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We investigate the Capital Asser PricingModel (CAPM)with time dimension. By using time series
analysis, we discuss the estimation of CAPM when market portfolio and the error process are
long-memory process and correlated with each other. We give a sufficient condition for the return
of assets in the CAPM to be short memory. In this setting, we propose a two-stage least squares
estimator for the regression coefficient and derive the asymptotic distribution. Some numerical
studies are given. They show an interesting feature of this model.

1. Introduction

The CAPM is one of the typical models of risk asset’s price on equilibrium market and
has been used for pricing individual stocks and portfolios. At first, Markowitz [1] did the
groundwork of this model. In his research, he cast the investor’s portfolio selection problem
in terms of expected return and variance. Sharpe [2] and Lintner [3] developed Markowitz’s
idea for economical implication. Black [4] derived a more general version of the CAPM. In
their version, the CAPM is constructed based on the excess of the return of the asset over
zero-beta return E[Ri] = E[R0m] + βim(E[Rm] − E[R0m]), where Ri and Rm are the return
of the ith asset and the market portfolio and R0m is the return of zero-beta portfolio of
the market portfolio. Campbell et al. [5] discussed the estimation of CAPM, but in their
work they did not discuss the time dimension. However, in the econometric analysis, it is
necessary to investigate this model with the time dimension; that is, the model is represented
as Ri,t = αim +βimRm,t + εi,t. Recently from the empirical analysis, it is known that the return of
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asset follows a short-memory process. But Granger [6] showed that the aggregation of short-
memory processes yields long-memory dependence, and it is known that the return of the
market portfolio follows a long-memory process. From this point of view, first, we show that
the return of the market portfolio and the error process εt are long-memory dependent and
correlated with each other.

For the regression model, the most fundamental estimator is the ordinary least squares
estimator. However, the dependence of the error process with the explanatory process makes
this estimator to be inconsistent. To overcome this difficulty, the instrumental variablemethod
is proposed by use of the instrumental variables which are uncorrelatedwith the error process
and correlated with the explanatory variable. This method was first used by Wright [7], and
many researchers developed this method (see Reiersøl [8], Geary [9], etc.). Comprehensive
reviews are seen in White [10]. However, the instrumental variable method has been dis-
cussed in the case where the error process does not follow long-memory process, and this
makes the estimation difficult.

For the analysis of long-memory process, Robinson and Hidalgo [11] considered a
stochastic regression model defined by yt = α + β′xt + ut, where α, β = (β1, . . . , βK)′ are
unknown parameters and the K-vector processes {xt} and {ut} are long-memory dependent
with E(xt) = 0, E(ut) = 0. Furthermore, in Choy and Taniguchi [12], they consider the
stochastic regression model yt = βxt + ut, where {xt} and {ut} are stationary process with
E(xt) = μ/= 0, and Choy and Taniguchi [12] introduced a ratio estimator, the least squares
estimator, and the best linear unbiased estimator for β. However, Robinson and Hidalgo [11]
and Choy and Taniguchi [12] assume that the explanatory process {xt} and the error process
{ut} are independent.

In this paper, by the using of instrumental variable method we propose the two-stage
least squares (2SLS) estimator for the CAPM in which the returns of the individual asset and
error process are long-memory dependent and mutually correlated with each other. Then
we prove its consistency and CLT under some conditions. Also, some numerical studies are
provided.

This paper is organized as follows. Section 2 gives our definition of the CAPM, and
we give a sufficient condition that return of assets as short dependence is generated by the
returns of market portfolio and error process which are long-memory dependent and mutu-
ally correlated each other. In Section 3 we propose 2SLS estimator for this model and show
its consistency and asymptotic normality. Section 4 provides some numerical studies which
show interesting features of our estimator. The proof of theorem is relegated to Section 5.

2. CAPM (Capital Asset Pricing Model)

For Sharpe and Lintner version of the CAPM (see Sharpe [2] and Lintner [3]), the expected
return of asset i is given by

E[Ri] = Rf + βim
(
E
[
Rm − Rf

])
, (2.1)

where

βim =
Cov[Ri, Rm]

V [Rm]
, (2.2)
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Rm is the return of the market portfolio, and Rf is the return of the risk-free asset. Another
Sharpe-Lintner’s CAPM (see Sharpe [2] and Lintner [3]) is defined for Zi ≡ Ri − Rf ,

E[Zi] = βimE[Zm], (2.3)

where

βim =
Cov[Zi, Zm]

V [Zm]
(2.4)

and Zm = Rm − Rf .
Black [4] derived a more general version of CAPM, which is written as

E[Ri] = αim + βimE[Rm], (2.5)

where αim = E[R0m](1 − βim) and R0m is the return on the zero-beta portfolio.
Since CAPM is single-period model, (2.1) and (2.5) do not have a time dimension.

However, for econometric analysis of the model, it is necessary to add assumptions concern-
ing the time dimension. Hence, it is natural to consider the model:

Yi,t = αi + βiZt + εi,t, (2.6)

where i denotes the asset, t denotes the period, and Yi,t and Zt, i = 1, . . . , n and t = 1, . . . , T ,
are, respectively, the returns of the asset i and the market portfolio at t.

Empirical features of the realized returns for assets and market portfolios are well
known.

We plot the autocorrelation function (ACF(l) (l : time lag)) of returns of IBM stock and
S&P500 (squared transformed) in Figures 1 and 2, respectively.

From Figures 1 and 2, we observe that the return of stock (i.e., IBM) shows the short-
memory dependence and that a market index (i.e., S&P500) shows the long-memory depend-
ence.

Suppose that an n-dimensional process {Yt = (Y1,t, . . . , Yn,t)
′} is generated by

Yt = α + B′Zt + εt (t = 1, 2, . . . , T), (2.7)

where α = (α1, . . . , αn)
′ and B = {βij ; i = 1, . . . , p, j = 1, . . . , n} are unknown vector and

matrix; respectively, {Zt = (Z1,t, . . . , Zp,t)
′} is an explanatory stochastic regressor process, and

{εt = (ε1,t, . . . , εn,t)′} is a sequence of disturbance process. The ith component is written as

Yi,t = αi + β′
iZt + εi,t, (2.8)

where β′
i = (βi,1, . . . , βi,p).

In the CAPM, Yt is the return of assets and Zt is the return of the market portfolios.
As we saw, empirical studies suggest that {Yt} is short-memory dependent and that {Zt} is
long-memory dependent. On this ground, we investigate the conditions that the CAPM (2.7)
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Figure 1: ACF of return of the IBM stock.
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Figure 2: ACF of return of S&P500 (square transformed).

is well defined. It is seen that, if the model (2.7) is valid, we have to assume that {εt} is also
long-memory dependent and is correlated with {Zt}.

Hence, we suppose that {Zt} and {εt} are defined by

Zt =
∞∑

j=0

γ jat−j +
∞∑

j=0

ρjbt−j ,

εt =
∞∑

j=0

ηjet−j +
∞∑

j=0

ξjbt−j ,

(2.9)

where {at}, {bt}, and {et} are p-dimensional zero-mean uncorrelated processes, and they are
mutually independent. Here the coefficients {γ j} and {ρj} are p × p-matrices, and all the
components of γ j are �

1-summable, (for short, γ j ∈ �1) and those of ρj are �
2-summable (for
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short, ρj ∈ �2). The coefficients {ηj} and {ξj} are n × p-matrices, ηj ∈ �1, and ξj ∈ �2. From
(2.9) it follows that

Yt = α +
∞∑

j=0

(
B′γ jat−j + ηjet−j

)
+

∞∑

j=0

(
B′ρj + ξi

)
bt−j . (2.10)

Although (B′ρj + ξj) ∈ �2 generally, if B′ρj + ξj = O(1/jα), α > 1, then (B′ρj + ξj) ∈ �1,
which leads to the following.

Proposition 2.1. If B′ρj + ξj = O(j−α), α > 1, then the process {Yt} is short-memory dependent.

Proposition 2.1 provides an important view for the CAPM; that is, if we assume natural
conditions on (2.7) based on the empirical studies, then they impose a sort of “curved
structure”: B′ρj + ξj = O(j−α) on the regressor and disturbance. More important view is the
statement implying that the process {β′

iZt + εi,t} is fractionally cointegrated. Here βi and εi,t
are called the cointegrating vector and error, respectively, (see Robinson and Yajima [13]).

3. Two-Stage Least Squares Estimation

This section discusses estimation of (2.7) satisfying Proposition 2.1. Sinc E(Ztε′t)/= 0, the least
squares estimator for B, is known to be inconsistent. In what follows we assume that α = 0
in (2.7), because it can be estimated consistently by the sample mean. However, by use of
the econometric theory, it is often possible to find other variables that are uncorrelated with
the errors εt, which we call instrumental variables, and to overcome this difficulty. Without
instrumental variables, correlations between the observables {Zt} and unobservables {εt}
persistently contaminate our estimator for B. Hence, instrumental variables are useful in al-
lowing us to estimate B.

Let {Xt} be r × 1-dimensional vector (p ≤ r) instrumental variables with E[Xt] = 0,
Cov(Xt,Zt)/= 0, and Cov(Xt, εt) = 0. Consider the OLS regression of Zt on Xt. If Zt can be
represented as

Zt = δ′Xt + ut, (3.1)

where δ is a r × p matrix and {ut} is a p-dimensional vector process which is independent of
{Xt}, δ can be estimated by the OLS estimator

δ̂ =

[
T∑

t=1

XtX′
t

]−1[ T∑

t=1

XtZ′
t

]

. (3.2)

From (2.7)with α = 0 and (3.1), Yt has the form:

Yt = B′δ′Xt + B′ut + εt, (3.3)
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and δ′Xt is uncorrelated with B′ut + εt; hence, B can be estimated by the OLS estimator:

B̂OLS =

[
T∑

t=1

(
δ′Xt

)(
δ′Xt

)′
]−1[ T∑

t=1

(
δ′Xt

)
Y

′
t

]

. (3.4)

Using (3.2) and (3.4), we can propose the 2SLS estimator:

B̂2SLS =

[
T∑

t=1

(
δ̂
′
Xt

)(
δ̂
′
Xt

)′
]−1[ T∑

t=1

(
δ̂
′
Xt

)
Y

′
t

]

. (3.5)

Now, we aim at proving the consistency and asymptotic normality of the 2SLS estima-
tor B̂2SLS. For this we assume that {εt} and {Xt} jointly constitute the following linear process:

(
εt

Xt

)

=
∞∑

j=0

G
(
j
)
Γ
(
t − j

)
= At

(
say

)
, (3.6)

where {Γ(t)} is uncorrelated (n + r)-dimensional vector process with

E[Γ(t)] = 0,

E
[
Γ(t)Γ(s)∗

]
= δ(t, s)K,

δ(t, s) =

⎧
⎨

⎩

1, t = s,

0, t /= s,

(3.7)

and G(j),s are (n + r) × (n + r) matrices which satisfy
∑∞

j=0tr{G(j)KG(j)∗} < ∞. Then {At}
has the spectral density matrix:

f(ω) =
1
2π

k(ω)Kk(ω)∗ =
{
fab(ω); 1 ≤ a, b ≤ (n + r)

}
(−π < ω ≤ π), (3.8)

where

k(ω) =
∞∑

j=0

G
(
j
)
eiωj = {kab(ω); 1 ≤ a, b ≤ (n + r)} (−π < ω ≤ π). (3.9)

Further, we assume that
∫π
−π log det f(ω)dω > −∞, so that the process {At} is nondetermin-

istic. For the asymptotics of B̂2SLS, from page 108, line↑1–page 109, line 7 of Hosoya [14], we
impose the following assumption.

Assumption 3.1. (i) There exists ε > 0 such that, for any t < t1 ≤ t2 ≤ t3 ≤ t4 and for each β1, β2,

var
[
E
{
Γβ1(t1)Γβ2(t2) | B(t)

} − δ(t1 − t2, 0)Kβ1β2

]
= O

{
(t1 − t)−2−ε

}
, (3.10)
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and also

E
∣
∣E
{
Γβ1(t1)Γβ2(t2)Γβ3(t3)Γβ4(t4) | B(t)

} − E
{
Γβ1(t1)Γβ2(t2)Γβ3(t3)Γβ4(t4)

}∣∣

= O
{
(t1 − t)−1−ε

}
,

(3.11)

uniformly in t, where B(t) is the σ-field generated by {Γ(s); s ≤ t}.
(ii) For any ε > 0 and for any integer M ≥ 0, there exists Bε > 0 such that

E
[
T(n, s)2{T(n, s) > Bε}

]
< ε, (3.12)

uniformly in n, s, where

T(n, s) =

⎡

⎣
p∑

α,β=1

M∑

r=0

{
1√
T

T∑

t=1

(
Γα(t + s)Γβ(t + s + r) −Kαβδ(0, r)

)
}2
⎤

⎦

1/2

, (3.13)

and {T(n, s) > Bε} is the indicator, which is equal to 1 if T(n, s) > Bε and equal to 0 otherwise.
(iii) Each fab(ω) is square-integrable.

Under the above assumptions, we can establish the following theorem.

Theorem 3.2. Under Assumption 3.1, it holds that

(i)

B̂2SLS
P−→ B, (3.14)

(ii)

√
T
(
B̂2SLS − B

)
d−→ Q−1E

[
ZtX′

t

]
E
[
XtX′

t

]−1U, (3.15)

where

Q =
[
E
(
ZtX′

t

)][
E
(
XtX′

t

)]−1[
E
(
XtZ′

t

)]
, (3.16)

and U = {Ui,j ; 1 ≤ i ≤ r, 1 ≤ j ≤ n} is a random matrix whose elements follow normal
distributions with mean 0 and

Cov
[
Ui,j ,Uk,l

]
= 2π

∫π

−π

[
fn+i,n+k(ω)fj,l(ω) + fn+i,l(ω)fj,n+k(ω)

]
dω

+ 2π
p∑

β1,...,β4=1

∫π

−π

∫π

−π
κn+i,β1(ω1)κj,β2(−ω1)κn+k,β3(ω2)κl,β4(−ω2)QΓ

β1,...,β4

× (ω1,−ω2, ω2)dω1 dω2.

(3.17)
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The next example prepares the asymptotic variance formula of B̂2SLS to investigate its
features in simulation study.

Example 3.3. Let {Zt} and {Xt} be scalar long-memory processes, with spectral densities
{2π |1 − eiλ|2dZ}−1 and {2π |1 − eiλ|2dX}−1, respectively, and cross spectral density (1/2π)(1 −
eiλ)−dX(1 − e−iλ)−dZ , where 0 < dZ < 1/2 and 0 < dX < 1/2. Then

E(XtZt) =
1
2π

∫π

−π

1
(
1 − eiλ

)dX

1
(
1 − e−iλ

)dZ
dλ. (3.18)

Suppose that {εt} is a scalar uncorrelated process with σ2
ε ≡ E{ε2t }. Assuming Gaus-

sianity of {At}, it is seen that the right hand of (3.17) is

2π
∫π

−π

1

2π
∣∣1 − eiλ

∣∣2dX

σ2
ε

2π
dλ, (3.19)

which entails

lim
T →∞

var
[√

T
(
B̂2SLS − B

)]
=

2π
∫π
−π
(
1/2π

∣∣1 − eiλ
∣∣2dX

)(
σ2
ε/2π

)
dλ

(
1/2π

∫π
−π
(
1/
(
1 − eiλ

)dX
)(

1/
(
1 − e−iλ

)dZ
)
dλ
)2

= σ2
ε

⎛

⎜
⎝2π

∫π
−π
(
1/
∣∣1 − eiλ

∣∣2dX
)
dλ

(∫π
−π
(
1/
(
1 − eiλ

)dX
)(

1/
(
1 − e−iλ

)dZ
)
dλ
)2

⎞

⎟
⎠

= σ2
ε × V∗(dX, dZ).

(3.20)

4. Numerical Studies

In this section, we evaluate the behaviour of B̂2SLS in the case p = 1 in (2.7) numerically.

Example 4.1. Under the condition of Example 3.3, we investigate the asymptotic variance
behaviour of B̂2SLS by simulation. Figure 3 plots V∗(dX, dZ) for 0 < dX < 1/2 and 0 < dZ < 1/2.

From Figure 3, we observe that, if dZ ↘ 0 and if dX ↗ 1/2, then V∗ becomes large, and
otherwise V∗ is small. This result implies only in the case that the long-memory behavior of
Zt is weak and the long-memory behavior of Xt is strong, V∗ is large. Note that long-memory
behaviour of Zt makes the asymptotic variance of the 2SLS estimator small, but one of Xt

makes it large.
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Figure 3: V∗(dx, dz) in Section 4.

Table 1:MSE of B̂2SLS and B̃OLS.

d2 0.1 0.2 0.3
B̂2SLS (d1 = 0.1) 0.03 0.052 0.189
B̃OLS (d1 = 0.1) 0.259 0.271 0.34
B̂2SLS (d1 = 0.2) 0.03 0.075 0.342
B̃OLS (d1 = 0.2) 0.178 0.193 0.307
B̂2SLS (d1 = 0.3) 0.019 0.052 0.267
B̃OLS (d1 = 0.3) 0.069 0.089 0.23

Example 4.2. In this example, we consider the following model:

Yt = Zt + εt,

Zt = Xt + ut,

εt = wt + ut,

(4.1)

where Xt, wt, and ut are the scalar long-memory processes which follow FARIMA(0, d1, 0),
FARIMA(0,d2,0), and FARIMA(0,0.1,0), respectively. Note that Zt and εt are correlated, Xt

and Zt are correlated, but Xt and εt are independent. Under this model we compare B̂2SLS

with the ordinary least squares estimator B̃OLS for B, which is defined as

B̃OLS =

[
T∑

t=1

Z2
t

]−1[ T∑

t=1

ZtYt

]

. (4.2)

The lengths of Xt, Yt, and Zt are set by 100, and based on 5000 times simulation we report the
mean square errors (MSE) of B̂2SLS and B̃OLS. We set d1, d2 = 0.1, 0.2, 0.3 in Table 1.

In most cases of d1 and d2 in Table 1, MSE of B̂2SLS is smaller than that of B̃OLS. Hence,
from this Example we can see that our estimator B̂2SLS is better than B̃OLS in the sense of MSE.
Furthermore, from Table 1, we can see that MSE of B̂2SLS and B̃OLS increases as d2 becomes
large; that is, long-memory behavior of wt makes the asymptotic variances of B̂2SLS and B̃OLS

large.
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Table 2: B̂2SLS based on the actual financial data.

Stock IBM Nike Amazon American Express Ford
B̂2SLS 0.75 1.39 1.71 2.61 −1.89

Example 4.3. In this example, we calculate B̂2SLS based on the actual financial data. We choose
S&P500 (square transformed) as Zt and the Nikkei stock average as an instrumental variable
Xt. Assuming that Yt(5 × 1) consists of the return of IBM, Nike, Amazon, American Expresses
and Ford; the 2SLS estimates for Bi, i = 1, . . . , 5 are recorded in Table 2. We chose the Nikkei
stock average as the instrumental variable, because we got the following correlation analysis
between the residual processes of returns and Nikkei.

Correlation of IBM’s residual and Nikkei’s return: −0.000311
Correlation of Nike’s residual and Nikkei’s return: −0.00015
Correlation of Amazon’s residual and Nikkei’s return: −0.000622
Correlation of American Express’s residual and Nikkei’s return: 0.000147

Correlation of Ford’s residual and Nikkei’s return: −0.000536,
which supports the assumption Cov(Xt, εt) = 0.

From Table 2, we observe that the return of the finance stock (American Express) is
strongly correlated with that of S&P500 and the return of the auto industry stock (Ford) is
negatively correlated with that of S&P500.

5. Proof of Theorem

This section provides the proof of Theorem 3.2. First for convenience we define Ẑt =
(Ẑ1,t, . . . , Ẑp,t)

′ ≡ δ̂
′
Xt. Let ût = (û1,t, . . . , ûp,t)

′ be the residual from the OLS estimation of
(3.1); that is,

ûi,t = Zi,t − Ẑi,t. (5.1)

The OLS makes this residual orthogonal to Xt:

T∑

t=1

X
′
tûi,t = 0, (5.2)

which implies the residual is orthogonal to Ẑj,t,

T∑

t=1

Ẑj,tûi,t =

(
T∑

t=1

X
′
tûi,t

)

δ̂j = 0, (5.3)
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where δ̂j is jth column vector of δ̂. Hence, we can obtain

T∑

t=1

Ẑj,tZi,t =
T∑

t=1

Ẑj,t

(
Ẑi,t + ûi,t

)
=

T∑

t=1

Ẑj,tẐi,t, (5.4)

for all i and j. This means

T∑

t=1

ẐtZ′
t =

T∑

t=1

ẐtẐ′
t. (5.5)

So, the ith column vector of the 2SLS estimator (3.5) β̂2SLS,i (say) can be represented as

β̂2SLS,i =

[
T∑

t=1

ẐtZ′
t

]−1[ T∑

t=1

ẐtYi,t

]

, (5.6)

which leads to

β̂2SLS,i − βi =

[
1
T

T∑

t=1

ẐtZ′
t

]−1[
1
T

T∑

t=1

Ẑtεi,t

]

. (5.7)

Hence, we can see that

√
T
(
B̂2SLS − B

)
=

[
1
T

T∑

t=1

ẐtZ′
t

]−1[
1√
T

T∑

t=1

Ẑtε
′
t

]

. (5.8)

Note that, by the ergodic theorem (e.g., Stout [15] p179–181),

1
T

T∑

t=1

ẐtZ′
t =

1
T
δ̂
′ T∑

t=1

XtZ′
t

=

[
1
T

T∑

t=1

ZtX′
t

][
1
T

T∑

t=1

XtX′
t

]−1[
1
T

T∑

t=1

XtZ′
t

]

P−→ Q.

(5.9)

Furthermore, the second term of the right side of (5.8) can be represented as

[
1√
T

T∑

t=1

Ẑtε
′
t

]

= δ̂
′ 1√

T

T∑

t=1

Xtε
′
t, (5.10)
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and by the ergodic theorem (e.g., Stout [15] p179–181), we can see

δ̂
′
=

[
T∑

t=1

ZtX′
t

][
T∑

t=1

XtX′
t

]−1
P−→ [

E
(
ZtX′

t

)][
E
(
XtX′

t

)]−1
. (5.11)

Proof of (i). From the above,

B̂2SLS − B = OP

[
1
T

T∑

t=1

Xtε
′
t

]

. (5.12)

In view of Theorem 1.2 (i) of Hosoya [14], the right-hand side of (5.12) converges to 0
in probability.

Proof of (ii). From Theorem 3.2 of Hosoya [14], if Assumption 3.1 holds, it follows that

(1/
√
T)
∑T

t=1Xtε′t
d→ U. Hence, Theorem 3.2 is proved.
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