion

4.1. Descriptive Statistics Analysis. �e statistical analysis of
the data was performed (Table 1 and Figure 5). In the da-
tabase, the value of the clay content varies in the range of
4.09–47.96%, the natural moisture content is in the range of
15.53–115.41%, the liquid limit varies from 20.8 to 154.12%,
the plastic limit ranges between 13.42 and 63.96%, the
specific density value varies from 2.59 to 2.75 g/cm, and the
void ratio ranges from 0.58–3.25. Besides, the soil cohesion
values are in the range of 0.29 to 30.39 kPa. �e histograms
of the corresponding variables are presented in Figure 5.
Besides, the quantitative analysis of input and output pa-
rameters is detailed in Table 1.

4.2. Prediction Performance of RF. In this section, the ef-
fectiveness of the RF model is evaluated. �e hyper-
parameters of RF model are selected using trial and error
tests, presented in Table 2. �e comparison results between
the experimental values of soil cohesion with those obtained
from the RF model for the training and testing dataset are
shown in Figure 6. Observe that the line representing the
cohesion value of the soil is predicted to be quite close to the
line representing this value experimentally. �is good cor-
relation was confirmed by the error diagram between the
predicted and experimental soil cohesion for the training set
(Figure 7(a)) and the testing dataset (Figure 7(b)). Of the 102
data samples of the training dataset and 43 data samples of
the testing dataset, only a very few samples have an error in
the range of [-7; 11] kPa. �ese errors show that the pre-
dictability of the RF algorithm is feasible with small errors.

Finally, the relationship between the actual data value
and the predicted value is given as a regression graph in
Figure 8. �e quantitative values of the three criteria eval-
uating model performance are shown in Table 3. As shown
in Table 3, the RF model provides R� 0.90; RMSE� 3.56;
MAE� 0.90 and SD� 3.58 for the training dataset. For the
testing dataset, these values are R� 0.84; RMSE� 2.68;
MAE� 2.11; SD� 2,71, respectively. When considering all
the data, the model provides R� 0.89; RMSE� 3.32;
MAE� 2.51 and SD� 3.33. It can be seen that the predict-
ability of the model is relatively high. �erefore, the RF
model application to predict soil cohesion is feasible with
high accuracy and low error.

4.3. Analysis of Simulation Convergence of RF and Other ML
Models. In this work, the performance of the proposed
model is assessed by the number of simulation runs. Several
studies [44, 45] have shown that the predictive performance
of the algorithm depends on randomly dividing the data set
into training and test sets. �erefore, analysis of the model’s
performance should be performed with a sufficient number
of simulations to demonstrate the generality of the obtained
results. In this study, a total of 200 simulations were con-
ducted to study the performance of the proposed RF model.
�e hyperparameters of other models are selected using trial
and error tests, presented in Table 2.

Figures 9(a), 9(c), and 9(e) represent the normalized
convergence values of RMSE, MAE, and R, respectively. In
contrast, Figures 9(b), 9(d), and 9(f) represent the con-
vergence values of the three respective criteria. As observed,
after about 50 simulations, the oscillation of RMSE andMAE
was in the range of less than 1% with the training set (Solid
Green Line). With the testing set (Red dashed line), the
number of simulations after about 70 times, the RMSE and
MAE values fluctuate within the 1% error range. Meanwhile,
the correlation coefficient R with the training set converges
immediately after the first simulations. �e testing set takes
about 75 simulations to ensure the convergence of errors in a
small range. When the number of simulations reaches 200,
all RMSE,MAE, and R values are converged. It turns out that
the selection of 200 simulators is suitable to get optimized
results for all R, RMSE, and MAE values.

Data acquisition
145 Soil Sample

Input Output

Soil cohesion

1. Clay
2. Moisture content
3. Liquid limie
4. Plastic limit
5. Specific gravity
6. Void ratio

Database preprocessing

Training data Testing data

NO

Train with ML
algorithm

Is training
completed?

Trained RF
Model

Evaluation
model

Prediction

YES

Figure 4: Methodology flow chart of the present study.
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Table 1: Initial statistical analysis of the database.

Variable Clay Moisture content Liquid limit Plastic limit Specific gravity Void ratio Soil cohesion
Role Input Input Input Input Input Input Output
Symbol Cl Mc LL PL δ e C
Unit % % % % g/cm3 — kPa
Min 4.09 15.53 20.80 13.42 2.59 0.58 0.29
Median 18.73 40.67 47.35 25.35 2.68 1.25 8.33
Average 20.09 47.38 51.07 63.96 2.68 1.42 10.05
Max 47.96 115.41 154.12 63.96 2.75 3.25 30.39
SD 9.16 24.33 22.42 8.42 0.26 0.66 6.70
SK 0.69 0.88 2.09 1.72 −0.10 0.82 1.24
SD� standard deviation; SK� skewness.
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Figure 5: Continued.
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Figure 10 shows a box plot illustration of RMSE, MAE,
and R values after 200 runs corresponding to the training
and testing sets simulated by RF algorithm. �e mean and
corresponding standard deviations of R are 0.90 and 0.01 for
the training dataset. For the testing dataset, these values are
0.71 and 0.08, respectively. Considering the RMSE criterion,
the mean and standard deviation are 3.25 and 0.16,

respectively, for the training dataset, and 4.73 and 0.65 for
the testing set. For MAE, these values are 2.37 and 0.13,
respectively, corresponding to the training set, and 3.54 and
0.48 for the testing set. Besides, the minimum andmaximum
values of R, RMSE, and MAE for the two data sets are shown
in Table 4. In addition, 200 simulations with SVM and GPR
algorithms are performed and presented in Figure 10. It

Table 2: Hyperparameters of ML methods used in this study.

ML
methods Hyperparameters description

RF
Using TreeBagger MatLab function

A number of 500 trees
Minimum leaf size of 5

SVM

Using fitrsvm MatLab function
Using hyperparameter optimization that minimize 10-fold cross-validation

�e 6 hyperparameters are box constraint, kernel function, kernel scale parameter, polynomial kernel function order, half
the width of the epsilon-insensitive band, standardize method for data

ANN
Using fitrrgp MatLab function

Using hyperparameter optimization that minimizes 10-fold cross-validation
�e 5 hyperparameters are basis function, kernel function, kernel scale, sigma value, standardize method for data
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Figure 5: Histograms of the input and output variables used for the development of the RF algorithm: (a) clay content; (b) moisture content;
(c) liquid limit; (d) plastic limit; (e) specific gravity; (f ) void ratio; (g) soil cohesion.
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Figure 8: Continued.
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Figure 8: Regression analysis of RF with respect to (a) training dataset, (b) testing dataset, and (c) all dataset.

Table 3: Summary of prediction results of the RF model in terms of RMSE, MAE, and R.

Indicators RMSE MAE SD R
Training set 3.5585 0.8997 3.5757 0.8997
Testing set 2.6817 2.1097 2.7132 0.8370
All data 3.3227 2.5110 3.3341 0.8906
SD� standard deviation.
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Figure 9: Continued.
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could be easily observed that RF model outperforms other
algorithms on both the training and testing datasets. �e
average R values of RF are significantly higher than those of
SVM (R� 0.27) and GPR (R� 0.69) for the training parts,
whereas the average RMSE and MAE values of RF are lower
than those of SVM (RMSE� 8.14, MAE� 7.18) and GPR
(RMSE� 4.83, MAE� 3.60). Similar observations are no-
ticed for the testing parts (RMSE� 5.46, MAE� 4.00 for
SVM, and RMSE� 5.00, MAE� 3.72 for GPR), which reflect
the prediction capability of the models.

Overall, the proposed RF algorithm is a better ML model
compared with other ML models (SVM, GPR) in predicting
soil cohesion. It is reasonable because RF has many advantages
such as the following: (i) it can be effectively applied to large-
scale datasets as it provides the facility for size reduction
without deleting unwanted variables from the training dataset;
(ii) it can handle thousands of input features and variables at a
time; (ii) it has an embedded efficient technique for estimating
missing or null values. Hence, it is possible to maintain a level
of accuracy (i.e., consistent performance) even when a large

portion of the data is missing; (iv) it is able to perform a good
parallel simulation because the number of trees generated and
computed is completely independent of each other; and (v) this
model can minimize errors as the results are synthesized from
different “learners” (random forest trees) [46]. �e results of
this study are also comparable with other previous published
works [46–48].

4.4. SensitivityAnalysis. In this section, the estimation of the
feature importance of input variables is performed. For each
simulation, the importance value is calculated by the sum of
the difference taken by the splits of the given predictor and
divided by the sum of the branch in RF. Figure 11 shows the
out-of-bag feature importance over 200 simulations (by
mean values) along with the standard deviation values. It can
be seen that the void ratio is the most important variable in
predicting soil cohesion. Besides, the moisture content is the
second important input for the problem, followed by the
plastic limit, liquid limit, specific gravity, and the clay
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Figure 9: Analysis of simulation convergence over 200 runs with respect to (a) normalized convergence values of RMSE, (b) convergence
values of RMSE, (c) normalized convergence values of MAE, (d) converged values of MAE, (e) normalized convergence values of R, and (f)
converged values of R.
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content. �ese sensitivity results are reasonable and com-
parable with other published works [28, 49, 50].

5. Conclusion

In this study, a data set of 145 soil samples collected from the
Da Nang-Quang Ngai expressway project was used to
construct an RF model for the purpose of soil cohesion
prediction. Input data for network training includes clay,
moisture content, liquid limit, plastic limit, specific gravity,
and void ratio. �ree statistical criteria, namely, correlation
coefficient (R), mean absolute error (MAE), and root mean
square error (RMSE), are used to evaluate the correlation
between the values predicted by the RF model and actual
experimental values. �e analysis results show that the built
model can predict soil cohesion accurately and quickly,
avoiding costly and difficult experiments that require
complicated equipment.

However, in ML problems, data is the key factor in
creating a reliable predictive tool. �erefore, the next re-
search direction is to collect additional data to further
improve the algorithm, making the prediction more accu-
rate, avoiding costly on-field experiments.
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