Dual effects of β_3 integrin subunit expression on human pancreatic cancer models

S. Marchán a, S. Pérez-Torras a, A. Vidal a, J. Adan b,*, F. Mitjans b,*, N. Carbó a and A. Mazo a,∗∗

a Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina de la UB, Universitat de Barcelona, Barcelona, Spain
b Laboratori de Bioinvestigació, Merck Farma i Química, Barcelona, Spain

Abstract. Background: Pancreatic cancer, the fifth leading cause of adult cancer death in Western countries, lacks early detection, and displays significant dissemination ability. Accumulating evidence shows that integrin-mediated cell attachment to the extracellular matrix induces phenotypes and signaling pathways that regulate tumor cell growth and migration.

Methods: In view of these findings, we examined the role of β_3 in pancreatic cancer by generating two stable β_3-expressing pancreatic human cell lines and characterizing their behavior in vitro and in vivo.

Results: Transduction of β_3 selectively augmented the functional membrane $\alpha_v\beta_3$ integrin levels, as evident from the enhanced adhesion and migration abilities related to active Rho GTPases. No effects on in vitro anchorage-dependent growth, but higher anoikis were detected in β_3-overexpressing cells. Moreover, tumors expressing β_3 displayed reduced growth. Interestingly, treatment of mice with an α_v-blocking antibody inhibited the growth of β_3-expressing tumors to a higher extent.

Conclusions: Our results collectively support the hypothesis that $\alpha_v\beta_3$ integrin has dual actions depending on the cell environment, and provide additional evidence on the role of integrins in pancreatic cancer, which should eventually aid in improving prediction of the effects of therapies addressed to modulate integrin activities in these tumors.

Keywords: Pancreatic cancer, integrins, cell migration, tumor growth, $\alpha_v\beta_3$

1. Introduction

Acquisition of enhanced ability to invade adjacent tissues and distant sites facilitates tumor progression towards increasingly malignant and aggressive phenotypes. The crossing of tissue barriers, a process necessary for metastasis, requires increased cell motility driven by remodeling of the cytoskeleton and cell contacts with the extracellular matrix [34,40].

Integrins play an important role in adhesive functions as well as modulation of different signal transduction pathways. These heterodimeric transmembrane receptors bind via their globular head domains to components of the extracellular matrix (ECM). The types of integrins present on the cell surface and nature of the ligands determine which signaling pathways are activated [16,18,25].

Activated signals may synergize to induce Rho GTPase family proteins (Cdc42, Rac1 and RhoA), leading to cytoskeletal rearrangement and cell migration [33]. Rho proteins regulate the levels and timing of expression of a number of critical genes involved in the cell cycle, such as cyclin D1, as well as interconnecting migration and proliferation processes. This leads to changes in cell cycle progression via modulation of cyclin D-CDK4/6 and cyclin E-CDK2 complex activities [9,39]. Interestingly, cell cycle regulators, such as p27, also regulate Rho signaling via direct binding and inactivation of RhoA [5]. On the other hand, under cell–ECM detachment conditions, specific integrins actively induce apoptosis-promoting signals, leading to a type of apoptosis termed ‘anoikis’ [15,41]. However, the mechanisms by which integrins switch from survival/migration to proapoptotic signals upon cell detachment from the substrate remain to be established. Changes in integrin expression patterns may subsequently determine cell fate via involvement in proliferation, migration and cell death processes [8, 36].
αvβ3, a vitronectin/RGD receptor, is a well characterized integrin expressed in both endothelial and cancer cells [35,42]. The αvβ3 integrin is overexpressed in various solid tumors, and correlates with increased invasiveness [3,40]. The contribution of αvβ3 to the invasive behavior of neoplastic cells may be explained by positive regulation of cell migration through the above relationship with Rho GTPases. However, αvβ3 integrin has also been involved in anoikis induction in several cell types [24,41], indicating functional promiscuity with wide implications in metastatic dissemination.

Surprisingly, mice lacking αvβ3 and αvβ5 integrins exhibited extensive, rather than decreased angiogenesis and tumor growth [32]. Elevated neovascularization in tumors is partly related to increases in Flk1/VEGFR2 signaling in endothelial cells of β3-null mice [31], suggesting that αvβ3 integrin induces downregulation of VEGFR2 expression under specific conditions. Moreover, Taverna et al. [37] showed that αvβ3 and αvβ5 integrins are not essential for tumor growth, progression and metastasis of mammary carcinomas, thus providing further controversy regarding the role of this integrin in tumor development.

Recently, it has been reported that αvβ3 can act as a mediator of anchorage independence, an action that is in accordance to the aggressive behaviour of integrin αvβ3-expressing human tumors [12,38] but in a clear discordance with and its involvement in anoikis and the results in KO mice.

In order to investigate the β3 role in pancreatic cancer, we generated β3-overexpressing human pancreatic cancer cells, and analyzed the effects of αvβ3 integrin on their behavior in vitro and in vivo. Our data show that high levels of the integrin are correlated with increased p27 expression, together with changes in the ratio of RhoA/Rac1 activities that favor cell migration. However, tumor growth was inhibited upon αvβ3 expression and treatment with an anti-αv antibody. These results collectively present additional evidence in favor of the involvement of the cell environment in the dual roles of αvβ3 integrin.

2. Materials and methods

2.1. Cell lines, β3 clone generation and culture conditions

NP-18 and NP-9 cell lines were derived from human pancreatic adenocarcinomas xenografted in nude mice [7] established at the Hospital de la Santa Creu i Sant Pau (Barcelona, Spain), and kindly provided by the Gastrointestinal Investigation Laboratory of the hospital.

NP-9/β3 and NP-18/β3 cell lines were obtained from parental NP-9 and NP-18, respectively, by stable transduction with a β3 integrin subunit-containing retroviral vector. AM12 packaging cell lines transfected with the empty retroviral vector (pBabe) or human β3 integrin cDNA-containing vector (pBabe/β3) were kindly provided by Dr. John Marshall (St. Thomas Hospital, London). Briefly, AM12 conditioned culture media were used to infect exponentially growing NP-9 and NP-18 cells. At 24 h after transduction, culture medium was replaced with puromycin-containing medium for transfectant cell selection. Cell cloning was performed by limit dilution, and several isolated clones were obtained and further characterized. Parental and β3-expressing NP-18 cells (cultured in RPMI-1640 medium) and NP-9 cells (cultured in DMEM:F12 medium) were maintained at 37°C in a humidified atmosphere with 5% CO2. All media contained 10% fetal calf serum and Penicillin/Streptomycin as antibiotics. Under maintenance conditions, 1.25 μg/ml puromycin was added to all transfectants culture media but it was eliminated during the experiments.

In cell cultures grown under anchorage-independent conditions, six-well plates were coated with the non-adhesive substrate, poly-HEMA (10 mg/ml in 95% ethanol), at 3 ml/well. Next, 5 × 10^5 cells/well were plated and incubated for 4 days (NP-18/NP-18/β3) or 7 days (NP-9/NP-9/β3) under the above culture conditions. Cells were gently recovered, and subjected to apoptosis detection and cell cycle analysis.

2.2. Cell growth analysis and volume calculation

To determine growth curves, 2,500 cells/well (for NP-18, NP-18/β3 and NP-9/β3), or 5,000 cells/well (for NP-9) were seeded in 24-well tissue plates. Quadruplicate wells were counted daily from days 1–8 after seeding. Cell number and volume were assessed in a Multisizer auto-analyzer (Coulter Corp., Hialechm, FL, USA). Data were plotted semilogarithmically. The slope at the linear segment was calculated, and used for doubling time estimation (h) using the equation: Ln(2) × 24 h/slope.
2.3. Adhesion assays

For these experiments, 96-well dishes (Dynatech, Chantilly, VA, USA) were coated with several concentrations of human plasma vitronectin (VN) (Collaborative Biomedical Products, Bedford, MA, USA) or human plasma fibrinogen (FB) (Sigma-Aldrich, St. Louis, MO, USA) and incubated at 4°C overnight. Immediately after blockage with 1% BSA, 50,000 cells (control and mock-transfected NP-9 and control, mock- and \(\beta_3 \)-transfected NP-18) and 25,000 cells (NP-9/\(\beta_3 \)) in adhesion medium (RPMI-1640 or DMEM:F12 with 1% Bovine Serum Albumin (BSA)) were added to each well and incubated at 37°C. After 1 h, unattached cells were removed by rinsing with PBS, and the remaining attached cells fixed in 2% formaldehyde. Cells were stained with 0.1% crystal violet. Following washing and drying of cells, color was developed with 0.1 M HCl, and read on a microtiter plate spectrophotometer at 630 nm.

For inhibition of cell adhesion assays, serial dilutions of anti-\(\alpha_v \) 17E6 and anti-\(\alpha_v \beta_3 \) LM609 antibodies (kindly provided by Merck) were added to the adhesion medium in VN (2 \(\mu g/ml \) for NP-9/\(\beta_3 \) and 1 \(\mu g/ml \) for NP-18/\(\beta_3 \) cells) or FB-coated dishes (15 \(\mu g/ml \) for NP-9/\(\beta_3 \) and 10 \(\mu g/ml \) for NP-18/\(\beta_3 \) cells). The percentage of cell adhesion inhibition was calculated, taking the value of control wells without antagonist as 100% adhesion.

2.4. Migration assays

For wound migration assays, cells were plated at a high density on 24 mm glass coverslips. After 24 h, confluent cultures were wounded using a blue pipette tip, washed twice to remove unattached and damaged cells, and incubated overnight in fresh culture medium covered with mineral oil at 37°C and 5% CO₂. Phase-contrast images were obtained every 15 min with a 10× dry lens on a Widefield CCD System (Carl Zeiss MicroImaging Inc., Jena, Germany). Images were subsequently analyzed using ImageJ software (NIH, Bethesda, MD, USA), and migration speed calculated as net displacement (\(\mu m \))/time (h).

For transwell assays, both sides of Fluoroblock Transwell Filters (8 \(\mu m \)) were coated with purified VN at a concentration of 15 \(\mu g/ml \). Cells were suspended in basal medium containing 1% BSA. Samples consisting of 30,000 cells for NP-9 and NP-9/\(\beta_3 \) and 50,000 cells for NP-18 and NP-18/\(\beta_3 \) were plated on each filter. Migration was induced by adding 400 \(\mu l \) of medium supplemented with 1% BSA and 50 \(\mu g/ml \) of hepatocyte growth factor (HGF) to the feeder well. Filters were placed into 24-well dishes, and incubated for 6 h (NP-9/\(\beta_3 \)) or 12 h (NP-18/\(\beta_3 \)). For inhibition of cell migration, anti-\(\alpha_v \beta_3 \) LM609 antibody was added to the migration medium (100 \(\mu g/ml \)). Individual conditions were analyzed in triplicate. Fifteen minutes before the end of the assay, calcein-AM was added to feeder wells at a final concentration of 5 \(\mu M \). Filters were examined using fluorescence microscopy and the fluorescence lecture was made with the Cytofluor 2300 System (Applied Biosystems, Carlsbad, CA, USA).

2.5. Flow cytometry

Cells were trypsinized, harvested in culture medium, and washed with PBS. Aliquots of cells (10⁶) were incubated with each primary antibody for 20 min at 4°C. After washing with PBS-1% BSA, cells were incubated with FITC-conjugated secondary antibodies (Molecular Probes) for 30 min at 4°C. Cells were resuspended in PBS-containing propidium iodide (5 \(\mu g/ml \)) prior to flow cytometric analysis. Living cells were gated on the basis of their side and forward scatter and propidium iodide fluorescence. The following mAbs were used: AP3 for \(\beta_3 \), 11D1 for \(\beta_5 \), P4C10 for \(\beta_1 \), 5C4 for \(\beta_8 \), 17E6 for \(\alpha_v \), and LM609 for \(\alpha_v \beta_3 \) (all kindly provided by Merck) and 14e5 for \(\beta_8 \) (kindly provided by Dr. Stephanie Cambier).

To analyze the cell cycle profiles, culture cells were harvested at different times after seeding, fixed in 70% ice-cold ethanol, washed with ice-cold PBS, and stained in Tris-buffered saline containing propidium iodide (50 \(\mu g/ml \)), RNase A (10 \(\mu g/ml \)) for 1 h at 4°C. In all cases, data from >10,000 cells were collected and analyzed using WinMDI/Multicycle software (Phoenix Flow Systems, San Diego, CA, USA). All measurements were performed on Epics XL (Coulter Corp., Hialechm, FL, USA) or Elite (Coulter Corp., Hialechm, FL, USA) flow cytometers.

2.6. Immunofluorescence

Cells were seeded on 10 mm glass coverslips. After 24 h, cells were washed twice in PBS, fixed in 4% paraformaldehyde for 30 min, washed again and permeabilized in 0.2% Triton X-100 for 5 min. After 1 h of blocking with 3% BSA in PBS at room temperature, cells were incubated with primary antibodies at room temperature for 1 h (anti-paxillin and anti-p27 (Transduction Laboratories, Lexington,
KY, USA) anti-CDK1 (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) and anti-\(\alpha_v\)\(\beta_3\), clone 23C6 (gently given by Dr. Erik Danen). Next, cells were washed three times with PBS, and coverslips incubated at room temperature for 1 h in the dark with FITC-conjugated anti-mouse immunoglobulins (Jackson ImmunoResearch, Newmarket Suffolk, England) and Texas Red (TR)-conjugated Phalloidin (Molecular Probes, Eugene, OR, USA) for actin staining. All antibodies were diluted in washing solution containing 0.5% BSA and 0.005% saponin in PBS. Mowiol 4-88 solution supplemented with DABCO (Calbiochem, La Jolla, CA, USA) was employed as mounting medium. Photomicrographs were obtained with a confocal Leica TCS NT microscope (Leica Microsystems, Wetzlar, Germany) using a 63× oil objective.

2.7. Western blot analysis

Cells were lysed in 10 mM Tris-HCl (pH = 7.4), 400 mM NaCl, 5 mM NaF, 10% glycerol, 1 mM EDTA, 1 mM Na_3VO_4, 0.5% Igepal CA-630, 4 mM DTT supplemented with protease inhibitor cocktail (Roche, Mannheim, Germany). Protein concentration was determined using the Bradford (Bio-Rad) assay. Total protein (40 µg) was electrophoresed on SDS-polyacrylamide gels (8–12%). For integrin determination, non-reducing conditions were used. Proteins were electrotransferred to nitrocellulose membranes (Schleicher and Schuell, Dassel, Germany) and probed with the following specific primary antibodies: the above mentioned anti-\(\beta_6\) (5C4) and anti-\(\beta_3\) (AP3), anti-\(\beta_8\) (3/8) (kindly provided by Stephanie Cambier), anti-CycD1 (SC-8396), anti-CycE (HE12), anti-CycA (C-19), anti-p21 (C-20), anti-p27 (C-19), anti-CDK6 (C-21), anti-CDK4 (H22), anti-CDK2 (M2) and anti-CDK1 (SC-54) (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), anti-p16 (13251A) and anti-PARP (7D3-6) (Pharmingen, San Diego, CA, USA), and anti-actin (A2066) (Sigma-Aldrich, St. Louis, MO, USA). After washing, membranes were incubated with corresponding HRP-conjugated anti-mouse IgG (DAKO, Carpinteria, CA, USA) and anti-rabbit IgG (Sigma-Aldrich, St. Louis, MO, USA) secondary antibodies. The blot was developed using the enhanced chemiluminescence detection system (Amersham, Arlington Heights, IL, USA).

2.8. Rho/Rac–GTPase activity

Cells growing subconfluently on 14 mm dishes in standard medium were lysed with 1 ml Nonidet P-40 lysis buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1% Nonidet P-40, 10% glycerol, 10 mM MgCl_2) supplemented with protease inhibitor mix (1:1000) (Sigma-Aldrich, St. Louis, MO, USA). Lysates were clarified by centrifugation at 14,000 rpm for 20 min at 4°C. A 1% aliquot was removed for determination of the total GTPase level. Clarified lysates were incubated for 45 min at 4°C with a GST fusion protein containing the Rho-binding domain of Rhotekin (a Rho effector protein) [29] or 30 min at 4°C with a biotinylated peptide corresponding to the Cdc42/Rac interactive binding motif in PAK1B (kindly provided by Dr. J. Collard). Complexes were bound to glutathione- or streptavidin-conjugated beads, and washed three times in Nonidet P-40 lysis buffer. Samples were analyzed using 14% SDS-PAGE, followed by Western blotting using RhoA (clone 26C4, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and Rac1 (clone 102, Transduction Laboratories, Lexington, KY, USA) as primary antibodies. Finally, blots were processed according to previous reports to detect bound activated (GTP-loaded) and total GTPases.

2.9. In vivo assays

For subcutaneous (sc) tumors, a total of 12 × 10^6 (NP-9/NP-9/\(\beta_3\)) or 5 × 10^6 (NP-18/NP-18/\(\beta_3\)) pancreatic cells were injected subcutaneously into each posterior flank region of BALB/c nude mice. For intrapancreatic (ip) tumor generation, mice were anesthetized by intraperitoneal injection of a ketamine/xylazine mixture (3:1). Subsequently, a small left flank laparotomy was made, and the tail of the pancreas and spleen carefully exposed. A 10 mg fragment from sc NP-18 or NP-18-\(\beta_3\) tumors was fixed to the pancreas with a non-absorbable surgical suture (Prolene 5–0), the pancreas and spleen returned to the abdominal cavity, and the peritoneum and abdominal wall were closed with a surgical staple. Tumors were allowed to grow for 20 days (sc) or 5 weeks (ip). To determine the effects of the \(\alpha_v\)-blocking antibody 17E6, at 24 h (sc tumors) or one week (ip tumors) after implantation, mice were randomly distributed into several treatment groups, specifically, controls receiving saline only and 17E6-treated mice receiving intraperitoneal injections (1 mg/mouse three times/week for 7 weeks (sc tumors) or 500 µg/mouse three times/week for 6 weeks (ip tumors)). In all assays, mice were sacrificed, following which tumors were removed and weighed.
All animal work was performed in compliance with the guidelines and approval of the Institutional Animal Care Committee.

2.10. Statistical analysis

Statistical analysis was performed using GraphPad Prism 4 software. p-values were calculated according to two-sided Student’s t-test for independent samples and two-way ANOVA with Bonferroni correction.

3. Results

3.1. Integrin levels in β3-overexpressing cells

To analyze the effects of αvβ3 integrin on human pancreatic cancer cells, we transduced two cell lines, NP-9 (weakly expressing β3) and NP-18 (β3-deficient), with a retroviral vector containing human β3 integrin cDNA. One clone from each parental cell line overexpressing β3 were selected (NP-9/β3 and NP-18/β3). NP-9/β3 displayed higher β3 expression levels than NP-18/β3, as assessed by western blotting (Suppl. Fig. 1A: http://www.qub.ac.uk/isco/JCO) and FACS (Fig. 1A). Proper membrane localization of the αv/β3 dimer was confirmed in both cell lines with FACS analysis (Fig. 1A).

We additionally analyzed plasma membrane localization of other integrins closely related to β3. Both parental cell lines were clearly positive for β1 and β5 subunits (Fig. 1B). In contrast, low levels of β5 and β8 subunits were detected solely in NP-9 cells (data not shown). We observed increased αv subunit surface levels in both β3-overexpressing cell lines (Fig. 1B), but no significant differences in the overall levels of β5 (Fig. 1B), and β4 and β8 were obtained in any model (data not shown). Interestingly, a significant increase in the β3 integrin subunit was observed in NP-18/β3 (Fig. 1B). This increase was accompanied by an additional 30% of the α5/β1 dimer in plasma membrane (data not shown).

3.2. Morphological features

Overexpression of β3 induced marked morphological changes in NP-9/β3 cells, which showed a flattened and enlarged shape, compared to the parental cell line (Fig. 2). Moreover, the cell volume of NP-9/β3 was increased 1.7 ± 0.2-fold, compared to NP-9 (Table 1). Actin cytoskeleton and focal adhesion contacts were visualized by staining of actin and paxillin, respectively (Fig. 2A). Actin stress fibers and paxillin in focal adhesions were increased in NP-9/β3 cells, in keeping with the morphological changes induced by β3. In NP-18/β3, less cortical actin was present, but distribution and number of focal adhesions were altered in a similar manner to that in NP-9/β3, even though cell shape and volume remained practically unaltered. The αvβ3 integrin was localized in structures resembling focal adhesion contacts in both cell lines, displaying typical clustering (Fig. 2B, Suppl. Fig. 1B: http://www.qub.ac.uk/isco/JCO).

3.3. Adhesion on specific matrices

Adhesion assays on specific coats demonstrated the functionality of newly synthesized β3 dimers. As shown in Fig. 3A, while both parental and β3-expressing cells bound vitronectin (VN), only the latter cells were able to interact at low VN concentrations. To confirm the role of αvβ3 integrin in enhanced adhesion ability to VN, inhibition adhesion assays with αv- and αvβ3-blocking antibodies (17E6 and LM609, respectively) were performed (Fig. 3A). In all models, 17E6 cell adhesion was almost completely blocked on VN. Besides, cellular adhesion to VN was weakly (NP-9) or even not affected (NP-18) by LM609, according to the low (NP-9) or null (NP-18) αv/β3 basal expression in these cells. In contrast, NP-9/β3 and NP-18/β3 cell attachment to VN was partially abrogated by LM609 antibody, unveiling the contribution of αvβ3 integrin to the enhanced adhesion ability to VN displayed by these cell lines. Similar assays were performed on fibrinogen (FB). In this case, only β3-overexpressing cells were able to bind the FB coating, verifying the functionality of ectopic αvβ3. As expected, inhibition adhesion assays with 17E6 on FB revealed complete abrogation of binding in both β3-expressing cell lines (Fig. 3B).

3.4. Cell migration

The effects of β3 on cell migration were initially analyzed using wound healing assays. Mean migration velocities were calculated for all cell lines. A β3-induced stimulatory effect on migration was evident for NP-9/β3, which displayed fastest migration, compared with the other cell lines. Surprisingly, NP-18 and NP-18/β3 displayed similar migration velocities, suggesting that β3 has no significant influence on the migratory behavior of NP-18 cells under these conditions (Fig. 4A). In migration assays performed on VN-coated transwells using HGF as a chemoattrac-
Fig. 1. Membrane presence of several integrin subunits and $\alpha_v\beta_3$ in NP-9 and NP-18 cell models. Cells were incubated with mAbs against β_3 (AP-3), $\alpha_v\beta_3$ (LM609), α_v (17E6), β_5 (P1F6) and β_1 (P4C10), followed by staining with FITC-conjugated rabbit anti-mouse Ig antibody, and analyzed using an Epics-XL flow cytometer. Bars depict fluorescence intensity for the different cell lines (wt: parental, mock: mock-transfected and β_3: β_3-transfected). Means \pm SD fluorescence units of three independent experiments are shown. Statistics: t-test, *$p \leq 0.05$, **$p \leq 0.01$, ***$p \leq 0.001$ vs. wt.
Fig. 2. Effects of β3 overexpression on cell morphology. Cells (wt: parental, mock: mock-transfectants and β3: β3-transfectants) were grown in complete medium for 1 day on glass coverslips, fixed, permeabilized and stained for: (A) paxillin (FITC) and F-actin (TR), and (B) αvβ3 integrin (FITC) and F-actin (TR). All samples were analyzed using confocal microscopy. Bars, 20 µm.

Table 1

<table>
<thead>
<tr>
<th>Cell line</th>
<th>NP-9</th>
<th>NP-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td>1694 ± 31</td>
<td>2179 ± 44</td>
</tr>
<tr>
<td>mock</td>
<td>1680 ± 16</td>
<td>2360 ± 46</td>
</tr>
<tr>
<td>β3</td>
<td>2888 ± 16</td>
<td>2162 ± 24</td>
</tr>
</tbody>
</table>

Notes: Cell volume was assessed in a Multisizer auto-analyzer (Coulter Corp., Hialeah, FL, USA). The results are expressed in µm³ as means ± SD of one representative experiment.

3.5. Rho GTPase activities

Considering the involvement of GTPases of the Rho family in cell migration capacity, RhoA and Rac1 activities were analyzed using pull-down assays in all four models grown under standard conditions. Rac1-GTP levels were not altered in β3-overexpressing cells. However, the RhoA-GTP level was diminished in NP-9/β3 cells, in accordance with their enhanced migration capacity observed in wound healing assays (Fig. 4D).
Fig. 3. Cell adhesion and adhesion inhibition assays. (A) Vitronectin (VN). For adhesion assays, results are presented as % of the maximum OD value of crystal violet-stained cells, working with sample triplicates in each experiment ($n = 3$). Symbols represent the following cell lines: (●) wt, (■) mock, and (▲) β3-transfected. For adhesion inhibition assays, purified monoclonal antibodies (mAb) against αv (17E6) or αvβ3 (LM609) were co-incubated during cell attachment to VN-coated substrates. Symbols represent the following conditions: (◦) wt 17E6/LM609; (▲) β3 17E6/LM609. Data are expressed as a percentage of cell adhesion inhibition. In all cases, means ± SD are shown. Statistics: 2-way ANOVA, *$p < 0.05$, **$p \leq 0.01$, ***$p \leq 0.001$ vs. wt or mock.

3.6. Cell proliferation

The expression levels of several proteins involved in cell cycle progression were analyzed by western blotting to evaluate the possible effects of β3 on cell proliferation. Among the proteins analyzed, increased levels of p27 and CDK1 were observed in NP-9/β3, compared with NP-9 cells. However, β3 overexpression induced an increase in endogenous p16 levels in NP-18/β3 (Fig. 5A). No major changes in cell cycle profiles were evident between β3 and parental cells (Fig. 5A). Moreover, doubling times were not significantly altered in β3-overexpressing cell lines (44.6 ± 2.5 and 39.08 ± 0.6 h for NP-9 and NP-9/β3; 27.9 ± 0.5 and 25.3 ± 1 h for NP-18 and NP-18/β3, respectively).

Given that p27 and CDK1 play different roles depending on their subcellular localization, their presence was assessed using immunocytochemistry. p27 was localized mainly in the cytoplasm of the major-
Fig. 3. (B) Fibrinogen (FB). For adhesion assays, results are expressed as % of the maximum OD value of crystal violet-stained cells, working with sample triplicates in each experiment (n = 3). Symbols: (●) wt; (■) mock and (▲) β3-transfected. For adhesion inhibition assays, purified 17E6 mAb was co-incubated during cell attachment to fibrinogen-coated substrate. Symbols: (▲) NP-9/β3 and (▲) NP-18/β3. In all cases, means ± SD are shown. Statistics: 2-way ANOVA, *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001 vs. wt or mock.

ity of NP-9 and NP-9/β3 cells, displaying a diffuse distribution with clear intensification at the rear of cells. Immunofluorescence analysis revealed that CDK1 was ubiquitously expressed in both, the nucleus and cytoplasm, as well as in the cellular periphery. We observed no significant differences in the p27 or CDK1 distribution patterns between NP-9 and NP-9/β3 cells (Fig. 5A).

Cell cycle distribution of cultures in anchorage-independent conditions (poly-HEMA) was additionally analyzed. Under these conditions, all cell lines showed marked G1 arrest and decrease in the S phase of the cell cycle. Moreover, a sub-G1 population was observed, indicative of anoikis (Fig. 5B). Interestingly, this sub-G1 population was more evident in both β3 models than in the parental cell lines. Detection of PARP cleavage with Western blotting corroborated the induction of apoptosis under anchorage-independent culture conditions upon αv/β3 overexpression (Fig. 5B).

3.7. Tumor growth

To ascertain whether the changes observed in vitro are associated with differential growth in vivo, subcutaneous and intra-pancreatic tumors were generated by inoculation of β3-overexpressing and corresponding parental cell lines. Comparison of tumor weights provided evidence that αv/β3 overexpression provokes growth-suppressive effects in both NP-9 and NP-18 subcutaneous models (Fig. 6A). The results obtained with orthotopic inoculation of NP-18 and NP-18/β3 indicate that this effect is independent of tumor location (Fig. 6B).

We further investigated the effects of the αv-blocking antibody 17E6, on the growth of both subcutaneous and orthotopic tumors, using NP-18 and NP-18/β3 models. Surprisingly, while the contribution of αv/β3 integrin to growth was negative, blocking of αv integrins reduced tumor growth to a higher extent in a manner dependent on β3 expression levels (Figure 6C and D).
4. Discussion

Overexpression of $\alpha_v\beta_3$ integrin has been demonstrated in different human cancer cells, and correlates with increased invasive behavior in many solid tumor types [40]. Moreover, combination therapies, including integrin antagonists and others (such as signaling pathway inhibitors or radiotherapy) show that inhibition of $\alpha_v\beta_3$ integrin signaling enhances the antiangiogenic and antitumor effects elicited by other treatment regimes [1,6,20]. However, the stimulatory role of $\alpha_v\beta_3$ integrin in tumor formation was challenged, based on observations of increased angiogenesis in KO mice for $\alpha_v\beta_3$ or $\alpha_v\beta_5$ and $\alpha_v\beta_3$ integrins [32]. Additional evidence indicates that tumor growth and experimental metastasis are reduced upon $\alpha_v\beta_3$ overexpression, highlighting a dual role of $\alpha_v\beta_3$ integrin in angiogenesis and tumor growth [11,22].

While $\alpha_v\beta_3$ overexpression is not a common feature in PDAC, several investigators have linked expression of this integrin in endothelial and pancreatic cancer cells with enhanced vascularization, tumor growth, and invasiveness [13,17,19]. In an attempt to clarify the role of this integrin in pancreatic cancer behav-
ior, we generated and characterized two \(\beta_3 \)-expressing pancreatic cancer cell lines, specifically, NP-9/\(\beta_3 \) and NP-18/\(\beta_3 \). In both cell lines, \(\alpha_v/\beta_3 \) dimers were localized in focal adhesion contacts. Their functionality was demonstrated both, by the enhancement of the adhesion ability and cell migration on VN and the inhibitions elicited by specific antibodies.

Plasma membrane profiling of other \(\beta \) subunits closely related to \(\beta_3 \) was also monitored to clarify the extent to which the observed changes were directly related to \(\beta_3 \) subunit overexpression. No significant differences in the overall levels of other \(\alpha_v \) partners were evident, with a slight increase in only \(\beta_1 \) levels in NP-18/\(\beta_3 \). This finding may be related to the previously described cross-talk between \(\beta_1 \) and \(\alpha_v \) integrins through which \(\alpha_v/\beta_3 \) and \(\alpha_v/\beta_5 \) surface levels are diminished upon \(\beta_1 \) expression [30]. Moreover, Danen et al. [10] further confirmed the \(\beta_1 \)-mediated control of \(\beta_3 \) levels, and related this event to redistribution of focal contacts.

It is possible that the \(\beta_1 \) increase observed in NP-18/\(\beta_3 \) merely reflects a cellular response against \(\beta_3 \) overexpression and explains the mild \(\beta_3 \)-overexpressing phenotype of this cell line, which correlates with the maintenance of cell morphology.

Interestingly, transcriptional upregulation of \(\alpha_5/\beta_1 \) induced by p16 has been described in earlier reports [27,28]. Moreover, other studies show that overexpression of p16 inhibits migration of different tumor cells by controlling cell–cell and cell–ECM interactions through \(\alpha_v/\beta_3 \) [2,4,14]. In this sense, the expected

Fig. 5. Cell cycle and apoptosis analysis. (A) (a) Expression levels of cell cycle-related proteins. Two days after seeding, 40 µg of total protein extracts were immunoblotted using antibodies against different proteins involved in cell cycle progression. wt: parental, mock: mock-transfected and \(\beta_3: \beta_3 \)-transfected. (b) Subcellular localization of p27 and cdk1 in NP-9 and NP-9/\(\beta_3 \). Cells were grown for 1 day on glass coverslips in complete medium. Afterwards, cells were fixed, permeabilized and stained for p27 and CDK1 using FITC-conjugated anti-mouse IgG as secondary antibody. Samples were analyzed by fluorescence microscopy (×400). (c) Cell cycle profile. Cell cycle distribution was assessed by flow cytometry analysis of propidium iodide-stained cells during the exponential phase of growth. wt: parental, mock: mock-transfectants and \(\beta_3: \beta_3 \)-transfectants. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/ACP-CLO-2010-0538.)
Fig. 5. (B) (a) Cell cycle profiles under non-attachment conditions. Cell cycle distribution was assessed by flow cytometry analysis of propidium iodide-stained cells on days 4 (NP-18 and NP-18β3) and 7 (NP-9 and NP-9β3) after seeding on poly-HEMA coats. (b) Quantification of the sub-G1 peak was performed using WinMDI/Multicycle software. (c) Apoptosis under anchorage-independent conditions. Cleavage of poly(ADP-ribose)-polymerase (PARP) was assessed by Western blot detection of the 85 KDa cleaved form of PARP. C – standard conditions; polyHEMA – poly-HEMA coating.

pro-migratory effect exerted by β3 may be partially compensated by high p16 levels. Notably, unlike NP-9, NP-18 cells maintain p16 expression. In this context, we show that β3-overexpressing NP-18 cells exhibit a marked increase in p16 protein levels that could modulate α5β1 levels and cell migration.

Analysis of the expression levels of other cell cycle proteins revealed increased CDK1 and p27 levels in NP-9β3. However, these changes did not lead to modification of the cell cycle profiles or proliferation rates, suggesting that increases in p27 and CDK1 are associated with activities other than cell proliferation. Intriguingly, both proteins have been linked to cell migration by other authors. CDK1 is a cell migration promoter acting as a downstream effector of αvβ3 integrin [26]. In the cytoplasm, p27 is reported to regulate cytoskeletal structure and cell migration by directly interfering with the interactions between RhoA and its activators [5]. These findings are consistent with the increased cell migration observed in NP-9/β3. As shown in this study, the increased migration rate correlates with a decrease in RhoA activity, and is concomitant with higher p27 and CDK1 protein levels. The involvement of p27 and CDK1 in modulation of migration requires cytoplasmic localization. Immunolocalization analysis of CDK1 and p27 in NP-9 and NP-9β3 cell lines confirms their presence in both the nucleus and cytoplasm, supporting a role in modulating cell migration, at least in NP-9β3 cells. In addition, this cell line displays the fastest migration rate, reinforcing the correlation between αvβ3 overexpression and increased invasive behavior reported for different tumors [40].

The integrin αvβ3 can induce apoptosis upon disruption of cell–matrix contact [24,41]. Our experiments with poly-HEMA revealed a significant increase in anoikis in association with overexpression of β3, being particularly remarkable the anoikis achieved in NP-18/β3 cells. This finding provides new evidence on the negative contribution of αvβ3 to the growth under anchorage-independent conditions. Moreover, given that the observed levels are particularly significant in NP-18/β3 cells, this result may be related to the increase in p16, and is consistent with anoikis induced in pancreatic models by overexpression of p16 via α5β1 [28].
Fig. 6. Tumor growth and treatment with the 17E6 antibody. (A) Tumor growth into subcutaneous tissue. A total of 12×10^6 NP-9 or NP-9β_3 and 5×10^6 NP-18 or NP-18β_3 tumor pancreatic cells were injected subcutaneously into each posterior flank region of BALB/c nu/nu mice. After sacrifice, tumors were extracted and weighed. Bars represent means ± SD of tumor weights from 6–8 mice/condition. Statistics: t-test, *$p \leq 0.05$, NP-18 vs. NP-18β_3 **$p \leq 0.001$ NP-9 vs. NP-9β_3. (B) Tumor growth into pancreas. After 5 weeks of implantation of 10 mg tumor fragments by subcostal laparatomy, animals were sacrificed. Tumors were extracted and weighed. Bars represent means ± SD of tumor weights from 4–7 mice/condition. Statistics: t-test, ***$p \leq 0.001$ NP-18 vs. NP-18β_3. (C) Effects of 17E6 on subcutaneous tumors. Cells were injected s.c. in nude mice, as described for A. The mAb, 17E6 (1 mg/animal), or PBS were administered three times per week over six weeks from the first day. Next, animals were sacrificed and tumor weights determined. Bars show means ± SD of tumor weights from 4–6 mice/condition. Statistics: t-test, *$p \leq 0.05$ untreated NP-18 vs. untreated NP-18β_3, ##$p \leq 0.01$ untreated NP-18β_3 vs. 17E6-treated NP-18β_3. (D) Effects of 17E6 on intrapancreatic tumors. Tumor fragments were implanted in mouse pancreas, as described for (B). The mAb, 17E6 (500 µg/animal), or an equal volume of PBS was administered three times per week over 7 weeks from the seventh day after implantation. Next, animals were sacrificed and tumor weights determined. Bars depict means ± SD of tumor weights from 5–8 mice/condition. Statistics: t-test, ##$p \leq 0.01$ untreated NP-18β_3 vs. 17E6-treated NP-18β_3.

β_3 overexpression leads to a significant reduction in the tumor growth rate in both subcutaneous and orthotopic models, evidencing that other factors, additional to the interaction with the intrapancreatic environment, play role in this growth suppression. This result is in line with observations in other tumors, such as glioma, in which β_3 overexpression does not affect in vitro growth, but reduces in vivo tumor formation [22, 23]. These findings are consistent with the behavior of KO mice [32], supporting dual roles of $\alpha_v\beta_3$ integrin [21]. The negative contribution of β_3 to in vivo growth suggests that the use of anti-α_v antibodies in therapies for pancreatic cancer might be contraindicated. Interestingly, 17E6 treatment reduced β_3-overexpressing tumor growth to a more significant extent, compared to those developed from parental cells. These data may be explained by the hypothesis formulated by Hynes that blocking reagents act as agonists of the negative regulatory function of α_v integrins [21].

Our results collectively show that β_3 expressed in pancreatic cancer cells exerts different effects, such as promotion of cell migration in monolayer cultures, induction of anoikis in vitro, and suppression of in vivo tumor growth, providing new evidence for involvement of the cell environment in the dual roles of $\alpha_v\beta_3$ integrin. Further studies with these models may aid in clarifying the factors that modulate $\alpha_v\beta_3$ integrin roles and establishing how pancreatic tumors respond when their integrin patterns are altered, eventually allowing bet-
ter prediction of the effects of therapeutic antitumoral agents applied to regulate integrin actions.

Acknowledgements

We are grateful to Merck and Dr. Stephanie Cambier for the monoclonal antibodies and Dr. Marshall for the pBabe/3 vector. We thank Drs. E. Danen, A. Sonnenberg and J. Collard for materials gift, critical comments, and generous help in pull-down assays, and J. Comas for his technical assistance at flow cytometry service. This research was supported by Ministerio de Ciencia e Innovación (Grants BIO2005-08682-C03-03 and BIO2008-04692-C03-03 to AM) and SM and AV are recipients of predoctoral fellowships from Generalitat de Catalunya.

References

Submit your manuscripts at http://www.hindawi.com