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Background. The purpose of this study is to identify a set of features for optimizing the performance of metaphase chromosome
detection under high throughput scanning microscopy. In the development of computer-aided detection (CAD) scheme, feature
selection is critically important, as it directly determines the accuracy of the scheme. Although many features have been examined
previously, selecting optimal features is often application oriented. Methods. In this experiment, 200 bone marrow cells were first
acquired by a high throughput scanning microscope. Then 9 different features were applied individually to group captured images
into the clinically analyzable and unanalyzable classes. The performance of these different methods was assessed by a receiving
operating characteristic (ROC) method. Results. The results show that using the number of labeled regions on each acquired image
is suitable for the first on-line CAD scheme. For the second off-line CAD scheme, it would be suggested to combine four feature
extraction methods including the number of labeled regions, average regions area, average region pixel value, and the standard
deviation of either region distance or circularity. Conclusion. This study demonstrates an effective method of feature selection and
comparison to facilitate the optimization of the CAD schemes for high throughput scanning microscope in the future.

1. Introduction

Chromosome imaging and karyotyping is an important and
widely used clinical method for the diagnosis of genetic
related diseases and cancers [1-3]. For this technique, identi-
tying a sufficiently large number of pathologically analyzable
metaphase chromosomes is critically important for the final
accuracy of cancer diagnosis and residual cancer cell detec-
tion. At present, the chromosome identification is a two-step
semiautomatic procedure [4]. Commercialized automatic
scanners first scan and locate the clinically useful cells under
low magnification state (i.e., 10x objective lens). Second, clin-
icians have to manually move back to these detected locations
again for high resolution image acquisition (i.e., under 100x
objective lens), which is labor intensive and time consuming.
In addition, it also creates substantial interobserver variation
due to the bias of cell selection (i.e., the tendency towards

selecting cells with good morphology). Therefore, the auto-
matic scanning techniques are proposed and developed in the
last 20 years, in an attempt to reduce the clinicians’ workload
and improve the diagnostic accuracy and consistency [5].
Recently, a new high throughput scanning method is
reported in our laboratory [6]. Comparing to the currently
commercialized scanners, our new method can accomplish
a one-step scanning procedure, which directly provides
the high resolution chromosome images for the following
diagnosis (i.e., under 100x objective lens) [6-8]. In order to
apply this technique to the future practice, on-line and oft-
line computer-aided detection (CAD) schemes are needed to
be integrated into the image scanning procedure, for selecting
the clinically analyzable metaphase chromosomes [6]. The
on-line CAD scheme synchronizes with the high speed image
scanning process and initially detects the analyzable cells,
while the off-line CAD scheme is applied after scanning,



to further select the analyzable images on the results firstly
processed by the on-line scheme.

In order to determine whether the image contains
analyzable chromosomes, both on-line and off-line CAD
schemes extract and compute a set of image features from the
segmented region of interest (ROI) on the acquired image.
Therefore, selecting optimal and robust feature set will
directly determine the final accuracy of the entire scheme,
which is critically important for the CAD scheme. In the
last several years, investigating new features has received
extensive research interest and a series of different methods
have been reported [9-13]. However, the effectiveness of
feature selection is often task dependent or application
oriented. It is difficult to directly compare these previously
published chromosome features for our CAD scheme, as
these methods are applied under different scanning condi-
tions and evaluated using different standards. Therefore, it
is necessary to investigate how to effectively evaluate these
features under the high throughput scanning condition.

For this purpose, we performed a new study in which a
certain number of bone marrow chromosomes were scanned
and imaged under the high throughput scanning prototype.
Different image features were computed by our CAD scheme
to detect and classify the analyzable cells among the scanned
images. The performance of the features was assessed and
compared using a receiver operating characteristic (ROC)
data analysis method. The detailed experimental methods
and results are reported as follows.

2. Materials and Methods

During the specimen slide scanning, only a small number
of scanned images are qualified for the clinical examination,
as most of the scanned image regions contain unanalyzable
cells due to the sample processing in the genetic laboratory.
Therefore, a CAD scheme is applied to detect and identify
the image regions of interest (ROIs) depicting the analyzable
chromosomes. To develop an effective and robust CAD
scheme, feature extraction is a critically important step in the
CAD development and optimization [5, 9, 10, 13].

In this investigation, different features were assessed
under a high throughput scanner. The entire assessment
includes the following three steps. First, a number of 200
cells were randomly selected from bone marrow specimens.
All these selected cells were obtained as image ROI, using
our recently developed scanning microscopy prototype [6].
The size of each ROI is 3488 x 2048 pixels, which is
sufficient to cover the region of the entire cluster of metaphase
chromosomes. Each cell was captured under a 100x objective
lens, by a time delay integration (TDI) camera with a pixel
size of 7 pym.

Second, the CAD scheme computed a number of image
features for the captured ROI. In the last twenty years,
many features have been investigated for the chromosome
identification, which include morphology parameters such
as size or circularity [10], centromeric index [14-16], rel-
ative length [14-16], density profile of the band pattern
[15-17], and wavelet based multiresolution curvature [18].
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However, except for the morphology parameters, all the
other features (centromeric index, relative length, etc.) are
developed to distinguish the detailed difference between
the various chromosome band patterns for the karyotyping.
Thus, these karyotyping features require more complicated
image segmentation to separate the overlapped band patterns
[5, 19, 20] and also have high computing complexity, which
are not necessary and may reduce the efficiency of the CAD
scheme. Comparatively, the morphology features can bal-
ance the efficiency and the effectiveness for our application.
Therefore, in this study, the feature pool includes a number
of nine different morphology features, which are the most
representative for the metaphase chromosome classifications
[9, 10, 13]. They are detailed as follows.

(1) The number of labeled regions [10]: after applying
the region growth and labeling algorithm, the CAD
detects and counts the number of isolated “chromo-
somes.”

(2) Average region pixel intensity [21]: the CAD com-
putes the average pixel intensity value for all the
labeled “chromosomes” on the image.

(3) Standard deviation (STD) of the region pixel intensity
[21]: the CAD first computes the average pixel inten-
sity for each labeled region and then calculates the
standard deviation of the region pixel intensity for all
the labeled “chromosomes.”

(4) Average region area [21]: the CAD computes the area
of each labeled region (“chromosome”) by counting
the number of pixels contained in the region. The
average region area for the entire image was computed
by averaging the region area of all the labeled regions.

(5) STD of the region area [21]: the CAD computes the
standard deviation of the region area for all the labeled
regions contained on the entire image.

(6) Average region circularity [10, 22]: in order to calcu-
late this feature, the circularity of each labeled region
was first computed. For each region, an equivalent
circle was created, and this circle has the same area
as the labeled region. The CAD then computes the
overlapped area (A,) between the equivalent circle
and the entire region. The region circularity is then
defined as the ratio between the overlapped area (A )
and entire regions area (A): A,/A. After that, the
circularities of all the regions were averaged for the
entire image.

(7) STD of the region circularity [10, 22]: the CAD
computed the standard deviation of the circularities
of all the labeled regions within the entire image.

(8) The average region distance [10]: the CAD first
computes the global gravity center (x,, y,) of all the
labeled regions. The radial distance is then defined as
the distance between the gravity center (x, y) of each
labeled region and global gravity center (x,, y,). The
radial distances of all the regions were averaged as the
average region distance.
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(9) STD of the region distance [10]: the CAD computes
the standard deviation of the region distances for all
the labeled regions on the image.

Third, the performance of the CAD scheme was objec-
tively assessed. Currently, in most of the previous studies,
the performance is evaluated by CAD-observer agreement
coeficient (Kappa coeflicient) [23] or the classification accu-
racy [24, 25]. The Kappa coeflicient is still a subjective
evaluation, as it cannot avoid the interobserver variance. The
classification accuracy only reveals the feature performance
(i.e., true positive fraction (TPF) and false positive fractions
(FPF)) at one previously determined threshold. However, in
the future clinical application, the tested features might be
applied at other possible thresholds. Thus, the receiving oper-
ating characteristic (ROC) method [26-28] is utilized in this
investigation, which reflects the trade-off between the TPF
and FPF at various thresholds. For each feature, a ROC curve
was computed by estimating the true positive fraction (TPF)
at different false positive fractions (FPF), which are deter-
mined based on the discrimination threshold [26]. The cell is
considered as clinically analyzable (positive) or unanalyzable
(negative) if the feature is within or outside the discrimina-
tion threshold, respectively. In the realistic application, the
distribution of the true and false positive cases can be approx-
imated as normal distributions [26, 28]. In order to estimate
the TPF at different FPFE, the data were categorized by several
discrimination thresholds. At each threshold, the TPF and
FPF were estimated. The ROC curves were estimated by max-
imum likelihood method, using the ROCKIT program [26].

In this investigation, the area under the curve (AUC) was
first computed [26]. The features with an AUC under or close
to 0.5 were discarded, as their performances are not better
than the random decision. Then, each pair of the remained
features was compared and the difference significance among
these feature classifying performances was determined by the
partially paired model [29, 30]. The feature correlation was
also calculated to analyze the statistical independence of the
features. Since all the selected features have low computing
complexity, the executing time will not seriously affect the
efficiency of the CAD scheme. The executing time was not
explicitly assessed in the investigation.

In the high throughput scanning microscopy, the on-
line and oft-line CAD schemes have different requirements
[6]. The on-line CAD scheme has to synchronize with the
high speed image scanning; thus only the features with
best performance will be selected, to reduce the algorithm
complexity and improve the efficiency. The off-line CAD
scheme, however, will select the final results for the diagnosis.
Therefore, we should combine the advantages of all the tested
meaningful features, to select the analyzable cells among the
on-line results.

3. Results

Figure 1 shows three images acquired by the high throughput
scanner. Figure 1(a) contains a clinically analyzable region of
interest (ROI), while Figures 1(b) and 1(c) do not contain
analyzable chromosomes for diagnostic purpose. Figure 1(b)

only contains interphase cells. Figure 1(c) has more than one
metaphase cells, and they are overlapped with each other. It
can be seen that all the metaphase chromosomes are located
in a certain area of the image. Comparing to the interphase
cells, the metaphase chromosome is bright and has small size.
In addition, the shape of the metaphase chromosome is totally
different from the approximately circular interphase cells. The
number of labeled regions in (a) is much larger than (b),
as a normal human cell contains 46 chromosomes and one
unanalyzable image would not contain so many interphase
cells. For some unanalyzable images like (c), it has more than
one metaphase cells, so the number of labeled regions is much
larger than (a).

Figure 2 shows two scatter diagrams of the dataset
demonstrating the relationship of the feature distribution
between analyzable and unanalyzable ROIs. Figure 2(a) is a
scatter diagram between average region area and the number
of labeled regions. Since most of the chromosomes can be
labeled as individual region, most of the analyzable cells have
more labeled regions. In addition, the metaphase chromo-
somes are much smaller than the unanalyzable interphase
cells. Thus most of the clinically analyzable cells are located in
the up left corner of the diagram. Some unanalyzable cells are
also located in the up left corner, because some unanalyzable
cells contain many metaphase chromosomes, as illustrated in
Figure 1(c). Figure 2(b) is the feature distribution between the
number of labeled regions and the average region circularity.
It can be seen that a lot of features are overlapped in the
horizontal direction, as some short analyzable chromosomes
also have a large circularity and the captured analyzable
images also contain interphase cells with large circularity.

Figures 3 and 4 demonstrate and compare a set of ROC
curves computed from different features. Among all these
features, the number of labeled regions, average region area,
average region pixel value, STD of the region circularity, and
STD of the region distance demonstrate high discriminatory
ability, as the area under curve (AUC) of the other four
features is under or very close to 0.5. Among these features,
the AUC of the number of labeled regions is 0.896 + 0.023,
which is significantly better than the AUC of the average
region area (0.666 + 0.037), average region pixel intesity
(0.592 + 0.039), STD of the circularity (0.581 + 0.039), and
STD of the region distance (0.625 + 0.038). Although the
AUC of the other four features ranges from 0.666 to 0.581,
the differences between these features are not statistically
significant (P > 0.05), as illustrated in Table 1.

Table 2 shows the correlation coefficient between each
pair of the investigated features. It can be seen that the
number of labeled regions, average region area, and average
region pixel value are relatively independent features, as the
correlation coeflicient between these features is smaller than
0.5. The STD of the region circularity and the STD of the
region distance are related to each other, but each of these two
features is also independent of the other three features (the
number of labeled regions, average region area, and average
region pixel value).

For the high throughput scanning, both the on-line and
off-line CAD schemes are applied [6]. The on-line scheme is
synchronized with the high speed image scanning to initially
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FIGURE 1: Examples of the microscopic images captured by the high throughput scanner. The cells were acquried under 100x objective lens
and imaged by a TDI detector with a pixel size of 7 ym. Image (a) contains a clinically analyzable region of interest (ROI). Images (b) and (c)
contain interphase cells and overlapped metaphase chromosomes, respectively, which are unanalyzable for the diagnosis.
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FIGURE 2: The feature scatter diagram of dataset. It contains 67 clinically meaningful and 133 clinical unanalyzable chromosomes. The vertical
axis reflects the number of labeled regions, while the horizontal axis represents (a) average region area, (b) average region circularity.
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TaBLE 1: The estimated P value of the difference significance between the features.
The number of Average region Average pixel STD of the region ~ STD of the region
labeled regions area value circularity distance
The number of labeled regions 1 0 0 0 0
Average region area 0 1 0.1873 0.1484 0.4652
Average pixel value 0 0.1873 1 0.6576 0.6230
STD of the region circularity 0 0.1484 0.6576 1 0.3284
STD of the region distance 0 0.4652 0.6230 0.3284 1
TaBLE 2: The estimated correlation coeflicient among different features.
The number of Average region Average pixel STD of the region ~ STD of the region
labeled regions area value circularity distance
The number of labeled regions 1 0.3253 0.1567 0.2939 0.3467
Average region area 0.3253 1 -0.0151 —-0.1524 —-0.1038
Average pixel value 0.1567 -0.0151 1 0.3698 0.3334
STD of the region circularity 0.2939 -0.1524 0.3698 1 0.6058
STD of the region distance 0.3467 —-0.1038 0.3334 0.6058 1

detect the analyzable cells. Thus it requires high efficiency and
high sensitivity, which occurs with the cost of low specificity
(high false positive fraction). Since the on-line results contain
many images depicting unanalyzable chromosomes, the off-
line CAD scheme requires both high sensitivity (false positive
fraction) and specificity (false positive fraction), to finally
select the analyzable images while discarding the others.
Among all the five meaningful features, the number of labeled
regions has better performance than the others; thus it is
suggested as the only feature for the on-line CAD scheme, to
satisfy the real time requirement. After the on-line process-
ing, a number 0f 1000-3000 ROIs are saved [6], among which
only 10-30 ROIs contain analyzable metaphase cells for the
following diagnosis. Thus the off-line CAD scheme requires
high specificity to discard most of the false positive images
selected by the on-line CAD scheme. Furthermore, using the
modern classifiers, the CAD scheme is able to combine more
than one extracted feature, to achieve a better accuracy [31-
34]. As mentioned before, it is not necessary to apply both the
STD of the region distance and circularity because they are
correlated features. Therefore, it is recommended to combine
the number of labeled regions, average region area, average
region pixel value, and standard deviation of either region
distance or circularity, for the off-line CAD schemes.

In order to verify the performance of the selected features
for the off-line CAD scheme, a two-level classifier was
designed, as demonstrated in Figure 5(a). In the first level,
an ANN classifier combines the average region area, average
pixel intensity, and the STD of the region distance to provide
a score ranging from 0 to 1 (0 is definitely negative and
1 is definitely positive). The ANN score is fused with the
normalized value of the number of labeled regions in the
second level, by the minimum rule [35]. The estimated ROC
curve of the classifier is shown in Figure 5(b). The AUC is
0.924 + 0.026, which is superior to any individual feature in
this combination.

4. Discussion

High throughput scanning microscopy is a promising
method to digitalize the cells depicted on the clinical slides.
Comparing to the commercialized scanners, this new proto-
type can scan and acquire the high resolution chromosome
images directly for the diagnosis. Since only a small number
of cells contained on the slide are actually analyzable for
the diagnosis, a CAD scheme is needed to select the ROIs
depicting analyzable chromosomes for the following diag-
nosis. For the development of a robust CAD schemes, the
feature selection is critically important, which may directly
determine the final performance of the CAD scheme. Thus
the CAD designers need to carefully select the most suitable
features, to satisfy the different requirements of the various
CAD schemes.

In the last several years, many feature extraction methods
are reported, which can effectively identify the pathologically
analyzable metaphase chromosomes [9-13]. However, it is
difficult to compare the reported results directly, as these
features were applied on the different datasets and assessed
by the different standards.

In this study, 9 different feature extraction methods
were investigated, under the condition of high throughput
scanning prototype. A number of 200 bone marrow cells
including 67 clinically meaningful chromosomes were first
acquired. Then these cell images were processed and the
feature extraction methods were applied for each acquired
image. After that, the images were classified into analyz-
able and unanalyzable groups, using each feature extraction
method. The classification performance of each feature was
assessed by the ROC curve. The result shows that extracting
the number of labeled regions is suitable for the on-line CAD
scheme. For the off-line CAD scheme, it is recommended
to use the number of labeled regions, average region area,
average region pixel value, and the deviation of the either



Analytical Cellular Pathology

ROC curve of the number of labeled regions

1 ROC curve of the average region area
= 08| e [ 0.8} i
g =
o o
2 06} 1 £ o6} .
2 Q
& &
15 L
Z 04f 1 £ o4} 1
2 ‘D
2 &
Q L
£ 02 1 & 02 1
0 L L L L 0 L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False positive fraction (FPF) False positive fraction (FPF)
(a) (®)
ROC curve of the average region pixel value . ROC curve of the average circularity
£ 08t {1 E o8} 1
E =)
o o
S o6l 1 2 o6} I
3 3
= i=
1% L
Z 04 1 £ o4} T
172 12
S 3
=% &
Q Q
£ 02 1 & o02f 1
O 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

False positive fraction (FPF) False positive fraction (FPF)

() (d)

0.8

0.6 +

0.4

True positive fraction (TPF)

0.2 r

0 1 1
0 0.2 0.4 0.6 0.8 1

False positive fraction (FPF)
(e)

FIGURE 3: The estimated ROC curve for different extracted features: (a) the number of labeled regions, (b) average region area, (c) average

region pixel intensity, (d) average region circularity, and (e) average region distance. Accordingly, the calculated area under curve (AUC) is
(a) 0.896 + 0.023, (b) 0.666 + 0.037, (c) 0.592 + 0.039, (d) 0.531 + 0.040, and (e) 0.516 + 0.039, respectively.

region circularity or distance. As mentioned before, the image As an initial study, however, this investigation has several
features are application specific; thus the selected features  limitations. First, the performance of the classifiers was not
cannot be directly used for other CAD programs as the  assessed in this investigation. In the CAD scheme, feature
optimal selections. However, the reported feature evaluating  extraction and machine learning algorithm are two relatively
method is general and can be applied to optimize the  independent parts. The machine learning algorithm uses the
performance of other CAD schemes. extracted features to group the analyzable (positive) and
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unanalyzable (negative) cells. Similar to the features, the
performance of the different classifiers are also application
dependent. The performance of classifiers, such as decision
tree [31], support vector machine [33], fuzzy ARTMAP
[34], and native Bayesian classifier [32], should be assessed
uniformly to select the optimal one for the oft-line CAD
schemes. Second, we did not discuss the overall performance
difference between the high throughput and conventional
scanners, although the superiority of the high throughput
scanning microscopy has been initially proved in our previ-
ous investigations [6]. Moreover, only few studies are focused
on this comparison. Thus a more comprehensive study is
prepared, which may be able to improve the accuracy of the
high throughput scanning systems in the future.
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