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One not-so-intuitive result in auction theory is the revenue equivalence theorem, which
states that as long as an auction complies with some conditions, it will on average gener-
ate the same revenue to an auctioneer as the revenue generated by any other auction that
complies with them. Surprisingly, the conditions are not defined on the payment rules to
the bidders but on the fact that the bidders do not bid below a reserve value—set by the
auctioneer—the winner is the one with the highest bidding and there is a common equi-
librium bidding function used by all bidders. In this paper, we verify such result using
extensive simulation of a broad range of auctions and focus on the variability or fluctu-
ations of the results around the average. Such fluctuations are observed and measured
in two dimensions for each type of auction: as the number of auctions grows and as the
number of bidders increases.

Copyright © 2006 F. Beltrán and N. Santamarı́a. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the early 1980s, a series of papers appeared in the economics literature on auctions,
dealing specially with the issue of the expected revenue to an auctioneer in a single-
object buyer’s auction. The pioneer work of Vickrey offered the first insights into the
expected revenues of four different auctions finding them to be equivalent (Milgrom
[4]). The main result, appearing in [6] by Riley and Samuelson, and Myerson [5] be-
came known as the revenue equivalence theorem. The theorem states that as long as an
auction complies with some conditions, it will on average generate the same revenue to
an auctioneer as the revenue generated by any other auction with the same conditions.
Surprisingly the conditions are not defined on the payment rules but on the facts that
bidders do not bid below a reserve value—defined by the auctioneer—the winner is the
one with the highest bid and there is a common equilibrium bidding function used by all
bidders.
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More specifically, as Klemperer [3] puts it: “each of a given number of risk-neutral
potential buyers of an object has a privately known signal independently drawn from
a common, strictly increasing, atomless distribution. Then any auction mechanism in
which

(i) the object always goes to the buyer with the highest signal, and
(ii) any bidder with the lowest-feasible signal expects zero surplus

yields the same expected revenue (and results in each bidder making the same expected
payment as a function of her signal).”

The result applies both to private-value models—every player’s value is independently
drawn from the same continuous distribution on a finite interval—and to more general
common-value models—the value of the object is the same for all players, but it is un-
known at the time of the bidding—provided that bidders’ signals are independent.

2. Is an auctioneer interested in the variability of the mean revenue?

The revenue equivalence theorem has been a remarkable piece in the construction of a
theory of auctions. Under the stated conditions, such seemingly different auctions as the
all-pay or the second-price sealed-bid yield the same expected revenue. As Milgrom [4]
affirms, one practical use of the revenue equivalence theorem is as a benchmark for the
analyses of revenues in auctions, when the assumptions of the theorem do not hold or
cannot be verified properly.

A main concern to be addressed in this paper is that of an auctioneer trying to decide
which auction to use. Suppose an auctioneer has an object to sell. If he knew that such an
object represented a private value to all potential bidders, bidders values were indepen-
dent and any bid placed for the auction was larger than a reserve value—which would
happen in the case of at least one bidder informed about such price and willing to partic-
ipate in the auction—then the auctioneer should be indifferent among several different
auctions he could choose from. For instance, he could use a first-price sealed-bid auction
or a “sad losers” auction (Riley and Samuelson [6]). The latter is an auction in which ev-
ery bidder, except the winner, pays his/her bid. There could, however, be a very practical
concern that the auctioneer needs to deal with: the revenue equivalence theorem states its
result in terms of the expected revenue to the seller but the seller not always likes or needs
to run a large number of auctions of the same object—or type of object. Maybe, what is
being sold is not ordinary merchandise but a right for the exploitation of a public good.
Assuming the auctioneer will award the object to the highest bidder, would the design
of the auction—that is, the payment from the bidders—matter to the auctioneer? The
theorem would ease the auctioneer’s worries with a categorical “it would not.” Well, “it
would not” if the auctioneer ran a sufficient number of auctions so that on average his
revenue from each auction was the one predicted by the theorem.

If the auctioneer is not running many auctions or if he is just auctioning one object, his
attention may shift to find a measure of the variability of such average or mean value. For
instance, in [7] by Waehrer et al., it is shown that a risk-averse auctioneer prefers a first-
price auction to a second-price auction, and in turn he prefers a second-price auction
to an English auction. In this paper, we use a simulator to better understand how large
around the mean are the variations of running several auctions for at least six different
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auctions, which under the assumptions of the theorem should yield the same (expected)
revenue.

In this paper, firstly, we verify the results of the theorem running simulations of a
broad range of auctions and, secondly, we focus on the variability or fluctuation about
the average revenue of an auction with a given number of bidders, we attempt to find a
criterion that helps the auctioneer to decide about the type of auction to be used. The
fluctuations are observed and measured in two dimensions for each type of auction: as
the number of instances of a given auction grows and as the number of bidders in the
auction increases.

3. The revenue equivalence theorem

Theorem 3.1 (Klemperer [3]). In an auction of a single object, suppose there are n risk-
neutral potential bidders with privately known independent signals drawn from a common
distribution F(v). Then any auction mechanism in which (i) the object always goes to the
buyer with the highest signal, and (ii) any bidder with the lowest-feasible signal expects zero
surplus yields the same expected revenue.

For the proof, see Klemperer [3, Chapter 1, page 17].

4. Optimal bids

In all auctions considered here, the winner is the bidder with the highest bid; ties are
broken randomly. In an all-pay auction, every bidder pays his/her bid; in sad losers auction,
all but the winner pay their bids; in last-pays auction, only the bidder with the lowest bid
pays. In Santa Claus auction, the auctioneer takes the payment from the winner and gives
back a portion of it to all bidders, including the winner (Riley and Samuelson [6]). First-
price and second-price are the so-called traditional auctions where the amount paid by
the winner is the highest bid or the second highest bid, respectively.

We have used the result above to calculate the optimal bids in several auctions which
comply with the conditions of the theorem. Starting with basic results for two bidders
presented in [6] by Riley and Samuelson, we previously calculated (Beltrán et al. [1]) the
optimal bids for n bidders in all-pay, sad losers, last-pays and Santa Claus. To the latter,
we have added the first-price auction, whose optimal bid expression is found in [2] by
Gibbons, and the second-price auction where it is optimal for a bidder to bid his true
value (Klemperer [3]). Optimal bid functions for n users in the auctions mentioned can
be found in Appendix A.

5. Simulating the auctions

In order to perform the computational experiments, we used a random number gener-
ator to determine the bidders’ valuations; the valuations are uniformly drawn from the
interval [0,1]. Every run consists of a number of auctions or scenarios of the auction,
for a predefined number of bidders; the bids are calculated according to the optimal bid
functions obtained in the preceding section. The simulator determines the optimal allo-
cation and the revenue for the seller, repeating this procedure until the number of desired
scenarios is completed. The runs are conducted while varying the number of bidders and
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Figure 5.1. Mean revenue for 5 auction types.
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Figure 5.2. Coefficient of variation for 5 auction types.

the number of scenarios. For each run, we calculated the mean revenue for the auction-
eer and the coefficient of variation of the revenue, defined as the ratio of the variance
with respect to the square of the expected value. This was done for each of six auctions:
first-price, second-price, all-pay, Santa Claus, sad losers, and last-pays. The analysis that
follows uses data from all auctions except last-pays, which because of its particular design
deserves a special analysis in a subsequent section. Figures 5.1 and 5.2 show, for up to 20
bidders, the average and coefficient of variation for 20 scenarios.
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It can be observed that as the number of bidders increases, the mean revenue ap-
proaches the theoretical expected revenue and the variation around the mean decreases
for most of the auction types. However, this variation is significantly different for sad
losers and all-pay. This is also confirmed if the number of scenarios is increased. Appendix
B illustrates this fact, where simulations results are reported in which 50 and 100 scenar-
ios were performed for auctions with up to 20 bidders.

In the traditional auction formats (first-price and second-price auctions), fluctuations
around the mean revenue are less than those of the other auctions, except for the Santa
Claus auction. By the central limit theorem, increasing the number of scenarios, the de-
gree of variability around the mean revenue decreases. Runs with 100 and 500 scenarios
were also done. Those results show that as a function of the number of bidders, the co-
efficient of variation converges to zero for first-price, second-price, and Santa Claus, and
seems to settle around 0.65 for all-pay. However the variability of sad losers remains high
when compared to the others and does not seem to converge to any value.

6. A real experiment

Our previous experimentation with auctions in a broader setting has included the de-
velopment of SUBASTIN (http://subastas.uniandes.edu.co), a web application for the
administration of auctions over the Internet. SUBASTIN collects the bids from the play-
ers and determines the winner in a fairly large family of auctions (SUBASTIN administers
all the auctions described in this paper plus several dynamic auctions such as ascend-
ing English, descending Dutch, German, and simultaneous ascending auctions. SUB-
ASTIN is also capable of administering single-bid combinatorial auctions). Using SUB-
ASTIN, we ran a real all-pay auction where bidders were students of a Game Theory
Class (Universidad de Los Andes, Departamento de Ingenierı́a Industrial, Game Theory
Course, January–May 2004). When bidding to get the object being auctioned, the bid-
ders used their SUBASTIN Web windows; the results are summarized in Table 6.1. (Bids
are stated in Colombian pesos (COP). In April 2004, the exchange rate was US $1 =
COP $2700. This illustrates that the object auctioned did not mean a high expense to any
bidder.)

The market value of the auctioned object was about $15000. So, the auctioneer was not
only able to recover the cost of purchasing the object, but also able to make quite a bit of a
profit. It is clear that at least three bidders were not interested at all; some others bid a very
low value. It is tempting to say that each of these bidders thought of winning the auction
expecting others to bid low as well. Perhaps they disliked the idea that the auctioneer
could profit excessively. However, quite a few bid high, even close to the market value.
This behavior contrasts the behavior of those who bid low.

This experiment is just a sample of what could happen in a nontraditional auction,
even though such type is one that satisfies the assumption of the theorem, at least in
regard to who wins the auction and the seeming independence of the bidders’ valuations.
Simulations of all-pay show a larger variability of the expected revenue than that of first-
price, second-price, and Santa Claus auctions. The results from the experiment shed some
light on the possibility that an auctioneer prefers using one auction over other.

http://subastas.uniandes.edu.co
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Table 6.1. Bids in a real all-pay auction.

Bidder ID Bid

El Coyote 0

Ricky Ricon 1000

Carmedelgad3 10000

Juangalind 12000

Andrevasque1 10000

Andresantac 500

Diego Martin 100

Diegodiazm 1000

Rubenjacome 100

Javieguarin 0

Florbetanc 100

Mauriescoba 0

Ricarpedraz 15000

Paulabarrie 20000

J2zp 13000

Francovoyageur 14000

Sebassalaza 100

Maurisuarez 2000

Juanredond 1000

El Mani 500

7. Some experimental difficulties of last-pays

Results shown in Appendix B for simulation runs of last-pays are not quite encouraging.
Expected revenue in auctions in which a few bidders are simulated is close to the theoret-
ical value calculated in Appendix A. However, results no longer seem to hold as long as
more bidders are included.

In last-pays, the auctioneer has positive revenue only if the valuation for all the bidders
is greater than the auctioneer’s reserve value. If at least one bidder’s valuation is less than
the reserve value, the revenue for the auctioneer will be zero as such a bidder is the one
who should be paying. The probability that all valuations are greater than the reserve
value decreases when the number of bidders increases; this also increases the probability
that the auctioneer’s revenue is zero. The results of the simulation runs performed on
last-pays show that when the number of bidders increases, the expected revenue for the
auctioneer goes to zero. Appendix B shows the difference in expected revenue obtained
when a 5000-scenario simulation is compared to a 50000-scenario simulation.

8. Conclusions

For each run, that is, an auction type simulated several times with a given number n
of users, we have found the expected revenue to the auctioneer and a measure of the
variability of such result using its coefficient of variation. When the number of bidders is
fixed, we have then compared such measure across several auction types. If an auctioneer
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does not have the time or the need to run a large number of auctions, would the result
provided by the theorem influence his decision as to which auction to use? If he is inter-
ested in maximizing his revenue, all-pay or sad losers seem to provide some greater degree
of variability of the expected revenue. From the results, we can argue that an auctioneer
seeking to improve his revenue may prefer one auction to another, if he is willing to bear
the risk implied in the variance of the revenue.

For the real auction we performed, if we believed that the assumptions of the theo-
rem held, in particular, that the students’ signals were independent, then we might assert
that the auctioneer could have used a first-price or second-price auction instead of the all-
pay auction. In the context of the main result of the theorem, we would have expected
the same revenue for the auctioneer without worrying about the type of auction admin-
istered. However, as the results of simulations showed, the variability of the revenue is
quite different in all-pay when compared to the more traditional first-price and second
price. It is in this sense that the result from the real experiment becomes relevant to the
inquiry about the auctioneer’s question posed at the beginning and the risk he incurs
when answering such a question.

Appendices

A. Bid functions (Beltrán et al. [1])

Let π represent the bidder expected revenue, v the bidder’s value, b the bid function, and
F(v) the distribution of the bidder’s value.

Optimal bidding function in Santa Claus auction with n bidders is

π = Fn−1(b) · (v− b) +
∫ b

v∗
Fn−1(v)dv, (A.1)

π = bn−1v− bn +
bn

n
−
(
v∗
)n

n
, (A.2)

∂π

∂b
= (n− 1) · bn−2 · v−n · bn−1 + bn−1 = 0, (A.3)

bn−2(v− b)= 0, (A.4)

b = v. (A.5)

Santa Claus’ gift to every bidder in a Santa Claus auction is

S(b)=
∫ b

v∗
Fn−1(v)dv = bn

n
−
(
v∗
)n

n
= bn− (v∗)n

n
. (A.6)

Optimal bid function in all-pay auction with n bidders is

b(v)= vFn−1(v)−
∫ v

v∗
Fn−1(x)dx,

b(v)= v · vn−1−
∫ v

v∗
xn−1dx,

b(v)= vn− vn

n
+

(
v∗
)n

n
.

(A.7)
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Optimal bidding function in sad losers auction with n bidders is as follows.
(i) Any bidder’s expected revenue is π = Fn−1(x) · v− (1−Fn−1(x)) · b(x)− c.

(ii) Let H(x)= (1−Fn−1(x)) · b(x).
(iii) Revenue is maximized when ∂π/∂x = v · (∂/∂x)Fn−1(x)−H′(x)= 0.
(iv) H′(x)= v · (∂/∂x)Fn−1(x).

At equilibrium, a bidder bids its valuation, that is, x = v,

H′(v)= v · ∂

∂v
Fn−1(v),

H(v)=
∫ v

v∗
x ·d(Fn−1(x)

)
+ k(A.1).

(A.8)

Applying the expression of the expected revenue to v∗, then πv∗=v∗·Fn−1(v∗)−H(v∗)−
c∗ = 0, and so H(v∗)= v∗ ·Fn−1(v∗)− c∗ (A.2). Equating (A.1) and (A.2),

k = v∗ ·Fn−1(v∗)− c∗,

H(v)=
∫ v

v∗
x ·d(Fn−1(x)

)
+v∗ ·Fn−1(v∗)− c∗

= vFn−1(v)−
∫ v

v∗
Fn−1(x)dx− c∗.

(A.9)

If F(x)≈U[0,1], then

H(v)= 1
n

(
(n− 1)vn +

(
v∗
)n−nc∗

)
. (A.10)

Using the original definition of H(v) ,

b(v)= H(v)
1− vn−1

= (n− 1)vn +
(
v∗
)n−nc∗

n
(
1− vn−1

) . (A.11)

Replacing c∗ = v∗Fn−1
(
v∗
)= (v∗)n,

b(v)=
(n− 1)

(
vn− (v∗)n)

n
(
1− vn−1

) . (A.12)

Optimal bid function in last-pays auction with n bidders is

b(v)= vFn−1(v)− ∫ vv∗Fn−1(x)dx(
1−F(v)

)n−1 , b(v)= v · vn−1− ∫ vv∗ xn−1dx

(1− v)n−1
,

b(v)=
(
v∗
)n

+ (n− 1)vn

n(1− v)n−1
.

(A.13)
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Figure B.1. Results for 20 bidders and 100 scenarios.

Auctioneer’s expected revenue is

π = n
∫ v

v∗

(
vF′(v) +F(v)− 1

) ·F(v)n−1dv,

π = n
∫ v

v∗

(
v+ v− 1

) · vn−1dv,

π = n
[

2vn+1

n+ 1
− vn

n

]v
v∗

,

π =
2n
(

(v)n+1− (v∗)n+1
)
− (n+ 1)

(
(v)n− (v∗)n)

n+ 1
.

(A.14)

B. Simulation results

Figures B.1 to B.11 show results for different numbers of bidders and scenarios.
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Figure B.2. Results for 20 bidders and 500 scenarios.
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Figure B.3. Results for 50 bidders and 100 scenarios.
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Figure B.4. Results for 50 bidders and 100 scenarios.
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Figure B.5. Results for 50 bidders and 500 scenarios.
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Figure B.6. Results for 50 bidders and 500 scenarios.
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Figure B.7. Results for 100 bidders and 100 scenarios.
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Figure B.8. Results for 100 bidders and 100 scenarios.
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Figure B.9. Results for 100 bidders and 500 scenarios.
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Figure B.10. Results for 100 bidders and 500 scenarios.
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Figure B.11. Last-pay: 15 bidders, results from 5000 and 50000 scenarios.
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