Erratum

Expression of three cell adhesion molecules in bladder carcinomas: correlation with pathological features

Agnès Mialhe, Josette Louis, Dominique Pasquier, Jean-Jacques Rambeaud and Daniel Seigneurin


On pages 129 and 130 the Figs 1 and 2 were printed in black and white instead of full-colour as on the next two pages.
Fig. 1. Patterns of α2 (A–D) and β4 (E–H) integrins in normal urothelium and bladder cancer samples. A) Membrane α2 immunoreactivity at cell to cell junctions in all epithelial layers of normal urothelium. B) Superficial tumour with normal α2 expression on cell–cell boundaries. C) Invasive carcinoma with diffuse α2 pattern in cytoplasm of most epithelial cells. D) Loss of α2 expression in superficial bladder cancer: all tumour cells were totally α2 chain negative. (Streptavidin-biotin-phosphatase complex method; A) and B) bars = 20 μm, ×500, C) bar = 80 μm, ×125 and D) bar = 50 μm, ×200.) E) Section of normal bladder tissue with intense and regular β4 expression at the junction of basal cells and the lamina propria. The underlying connective tissue is negative except endothelial cells which also express the β4 chain. F) Superficial carcinoma with normal β4 immunoreactivity as in normal urothelium. G) and H) Tumours with loss of polarisation of the β4 integrin: only the basal layer (G) or also in some cases suprabasal layers (H) were positively stained with AA3 antibody. (Indirect immunophosphatase method; E) and F) bars = 15.6 μm, ×640, G) bar = 20 μm, ×500 and H) bar = 12.5 μm, ×800.)
Fig. 2. Immunoreactive E-cadherin expression in normal bladder and cancerous tissues. A) All epithelial cells strongly and homogeneously expressed E-cadherin at cell to cell contacts in normal urothelium. B) Preserved E-cadherin expression in superficial carcinoma. C) Invasive tumour with heterogeneous E-cadherin expression. Some cells were E-cadherin negative whereas the others were normally stained. D) Section of superficial tumour with E-cadherin cytoplasmic staining. (Streptavidin-biotin-phosphatase complex method; A) bar = 12.5 µm, ×800, B) and C) bars = 50 µm, ×200 and D) bar = 20 µm, ×500.)