Low levels of \textit{BNIP3} promoter hypermethylation in invasive breast cancer

Dear Sir,

Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (\textit{BNIP3}) is a pro-apoptotic member of the Bcl-2 family induced under hypoxia [3,5,6]. Low or absent expression has been described in several human tumors, resulting in poor prognosis [1]. We previously reported that \textit{BNIP3} expression is lost in a significant portion of invasive breast cancers, which was correlated with poor prognostic features such as positive lymph node status and high proliferation [9]. Since DNA promoter hypermethylation ("methylation") is a common mechanism to silence gene expression, contributing to tumor-progression and invasion, we further studied the relation between \textit{BNIP3} methylation and gene expression by RNA \textit{in situ} hybridization (ISH) in invasive breast cancer.

In 40 cases of invasive breast cancer, \textit{BNIP3} methylation was studied by Methylation Specific Multiplex Ligation-dependent Probe Amplification [2,4,8,11] with 2 \textit{BNIP3} probes (157 and 291) located in the CpG island harboring the \textit{BNIP3} promoter. The 157 probe is located 50 nucleotides before exon 1, while probe 291 is located in exon 1. Both probes target sequences located in the \textit{BNIP3} promoter that is located within a 1700-bp CpG island, which spans from -1162 to $+538$ bp of the transcription start site and contains the first exon of the \textit{BNIP3} gene. This promoter area has been reported to be methylated in pancreatic cancer [12] and in gastric and colorectal cancer [10]. Data on \textit{BNIP3} mRNA \textit{in situ} hybridization were derived from a previous study [9].

\textit{BNIP3} methylation levels in 8 normal tissue samples was on average 0.08. \textit{BNIP3} methylation was overall low (between 0.3 and 15% for probe 157 and between 0 and 31% for probe 291), while other genes included in this assay (\textit{CCND2}, \textit{RASSF1}, \textit{GSTP1}, \textit{HIN1}) showed methylation percentages up to 100% (means 24–51%) in the same tumors. Cases that were negative ($N = 4$) in \textit{BNIP3} RNA ISH showed higher \textit{BNIP3} methylation ($p = 0.047$) for probe 157 than those positive by RNA ISH ($N = 36$) (see Fig. 1), but in none of the ISH negative tumors the methylation levels exceeded 10%. This correlation therefore needs to be interpreted with care. \textit{BNIP3} methylation levels as detected by probe 291 were not significantly different ($p = 0.83$) between tumors with and without \textit{BNIP3} expression.

In conclusion, \textit{BNIP3} shows low levels of promoter hypermethylation in invasive breast cancer, mostly lower than the proposed 15% threshold that supposedly discriminates "true" from background methylation [7]. Although \textit{BNIP3} methylation detected with probe 157 is associated with lower \textit{BNIP3} expression at the RNA level, its low level suggests that methylation does not seem to be a major explanation for the differential \textit{BNIP3} expression in invasive breast cancer previously described [9].
Acknowledgements

Supported by the Dutch Cancer Society, project UU 2006-3710. We thank Dr. Theo van Laar for previous input into this project and Dick van Wich ten for technical assistance.

Paul J. van Diesta,∗, Karijn P.M. Suij kerbuijk,a Esther A. Koop a, Roel A. de Weger a and Elsken van der Wallb

a Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands

b Division of Internal Medicine and Dermatology, Medical Center Utrecht, Utrecht, The Netherlands

∗ Corresponding author: Prof. Paul J. van Diest, MD, PhD, Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands. Tel.: +31 88 751 565; Fax: +31 30 2544 990; E-mail: p.j.vandiest@umcutrecht.nl.

References

