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Abstract. This paper is concerned with the application of an asymptotic quasi-likelihood
practical procedure to estimate the unknown parameters in linear stochastic models of the form
yt .it(O) + Mr(O) (t 1,2,..,T), where ft is a linear predictable process of 0 and Mt is an
error term such that E(MtI.Tt_I) 0 and E(M2, I.T’t_I) < oo and 9vt is a or-field generated
from {Ys}s_t. For this model, to estimate the parameter E O, the ordinary least squares
method is usually inappropriate (if there is only one observable path of {yt) and if
is not a constant) and the maximum likelihood method either does not exist or is mathematically
intractable. If the finite dimensional distribution of Mt is unknown, to obtain a good estimate of
an appropriate predictable process gt should be determined. In this paper, criteria for determining
gt are introduced which, if satisfied, provide more accurate estimates of the parameters via the
asymptotic quasi-likelihood method.
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1. Introduction

Linear models are very popular in practical situations. Examples of such applica-
tions may be found in Weisberg (1985) and references therein. In a similar manner
we also limit our attention to linear models in this paper. In particular we concen-
trate on the following model:

+ t < T,

where ft(O) is a linear function of O and Mt is random error. Here {yt} could
be a sequence of independent observations from a population or a sequence of
observations from a stochastic process (in this case, we call it one realisation of the
stochastic process). To estimate the parameter 0 in this model, the ordinary least
squares (OLS) method, in general, can provide a very good estimate subject to
the {M} being mutually uncorrelated and the variances of the {M } being equal.
However, the last condition does not always hold in reality. To reduce the effect
from unequal variances of random error, a weighted least squares method is needed
and proper weights need to be allocated. How to determine the weights becomes
interesting. When {y } is a sequence of independent observations from a population,
we can sometimes estimate the weights via groups of observations. In each group
of observations, all of the observations are associated with approximately the same
value of ft()(see Weisberg, 1985). However, when {y} is a path of realisation of a
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process, it seems that it is not possible to use the same method to obtain an estimate
of the weights. To cope with this problem a practical inference procedure, called
the asymptotic quasi-likelihood method, is derived by Lin (1995). The asymptotic
quasi-likelihood method given by Lin (1995) is different from that of Heyde and Gay
(1989) although they share the same name. Lin (1995) also proved the asymptotic
quasi-likelihood method is asymptotically optimal. Mvoi, Lin and Biondini (1998)
prove the consistency of the asymptotic quasi-likelihood estimate for linear models.
This paper will only focus on some techniques in applying the practical asymptotic
procedure. For the theoretical discussion on the properties of the asymptotic quasi-
likelihood method see Lin (1995) and Mvoi, Lin and Siondini (1998).
In Section 2, we can see in order to succeed in our application of the asymptotic

quasi-likelihood method a predictable process, denoted by g, needs to be deter-
mined, which is used to help adjust the estimation procedure. In practice, for given
{ye}, several predictable processes can be determined. The choice of gt, however,
will affect the accuracy of the estimate of 0. In this paper, we will focus on the im-
portant question: how do we choose a proper ge for a given data set. We show how
the different choice of ge affects inference results. To simplify our discussion, in this
paper all gt’s are given in autoregressive form and determined by the Box-Jenkins
method. Instead of focusing on the form of gt we are interested in whether or not gt
satisfies certain criteria. Based on our experience, several criteria are presented in
Section 3 to help choose a proper g. In Section 4, the criteria are applied to three
models. In Section 5 one hundred simulations of each of these first two models are
performed in order to assess their qualities.

2. The Asymptotic Quasi-likelihood Method

Assume that the observed process {yt ) satisfies the model

w = y (e) + M,(e), (1)
where t = 1, 2, T, ft is a predictable process, 0 is an unknown parameter from an
open parameter space @, .T’t denotes a standard filtration generated from {ys }s <t,

T
’0 = -t and Me is an error process such that

E(/I&-,) O, (:)

Equation (2) implies that Mi and Mj are uncorrelated, # j. The case where the
Mi are mutually independent with mean 0 is a special case of (2).
According to the quasi-likelihood method (see Godambe and Heyde, 1987) a

quasi-score estimating function can be determined based on (1) and has the expres-
sion

Gr(O) Z S(Ml.yt’_) Me, (3)
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where j;t represents the derivative of ft with respect to the unknown parameter .
The quasi-likelihood estimate of is obtained by solving the quasi-score normal

equation G() 0. When f() is a linear function of , the qui-likelihood
method always provides a good estimate of subject to E(M_) being known.
However, it is very difficult to accurately determine E(M]]_) nd thus the ex-
pression for the quasi-score estimating function my not be determined. Therefore,
a possible pproach of the asymptotic qui-likelihood method for linear models
was discussed by Lin (1995) and Mvoi, Lin nd Siondini (1998) nd an inference
procedure w given. The procedure is as follows; we accept the true model is that
given by (1). If, for given y, we can determine a predictable process g such that
E(y -gt]t-1) is small enough for all t, then

E(M2IF,_ )
=
gt-f(),

and the ymptotic qui-score estimating function

is obtained. The solution of the sympotic quasi-score normM equation G(e) 0
is called he ymptoic qui-]ike]ihood estimate. In practice, the ympotic qui-
score normal equation ha has been used is of he following form

IZ(a)
Since g-fi () is used to estimate E(MZlY,-), and E(MZIY-) is alys positive,
it is reonable to use Ig- f()l rther thn g- f() in the qui-score normal
equation. A detailed discussion of this issue appears in the next section. For
the new form of the qui-score normal equation, Mvoi, Lin and Biondini (1998)
have proved that, when ft() is a linear function of , under certain conditions,
the asymptotic qui-likelihood estimate is good estimate of the true parameter.
Also, this estimate is consistent s sample size is increing.
To show how the asymptotic qui-likelihood method can pply to rel-life dta,

the following example is presented.
Exple 1: This example utilises dta obtained from a physics experiment

given in Weisberg (1985, pp. 83-87). The experiment involves aiming a beam
a, having various values of incident momentum _ab which re meured in the
laboratory frame of reference, at a target containing protons and results in the
emission of other particles. The quantity meured y is the scattering cross-section
of particular particle. A quantity of more bic significance thn _lab is 8 thePa
square of the total energy in the centre-of-mass frame of reference system. The
quantity s, under the conditions of the experiment is given by

S 2mp -labPa
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where s is measured in (GeV)2, where 1GeV = i x 109 electron volts is the energy
that an elementary particle reaches on being accelerated by an electric potential of
one billion volts. The momentum ea"gab and the mass mp are measured in GeV, and
mp= 0.938GeV for a proton.
Theoretical physicists believe that, under certain conditions (satisfied by this

experiment), the cross-section y is given by the model

y o + lS-1/ + relatively small terms.

Table 1 summarises the results of the experiment At each _tab
ea a very large

number of particles Na was used so that the variance of the observed y values
could be accurately estimated from theoretical considerations. The square root of
these variances are given in the fourth column of Table 1. The best approach to
estimate 0 and 81 is by using the weighted least squares (WLS) method subject
to the estimated standard variances being known. Here we apply the asymptotic
quasi-likelihoodmethod to only one single path of realisation based on gt 29705+
S56104(s-/) (the graphs of gt and yt are shown in Figure 1). Although Weisberg
does not state whether or not the data is ordered by time a look at the data will show
that a strong linear relationship appears to exist between s-/ and the estimated
standard deviation and thus a time-ordered sequence may also appear plausible.

Table 1. Data for the Example 1.

,GeV/c, GeV/c-1
4
6
8
10
12
15
20
30
75
150

0.345
0.287
0.251
0.225
0.207
0.186
0.161
0.132
0.084
0.060

y Estimated
(.eb..) Stand. Dev.
367 17
311 9
295 9
268 7
253 7
239 6
220 6
213 6
193 5
192 S

The estimates obtained via the asymptotic quasi-likelihood method are compared
with those via the WLS and OLS methods and are given in Table 2. The asymptotic
quasi-likelihood estimates are closer to the WLS estimates than the OLS estimates.
This indicates that in the availability of only one realisation of data and lacking
any knowledge regarding the nature of the error, the asymptotic quasi-likelihood
method provides the best estimates.
The choice of gt will affect the accuracy of the estimates of the unknown parame-

ters. To obtain the gt from given information of yt2, we have found that, in practice,
the autoregressive technique discussed by Box et al (1994) is a simple method to
use. One of the main reasons is that gt obtained from autoregression is in a form of
predictable function which we would like. Therefore, in the following, we are only
concerned with those g which are obtained via autoregressive methods.
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Figure 1. y (hard line) and one possible gt (dotted line) for Example 1.

Table 2. Weighted
least squares, ordinary least
squares and asymptotic quasi-
likelihood estimates for Exam-
ple 1.

Method
WLg’ 148.47 530.84
0LS 135.00 619.7i’"
AQLM 118.93 53"].46

3. Criteria in Selection of gt

In this section we will list the criteria in selecting a predictable process g to ap-
proach y and then provide the logic to each point listed. The criteria discussed
here will be applied to three simulated models in the next section.
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In practice, we found that the criteria in selecting a predictable process which
yields accurate asymptotic quasi-likelihood estimates can be summarised as follows;

Examine the time series plot of gt and yt, gt should be chosen such that it is
close to y.
Examine the stationarity of e (where et = yt gt), gt should be chosen such
that e for that particular gt is sttionry. The correlation between g and e
should not be very large.

As mentioned previously, it would be expected that the better the g approaches
y, the more ccurate the ymptotic quasi-likelihood estimates of the parameters
are likely to be. This is because of the relationship between these two quantities,
i.e.

E(Mt_) E(yIY-)- Z(e)

If g, is close to y, then the predictable process gt will be close to E(yI-).
Therefore gt- f(O) will be close to E(MIt_). In practice it is better to use
Ig- fl to approach E(MIt-) since E(MIt-) is always positive. If, how-
ever, we cnnot find gt such that gt- f(O) is close to E(MIt_ we my be
able to find a gt such that this gt "mimics" y. By "mimics" we mean that the
change in successive observations of y should be subsequently accounted for by
gt. Therefore, even if the graph of gt does not ccurately approach y it should
model the pttern of the y, in these cases positive constant may be dded (or
subtracted) to improve both the graphical pproximation of y by gt and thus the
corresponding ymptotic qui-likelihood estimates.
In examining the adequacy of the predictable process gt n analysis of the resid-

uals et should be carried out. Analysis of the autocorrelation and partial uto-
correlation functions of the residuals is of utmost importance. It is preferred that
minimal correlation between gt and et exists. Once the model is fitted, the residuals
should resemble a white noise process, i.e. {et} should be sequence of uncorre-
lted random variables with constant mean (0 in this case) and constant variance
nd the utocorrelation and partial autocorreltion functions of {et } should ideally
be identically equal to 0.
In the process of obtaining the AQL estimate, as we mentioned before, the ymp-

totic quasi-score normal equation

a (o)
..=

is considered. The twstage estimation procedure is applied to G(O) O. The
algorithm for the procedure is follows:

(i) Start with preliminary estimates of . These initial values are determined via
the method of ordinary least squares.
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(ii) Substitute the into the gt- f2() in the asymptotic quasi-score normal
equation and solve this equation for ;

i.e. r()-Z,=l ]g-f(O)l M-O"

(iii) Let the solutions obtained in step (ii) be the updated estimates of .
(iv) Repeat steps (ii) and (iii) until the sequence of estimates is convergent. How-

sometimes due to Igt- Z()] being too close to zero the iteration may notever,

quickly, we add a positive constant c to g Z (). A discussion aboutconverge
this technique is given below.
According to the proof given by Mvoi, Lin and Biondini (1998), based on the

AQL procedure, a good estimate of will be obtained if

is bounded. Therefore, there is a k > 0 and k > 0 such that

The smMler the difference between k and k2, the quicker the iteration will con-
verge. A problem arises when ]gt f] is too close to zero. To ensure the iteration
converges in such circumstances, ]g- Z]is replaced by ]gt- Z I+ c, where c is
suitable positive constant. Therefore, if a good estimate is expected to be obtained,
the ratio

should be bounded between two finite values for each t, c denoting a suitable positive
constant. This constant must not be too large, further investigation is needed
to determine the pproprite value of c. We may rewrite the bove ratio in the
following form;

= + (5)
c

It is eily seen that if ]-]2]+c is bounded then ’]g,:]2]+c is also bounded

-+g,..]+c is bounded between-1 nd 1 i.e.-1 < ,1:-]1+ <because the quantity ]g,_]2]+c
1.
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If Ig- f[ is not negligible and E(e,[’,_I) is not much larger than [gt- f[, c
is not needed for the ratio (4) to become bounded. If [gt- f[ is negligible and
E(etl.T’t-1) >> [gt- f[, then from (5), a proper c can make

bounded, so the ratio (4) becomes bounded. The closer the ratio is to 1, the
quicker the convergence of the asymptotic quasi-likelihood estimates and the more
accurate these estimates will be (for theoretical details see Mvoi, Lin and Biondini,
1998). The resulting asymptotic quasi-likelihood estimates are found to be also
very accurate providing the quasi-likelihood estimates are accurate. Even though
in practical situations this ratio is unavailable, by the inclusion of a suitable positive
constant c in the denominator in (4) we can assure that the ratio (4) for each t is
much smaller than it would be if this constant was not taken into consideration.
Since the ratio is no longer large this ensures convergence. It must be noted that
this constant must not be too large as [gt f[/ c will be dominated by the value
of c and the value of the asymptotic quasi-likelihood estimates will be closer to the
ordinary least squares estimates.
As noted before, when the two-stage estimation procedure is applied, a suitable

positive constant c may need to be added to [g- f(O)]. In this paper we suggest
that the initial value of c be 0 and increase this value to 0.01 if the asymptotic
quasi-likelihood estimates do not appear to converge. The value of c continues
to increase by increments of 0.01 until the asymptotic quasi-likelihood estimates
converge. It is important to note that c must be increased only to the point of im-
mediate convergence, a choice of c which is significantly greater than that necessary
for convergence might lead to the asymptotic quasi-likelihood estimates becoming
closer to those obtained via the method of ordinary least squares and thus compro-
mise the effectiveness of the procedure outlined here.

It does not appear that the sample mean of e would help determine whether or
not gt adequately approaches y, the reason being that the sample mean for such a
statistic will be very close to zero if the predictable process overestimates and then
underestimates the true series y, the positive values of et might "balance" out the
negative values of e thus producing a low mean value of

4. Application of Criteria

If the quantity E(M[Y_) is known, the quasi-likelihood method can be used
to estimate (see (3)). In practice this quantity is unknown and thus must be
estimated. If E(M][:T’t_I) is non-constant, ordinary least squares is not a suitable
method for estimating the unknown parameters. In this section we will firstly
apply the procedure to three examples. It is realised that it is better to apply the
technique to real-life data than to artificial data. However the comparison between
the estimated parameter and the true parameter value becomes very difficult when
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such data is used since the true parameter values are unknown. In the next section
we also list the estimates of the parameters via the asymptotic quasi-likelihood
method over one hundred simulations and the standard errors of the corresponding
estimates and compare them to the estimates obtained via the ordinary least squares
method.
As an application of the asymptotic quasi-likelihood method we will apply the

procedure in this section to estimate the parameter d in a fractional ARIMA process
X. A standard procedure used for estimating d is to use Hurst’s R/S-statistic and
to estimate the Hurst parameter H. The estimate of d can be obtained via the
estimate of H since H = d / 1/2.
The estimation procedure is briefly described as follows; for a given set of obser-

vations (Xk k = 1, 2, n) with sample mean .(n) and sample variance
the modified rescaled adjusted range or the modified R/S-statistic (see Lo, 1991)
is given by

R(n)/S(n) = 1/S(n)[max(O, W, W2, Wn) min(O, W, W, Wn)],

with Wk (X1 / X2 / / Xk kX(n), k 1, 2, n and S(n) being the sample
standard deviation of X1, X2, Xn.
In our application of R/S analysis the window length n is doubled each time

the R/S-statistic is calculated. Hurst (1965) found that many naturally occurring
time-series appear to be well represented by the relation

E[R(n)/S(n)] = bnH,
with Hurst parameter 0 < H < 1, and b is a finite positive constant that does not
depend on n.
A straight line is ,plotted in the log-log scale:

c + Hlog(n) / e(n) (6)

and the estimate of H is obtained via the ordinary least squares method.
We note the similarity between (5) and (1). The standard method for estimating
H is based on the assumption that the {e(n)} are independently and identically
distributed. However, this assumption is not necessarily true based on the R/S
estimation procedure mentioned above. Therefore it would be expected that the
ordinary least squares method may not provide a good estimate of H. In this paper,
instead of applying the method of ordinary least squares we apply the asymptotic
quasi-likelihood method to estimate H.
The quantity log[R(n)/S(n)] is then plotted against log(n). This plot is known

as the rescaled adjusted range plot (also called the pox diagram of R/S). A typical
rescaled adjusted range plot commences with a transient region representing the
short-range dependence structure in the sample (in this transient region the
statistic grows faster than n’5 for small n than it does for relatively larger n).
That is why we must examine the accuracy of the estimates when different initial
window sizes are considered. With smaller initial window sizes the power of R/S
analysis may be severely compromised. This behaviour, however, eventually settles
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down and fluctuates in a straight "street" with a certain asymptotic slope. For a
fractional Gaussian process this graph should have slope H as n increases.
In this section we apply the asymptotic quasi-likelihood method to (5) for data

simulated from a fractional ARIMA(2,0.3,0) model and we also examine the affect
of selecting different initial window sizes. Also we apply the asymptotic quasi-
likelihood method to stochastic processes represented by model (1).
For a comparison of the accuracy of both the asymptotic quasi-likelihood method,

the quasi-likelihood method and the method of ordinary least squares we introduce
a quantity S defined as

s + +
where - (1, op)T is an unknown parameter and # -(#1, #p) is an estimate
of 8. Since this value is determined by the true value of the parameters, it is a
quantity which is unable to be calculated in practice.
To demonstrate the criteria listed in Section 3 and show how these criteria are to

be applied, three simulated data sets are analysed in this section.
Example 2: Data is generated from the following model:

0.3 + 0.hyt-1 + M, t >_ 2,

where Mt = Nt- 0.5(y_ + Y-2) and Nt has the Poisson distribution with rate
0.5(y_1 + y_). Therefore Mt is a martingale difference.
For this random sample of 240 data values four different predictable processes gt

are analysed, the first gt is that based on the ARIMA(1,0,0) model (denoted by
glt), the second based on the ARIMA(1,1,0) model (denoted by gt), the third gt

analysed is that based on the ARIMA(2,0,0) model (denoted by g3t) and the last
is based on the ARIMA(2,1,0) model (denoted by g4t). The predictable processes
are listed below:

glt = 6.743 + 0.193y_1,
g 0.517y2_1 / 0.483y_,
g3t 5.864+ 0.168y_ / 0.131y_,
g4 0.340y_1 / 0.291y_ / 0.368y_

These predictable processes are analysed because the coefficients of each g are all
significant. The predictable processes g2t and g4t are examined because it appears as
though y is non-stationary from the time-series plots, we know this is true from our
generation of the data. The plots of the autocorrelation and partial autocorrelation
functions of y2 however do not reveal any significant non-stationarity. The second
and fourth predictable processes g and g4 (see Figure 3) are found to graphically
approach the quantity y2 better than when the two other predictable processes are
chosen. The first and third predictable processes also appear to be good if the
constant is not taken into consideration but rather only the y_ term. If this is
done, however, the predictable process gt will be poor at approaching y at large
values of y.
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Figure 2. Yt (hard line) and two possible gt’s (dotted line) for Example 2.

From Figure 2 the ARIMA(1,0,0) model is not good at approaching y2 if the
constant term is taken into account. Similarly it can be seen that the ARIMA(2,0,0)
model is also not good at approaching y. The {et) are stationary for each of
the four 9t’s. From Table 3 it is seen that the most accurate asymptotic quasi-
likelihood estimates occur when the second predictable process is used. The S-
values for the asymptotic quasi-likelihood estimates when each predictable process
is considered are 0.111, 0.009, 0.080 and 0.092 respectively. As we shall see in
the next section the ARIMA(1,1,0) model (i.e. g2t) is always better at graphically
approaching y and in the vast majority of simulations provides a much better
approximation of the unknown parameters than a predictable process which does
not consider possible non-stationarity. In this simulation the S-value associated
with the estimates obtained when the ARIMA(1,1,0) process is used is much smaller
than the S-value obtained when each of the other predictable processes are used.
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Figure 3. Yt (hard line) and another two possible gt’s (dotted line) for ]xample 2.

The S-value surprisingly is much smaller than when the quasi-likelihood method is
invoked.

Table 3. Ordinary least squares, quasi-
likelihood and asymptotic quasi-likelihood
estimates (for four possible predictable
processes) for Example 2.

Method if0 ffl S-value
oLS 0.204 0.445 0.111

AQM:!gl 0.210 0.435 0.iii

AQLM(g2 0.292 0.504 0.009
AQLM’(93) "0.315 0.421 0.080

AQM’(g) 0.378 0.45i 0.092’
QLM 0.330 0.598 0.103
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Example 3: Data is generated from the following model"

yt = 0.2 + 0.6yt-1 + 0.8xt + Mr, t

_
2,

where Mr, given {ys },<t, is generated from the normal distribution with mean 0 and
variance 0.3(y_1 +yt_u), i.e. E(Mt].Tt_I) 0 and E(MI:I=’t_I) 0.3(yt_ + yt_).
xt is a standard normal random variable and is independent of {ys }s<t.
For this random sample of 240 data values two different predictable processes are

analysed, the first gt is based on the ARIMA(1,0,0) model (denoted by glt) and
the second is based on the ARIMA(1,1,0) model (denoted by gut). The predictable
processes are listed below;

glt 2.059 + 0.539y_1,
gut = 0.603y_ +0.397yt_2.

These predictable processes are analysed because the coefficients of each gt are all
significant. The predictable process gut is examined because it appears as though
yt is non-stationary from the time-series plots. The second predictable process g.t
is found to graphically approach the quantity yt2 better than if the other predictable
process (gt) is chosen.
We wish to compare both models with the first order autoregressive component,

that with the differencing term (glt) and that without the differencing term (gut).
From Figure 4 the latter predictable process is found to approach the quantity yt2

better than if the former predictable process is chosen. The {et} are stationary
when either glt and g2t are selected.
The asymptotic quasi-likelihood estimates when each of the two gt’s are chosen are

shown in Table 4. However, the estimates when gt is based on the ARIMA(1,0,0)
model result in an S-value of 0.234 whereas the S-value, when the second pre-
dictable process is selected, is equal to 0.054. The estimates of each parameter can
be seen to be much more accurate when the second predictable process is used.
The first predictable process in this particular simulation even produces an S-value
which is greater than that obtained via the method of ordinary least squares.

Table .. Ordinary least squares, quasi-likelihood
and asymptotic quasi-likelihood estimates (for two
possible predictable processes) for Example 3.

Method fro ff 2 S-value
OLS 0.274 ’0.552 0.677 0.152

AQLM(I) 0.348 0.530 0.629 0.234
,LM(g:) 0.200 0.59o 0747’" 0.054
QLM 0.19 0.657 0’796 0.060

The ordinary least squares method yields estimates of 0.274, 0.552 and 0.678
respectively which results in an S-value of 0.152. On the other hand the estimates
via the quasi-likelihood method are 0.219, 0.657 and 0.796 respectively and the
resultant S-value is 0.060. The asymptotic quasi-likelihood estimates when gut is
chosen as the predictable process are very similar to the quasi-likelihood estimates.
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Figure 4. Y (hard line) and two possible gt’s (dotted line) for Example 3.

Example 4: Our analysis now turns to the simulating of data from the frac-
tional autoregressive integrated process or fractional ARIMA(2,0.3,0) process. The
ARIMA model is specified as

(1 0.2B 0.6B2)(1 B)’3Y ht,

where B denotes the backward shift operator.
The process is stationary and we want to estimate the value of H, which from the

selection of d we know to be 0.8 (since H = d / 1/2). The data was analysed using
the R/S-statistic and the estimate of the Hurst parameter is obtained via both the
method of ordinary least squares and the asymptotic quasi-likelihood method.

There are 10,000 values generated for this simulation. By applying R/S analysis
to the data we transform the 10,000 data values to twelve data points. Three
g’s are determined based on this sample of twelve data points. The predictable
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processes are listed below;

From Figure 5 it can be seen that glt is not as good at approaching y as the other
two predictable processes. It can be seen that there is very little difference between
g2 and g3t. Turning our attention to the (c}, they appear to be stationary for
each of the three g’s. From Table 5 it is seen that the most accurate asymptotic
quasi-likelihood estimate occurs when the third predictable process is used (0.835)
followed by g2t (0.870). When the first predictable process is chosen the resulting
estimate is 0.975. The ordinary least squares estimate is 0.928 (when the initial
window size is 4).

10-

""I
2 3 4 6 7 8 9 10 11 12

Figure 5. y (hard line) and three possible gt’s (dotted lines) for Example 4. glt starts at the
first lag, g2t starts at the second lag and g3t starts at the third lag.
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We now wish to reduce any bias which may exist from the initial transient region of
the R/S plot (as mentioned previously). We would like to do this as the emphasis
is not on the short-range dependence structure but on the nature of long range
dependence in the sample. Mandelbrot and Taqqu (1979) suggest n 10 as the
minimal lag to use. The question is at what initial window size will the resulting
estimates be more accurate? We examined the results when the initial window
size is 4, 8 and 16 respectively. It seems as though there is minimal improvement
in the estimates in this particular example. When the initial window sizes are 8
and 16 respectively the ordinary least squares estimate of H becomes 0.938 and
0.903 respectively. This finding also illustrates the power of the asymptotic quasi-
likelihood method; resulting estimates will not be unduly affected even with small
initial window lengths. The method works well notwithstanding the observed values
in the transient region of the sample.

Table 5. Ordinary
least
squares (for three dif-
ferent initial window
sizes) and asymptotic
quasi-likelihood es-
timates (for three pos-
sible predictable pro-
cesses) for Example 4.

Method
OLS(4) 0:928
OLS(8) 0.938

OLS(6) 0.903
_AQLM_(gI )’ 0.975
.AQLM.(g2 0.870
AQLM(g3 0.834

5. Simulations

In this section one hundred simulations are performed via each of the first two
models mentioned in Section 4 (i.e. Examples 2 and 3). We now wish to examine
the results.
The ordinary least squares and asymptotic quasi-likelihood estimates for the sim-

ulations based on the model in Example 2 are included in Table 6. From the table
it can be seen that the ordinary least squares estimates are^ very inaccurate for both
parameters. The mean value of the estimates of go and 01 over one hundred sim-
ulations via the asymptotic quasi-likelihood method (when the second predictable
process is used to approach y) are very accurate (0.296 and 0.493 for the with
standard errors of 0.004 and 0.009 respectively. In the method of ordinary least
squares, however, the mean of the estimates of the two unknown parameters are
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0.329 and 0.441 respectively. The corresponding standard errors of these estimates
are 0.012 and 0.013 respectively.
The asymptotic quasi-likelihood method based on the remaining predictable pro-

cesses also yields accurate estimates. In each and every simulation g approaches y
extremely well when we consider the predictable processes with a differencing term
(g2 and g4). These predictable processes also provide the most accurate estimates.

Table 6. Ordinary least squares and asymptotic quasi-likelihood esti-
mates (with standard errors in brackets) for one hundred simulations of
Example 2.

Method mean0i’;t. ’er"ror 0)
LS 0.32.9.(0.012

AQLM(gl) 0.31_8(0.006)
AQL,M._(g..) 0.29,6.(0.004)
AQLM(g,3 0.31(0006
AQLM(.q4 0,.30.6(0.005)

meanif1 (st: error ffl -vlue
0.44i(0.0:i3 0’.019
0.’462(0.011) 0.013’
0.493(0.009 0.009
0.466(0.011) 0.013

0.486(,0..011) 0.012

It is obvious from these results that the method of ordinary least squares is
very inaccurate and since the quasi-likelihood method is unable to be applied the
asymptotic quasi-likelihood method is very effective providing an appropriate g is
chosen.
S is defined as the average of the S-values from the one hundred simulations, the

S-value being previously defined. The -value for the estimates via the ordinary
least squares method is 0.019. The corresponding S-value for each of the four
predictable processes are 0.013, 0.009, 0.013 and 0.012 respectively. The second
predictable process, g2t, always approaches y better than any other possible gt.
The S-value associated with g2t is over two times smaller than that obtained via
ordinary least squares. The other three predictable processes also yield smaller
-values than those obtained via the traditional ordinary least squares method.
The ordinary least squares and asymptotic quasi-likelihood estimates for the sim-

ulations based on the model in the Example 3 are included in Table 7. From the
table it can be seen that the ordinary least squares estimates are not as accurate
as the asymptotic quasi-likelihood estimates when taking the mean of the one hun-
dred sets of estimates. The estimates of 00, 01 and 02 when the method of ordinary
least squares is invoked are 0.211, 0.541 and 0.844 respectively. The mean values
of the estimates of 00, 1 and 02 over one hundred simulations via the asymptotic
quasi-likelihood method when the predictable process g2 is chosen are 0.221, 0.584
and 0.797 respectively. The asymptotic quasi-likelihood estimates based on the pre-
dictable process glt also yield more accurate estimates than the method of ordinary
least squares. The mean of the estimates of the parameters when any predictable
process is chosen is within 0.02 of the true values of the unknown parameters but
when ordinary least squares is invoked only the mean of the estimates of 00 lie
within 0.04 of the true value of the parameters.
The graphs of y and g are useful. By observing these graphs we can obtain in-

formation as to which predictable process will produce the most accurate estimates
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Table 7. Ordinary least squares and asymptotic quasi-likelihood estimates (with standard
errors in brackets) for one hundred simulations of Example 3.

Method meano(st. erroro)
LS 0.211(0.01’0’)’

AQLM(gl) 0.205’(0.010)’
.A.QLM.!g2.).. 0..191(0.007)

meanl (st. errorffl)
6.541(0:b09)’
0.Si(0.0iii

mean#(st. error’s),,, -value
o.8,4(o.oo) o.os
0.’81(b’.0i’) 0.019’
o.o(o.oo) i." o.o

of the unknown parameters. If gt approaches yt very well then the asymptotic
quasi-likelihood estimates will be much more accurate than if this approximation
was not as good. How accurate these estimates will be will depend on the accuracy
of the corresponding quasi-likelihood estimates. Obviously, if these quasi-likelihood
estimates are not precise the corresponding asymptotic quasi-likelihood estimates
will, more than likely, be not as precise as they would be if the quasi-likelihood
estimates were accurate.
For the higher order models the approximation of yt by gt was not as good as

it was for the lower order models. This could well be due to the fact that the yt
is generated to be dependent of yt-1 and not dependent upon the observation of
y at higher order lags. However, lower order processes will be more respondent to
outliers than higher order processes and therefore place all weight upon the previous
observation of y. Higher order models will tend to spread the weight upon previous
values (e.g. the ARIMA(1,1,0) model will consider only the yt_l and yt_2 terms
whereas an ARIMA(2,1,0) process will consider the yt_l, yt_2 and yt_3 terms).
Higher order autoregressive processes will therefore produce a "smoothing" effect
on the predictable process, thus it is preferred that a lower order gt be chosen.
Taking into account that y may possibly be non-stationary is important when
selecting gt. The graphs of gt and y seem to be very similar when the gt is based
on the ARIMA(1,1,0) model. However, even if the gt is selected by not taking
into consideration any possible non-stationary the estimates via asymptotic quasi-
likelihood will usually be better than the ordinary least squares estimates.

6. Conclusions

The method of ordinary least squares does not yield accurate estimates of the un-
known parameters when the residuals are not uncorrelated and/or do not have
equal variance. The quasi-likelihood estimates are accurate when the form of
E(Mtlt_l) is known, which in practical situations is not true. In Example 2
the asymptotic quasi-likelihood method is much better than the method of ordi-
nary least squares. It appears that if the residuals do not have a common variance
the method of ordinary least squares will be very inaccurate indeed. In Example
3 the ordinary least squares estimates are once again inaccurate (though not as
inaccurate as they were in Example 2 where the errors are observations from the
Poisson distribution). The estimates obtained via the asymptotic quasi-likelihood
method will be much more accurate than the ordinary least squares estimates for
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this particular model. The accuracy of the estimates can be improved by applying
the asymptotic quasi-likelihood procedure. From our practical procedure since the
asymptotic quasi-likelihood method takes account of the effect from errors, in gen-
eral, this method will always produce a better estimate of the parameters than the
method of ordinary least squares if the errors are not independently and identically
distributed.
The quality of improvement by applying the asymptotic quasi-likelihood method

can also be maximised by creful selection of a predictable process g,. If this gt

approaches the quantity y very well (we must also check ct as well) then the
asymptotic quasi-likelihood estimates will be more accurate. That is why this
selection is very critical. We can improve on the ordinary least squares estimates
in most cases but to maximise this improvement we must choose the best possible
gt.
Furthermore, when a positive constant c is added the asymptotic quasi-likelihood

E M:I.T’ 1)estimates will converge immediately as the ratio (.’ (which is unable to

be calculated in practice) is closer to 1. The positive constant c is of utmost
importance as it leads to convergent asymptotic quasi-likelihood estimates. By
doing so we ensure the ratio is bounded even if we are unable to calculate it due to
the form of E(MI.t-1) being unknown.
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