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An inventory system for deteriorating items, with ramp-type demand rate, under two-level trade credit policy taking account of
preservation technology is considered. The objective of this study is to develop a deteriorating inventory policy when the supplier
provides to the retailer a permissible delay in payments, and during this credit period, the retailer accumulates the revenue and
earns interest on that revenue; also the retailer invests on the preservation technology to reduce the rate of product deterioration.
Shortages are allowed and partially backlogged. Sufficient conditions of the existence and uniqueness of the optimal replenishment
policy are provided, and an algorithm, for its determination, is proposed.Numerical examples draw attention to the obtained results,
and the sensitivity analysis of the optimal solution with respect to leading parameters of the system is carried out.

1. Introduction

In broad spectrum, deterioration is defined as the damage,
spoilage, dryness, vaporization, and so forth, that result in
the decrease of usefulness of the original one. In the past
few decades, inventory problems for deteriorating items have
been widely studied. The first attempt to derive optimal
policies for deteriorating items was made by Ghare and
Schrader [1], who derived a revised form of the economic
order quantity (EOQ) model assuming exponential decay.
Thismodel was extended to consider theWeibull distribution
deterioration by Covert and Philip [2]. Raafat [3] presented
a complete survey of the available inventory literature for
deteriorating inventory models. Goyal and Giri [4] also pro-
vided a detailed review of deteriorating inventory literatures.
Teng et al. [5] developed an inventorymodel for deteriorating
items with time varying demand and partial backlogging.
Recently, C. Singh and S. R. Singh [6] presented an inventory
model considering the Weibull distribution deterioration.

Investing in preservation technology (PT) for reducing
deterioration rate has received little attention in the past

years. The consideration of PT is important due to rapid
social changes and the fact that P can reduce the deterioration
rate significantly. Moreover, sales, inventories, and order
quantities are very sensitive to the rate of deterioration,
especially for fast deteriorating products. The higher rate of
deterioration would result in a higher total annual relevant
cost and a lower demand rate [7, 8]. Ouyang et al. [9] found
that if the retailer can reduce effectively the deteriorating rate
of item by improving the storage facility, the total annual
relevant inventory cost will be reduced. Many enterprises
invest in equipments to reduce the deterioration rate and
extend the product expiration date. For example, refrigera-
tion equipments are used to reduce the deterioration rate of
fruits, flowers, and sea foods in the supermarket. Murr and
Morris [10] showed that a lower temperature will increase the
storage life and decrease decay. Wee et al. [11] presented a
model using preservation technology.

In globalmarket, supplier uses trade credit as a promotion
tool to increase his sale and attract new retailers.Therefore, in
practice, the supplier will allow a certain fixed period (credit
period) for settling the amount that the supplier owes to
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retailer for the items supplied. Before the end of the trade
credit period, the the retailer can sell the goods, accumulate
revenue, and earn interest. However, beyond this period the
supplier charges interest on the unpaid balance. Hence, trade
credit can play a major role in inventory control for both
the supplier and the retailer (see Jaggi et al. [12]). Huang
and Chung [13] extended Goyal’s [14] model to discuss the
replenishment and payment policies to minimize the annual
total average cost under cash discount and payment delay
from the retailer’s point of view. Some relevantmodels related
to this research area are found in the works of Huang [15],
Yang [7], Darzanou and Skouri [16], Singh et al. [17], and so
forth.

In the literature referring to models with allowable delay
in payments, the demand is, mostly, treated either as constant
or as continuous differentiable function of time. However, in
the case of a new brand of consumer good coming to themar-
ket, its demand rate increases in its growth stage (i.e., [0, 𝜇])
and then remains stable in its maturity stage (i.e., [𝜇, 𝑇]). The
term “ramp type” is used to represent such demand pattern.
Hill [18] proposed an inventory model with variable branch,
being any power function of time. Research on this field
continueswithMandal and Pal [19] andWu andOuyang [20].
In the above cited papers, the optimal replenishment policy
requires to determine the decision time (say, 𝑡

1
) at which the

inventory level falls to zero. Consequently, the following two
cases should be examined: (1) the inventory level falls to zero
before the demand reaches constant (i.e., 𝑡

1
< 𝜇) and (2) the

inventory level falls to zero after the demand reaches constant
(i.e., 𝑡

1
> 𝜇). Almost all of the researchers examined only

the first case. Deng et al. [21] first reconsidered the inventory
models proposed byMandal andPal [19] andWuandOuyang
[20] and discussed both cases. Skouri et al. [22] extend the
work of Deng et al. [21] by introducing a general ramp-type
demand rate and Weibull deterioration rate.

The present paper is an extension of the inventory system
of Darzanou and Skouri [16] in the sense of preservation
technology for deteriorating items when the two-level trade
credit scheme, 𝑟/𝑀

1
/𝑀
2
, (in which the supplier provides 𝑟

discount off the price if the payment is made within period
𝑀
1
; otherwise, the full payment is due within period 𝑀

2
) is

considered. The study of this organism requires the inspec-
tion of the ordering relations between the time parameters
𝑀
1
,𝑀
2
, 𝜇, 𝑇, which, actually, lead to the various models. To

reduce the length of the paper, one of these models (𝑀
1

≤

𝜇 < 𝑀
2

< 𝑇) will be presented at this time. The optimal
solution of the proposed model not only exists but also is
unique. To illustrate the theory of the proposed model the
numerical example is provided, and sensitivity analysis with
respect to parameters of the system is carried out.Theoriginal
deterioration rate is assumed to be 𝜃. A reduced deterioration
rate of𝑚(𝜉) is assumed when the retailer’s investment cost of
preservation equipments or technology is 𝜉.

2. Notation and Assumptions

The following notation is used through the paper.

2.1. Notation

𝑇 is the constant scheduling period (cycle),
𝑡
1
is the time when the inventory level falls to zero,

𝐶
𝑝
is the unit purchase cost,

𝑐
1
is the inventory holding cost per unit per unit time,

𝑐
2
is the shortage cost per unit per unit time,

𝑐
3
is the cost incurred from the deterioration of one

unit,
𝑐
4
is the per unit opportunity cost due to the lost sales

(𝑐
4
> 𝐶
𝑝
see Teng et al. [5]),

𝑆 is the maximum inventory level at the scheduling
period (cycle),
𝜉 is the preservation technology (PT) cost for reduc-
ing deterioration rate in order to preserve the prod-
ucts, 𝜉 ≥ 0,
𝑚(𝜉) is reduced deterioration rate, a function of 𝜉,
𝑝 is the unit selling price,
𝐼
𝑒
is the interest rate earned,

𝐼
𝑐
is the interest rate charged,

𝑟 is cash discount rate, 0 < 𝑟 < 1,
𝑀
1
is the period of cash discount in years,

𝑀
2
is the period of permissible delay in payments in

years, 𝑀
1
< 𝑀
2
,

𝜇 is the parameter of the ramp-type demand function
(time point),
𝐼(𝑡) is the inventory level at time 𝑡.

2.2. Assumptions. The inventory model is developed under
the following assumptions.

(1) The ordering quantity brings the inventory level up to
the order level 𝑆. Replenishment rate is infinite.

(2) Shortages are backlogged at a rate𝛽(𝑥)which is a non-
increasing function of 𝑥 with 0 < 𝛽(𝑥) ≤ 1, 𝛽(0) = 1,
and𝑥 is thewaiting timeup to the next replenishment.
Moreover, it is assumed that 𝛽(𝑥) satisfies the relation
𝑐
2
𝛽(𝑥) + 𝑐

2
𝑥𝛽
󸀠
(𝑥) − 𝑐

4
𝛽
󸀠
(𝑥) ≥ 0, where 𝛽

󸀠
(𝑥) is the

derivate of 𝛽(𝑥). The case with 𝛽(𝑥) = 1 corresponds
to complete backlogging model.

(3) The supplier offers cash discount if payment is paid
within𝑀

1
; otherwise, the full payment is paid within

𝑀
2
(see Huang [15]).

(4) The on-hand inventory deteriorates at a constant rate
𝜃 (0 < 𝜃 < 1) per time unit.
The deteriorated items are withdrawn immediately
from the warehouse, and there is no provision for
repair or replacement.

(5) The demand rate𝐷(𝑡) is a ramp-type function of time
given by

𝐷(𝑡) = {
𝑓 (𝑡) , 𝑡 < 𝜇,

𝑓 (𝜇) , 𝑡 ≥ 𝜇,
(1)
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Figure 1: Inventory level for the model starting with no shortage
over the cycle (case 𝑡

1
< 𝜇).

where 𝑓(𝑡) is a positive, differentiable function of 𝑡 ∈

(0, 𝑇].

3. Deriving the Common Quantities for
the Inventory Models

The inventory level 𝐼(𝑡), 0 ≤ 𝑡 ≤ 𝑇 satisfies the following dif-
ferential equations:

𝐼
󸀠
(𝑡) + (𝜃 − 𝑚 (𝜉)) 𝐼 (𝑡) = −𝐷 (𝑡) , 0 ≤ 𝑡 ≤ 𝑡

1
(2)

with boundary condition 𝐼(𝑡
1
) = 0, and

𝐼
󸀠
(𝑡) = −𝐷 (𝑡) 𝛽 (𝑇 − 𝑡) , 𝑡

1
≤ 𝑡 ≤ 𝑇, (3)

with boundary condition 𝐼(𝑡
1
) = 0.

From the two possible relations between parameters 𝑡
1

and 𝜇, (i) 𝑡
1

≤ 𝜇 and (ii) 𝑡
1

> 𝜇, the sum of holding, dete-
rioration, shortages, and lost sales cost is obtained as

𝐶 (𝑡
1
) = {

𝐶
1
(𝑡
1
) if 𝑡

1
≤ 𝜇,

𝐶
2
(𝑡
1
) if 𝑡

1
> 𝜇,

(4)

where, 𝐶
1
(𝑡
1
) and 𝐶

2
(𝑡
1
) are calculated as follows.

Case 1 ((𝑡
1
≤ 𝜇) (see Figure 1)). In this section, the inventory

model starting with no shortages is studied. The replenish-
ment at the beginning of the cycle brings the inventory level
up to 𝑆. Due to demand and deterioration, the inventory level
gradually depletes during the period (0, 𝑡

1
) and falls to zero at

𝑡 = 𝑡
1
. Thereafter, shortages occur during the period (𝑡

1
, 𝑇),

which are partially backlogged.
The backlogged demand is satisfied at the next replenish-

ment. The inventory level, 𝐼(𝑡), 0 ≤ 𝑡 ≤ 𝑇 satisfies the fol-
lowing differential equations.

In this case, (2) becomes

𝐼
󸀠
(𝑡) + (𝜃 − 𝑚 (𝜉)) 𝐼 (𝑡) = −𝑓 (𝑡) , 0 ≤ 𝑡 ≤ 𝑡

1
, 𝐼 (𝑡
1
) = 0.

(5)

Equation (3) leads to the following two equations:

𝐼
󸀠
(𝑡) = −𝑓 (𝑡) 𝛽 (𝑇 − 𝑡) , 𝑡

1
≤ 𝑡 ≤ 𝜇, 𝐼 (𝑡

1
) = 0, (6)

𝐼
󸀠
(𝑡) = −𝑓 (𝜇) 𝛽 (𝑇 − 𝑡) , 𝜇 ≤ 𝑡 ≤ 𝑇, 𝐼 (𝜇

−
) = 𝐼 (𝜇

+
) . (7)

The solutions of (5)–(7) are, respectively,

𝐼 (𝑡) = 𝑒
−(𝜃−𝑚(𝜉))𝑡

∫

𝑡
1

𝑡

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥, 0 ≤ 𝑡 ≤ 𝑡
1
, (8)

𝐼 (𝑡) = −∫

𝑡

𝑡
1

𝑓 (𝑥) 𝛽 (𝑇 − 𝑥) 𝑑𝑥, 𝑡
1
≤ 𝑡 ≤ 𝜇, (9)

𝐼 (𝑡) = −𝑓 (𝜇)∫

𝑡

𝜇

𝛽 (𝑇 − 𝑥) 𝑑𝑥

− ∫

𝜇

𝑡
1

𝑓 (𝑥) 𝛽 (𝑇 − 𝑥) 𝑑𝑥, 𝜇 ≤ 𝑡 ≤ 𝑇.

(10)

The total amount of deteriorated items during [0, 𝑡
1
] is

𝐷 = ∫

𝑡
1

0

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 − ∫

𝑡
1

0

𝑓 (𝑡) 𝑑𝑡. (11)

The cumulative inventory carried in the interval [0, 𝑡
1
] is

found from (8) and is

𝐼
1
= ∫

𝑡
1

0

𝐼 (𝑡) 𝑑𝑡 = ∫

𝑡
1

0

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝑡
1

𝑡

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡.

(12)

Due to (9) and (10), the time-weighted backorders due to
shortages during the interval [𝑡

1
, 𝑇] are

𝐼
2
= ∫

𝑇

𝑡
1

[−𝐼 (𝑡)] 𝑑𝑡 = ∫

𝜇

𝑡
1

[−𝐼 (𝑡)] 𝑑𝑡 + ∫

𝑇

𝜇

[−𝐼 (𝑡)] 𝑑𝑡

= ∫

𝜇

𝑡
1

(𝜇 − 𝑡) 𝑓 (𝑡) 𝛽 (𝑇 − 𝑡) 𝑑𝑡

+ 𝑓 (𝜇)∫

𝑇

𝜇

[∫

𝑡

𝜇

𝛽 (𝑇 − 𝑥) 𝑑𝑥] 𝑑𝑡

+ ∫

𝑇

𝜇

[∫

𝜇

𝑡
1

𝑓 (𝑥) 𝛽 (𝑇 − 𝑥) 𝑑𝑥] 𝑑𝑡.

(13)

The amount of lost sales during [𝑡
1
, 𝑇] is

𝐿 = ∫

𝜇

𝑡
1

[1 − 𝛽 (𝑇 − 𝑡)] 𝑓 (𝑡) 𝑑𝑡 + 𝑓 (𝜇)∫

𝑇

𝜇

[1 − 𝛽 (𝑇 − 𝑡)] 𝑑𝑡.

(14)
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Figure 2: Inventory level for the model starting with no shortage
over the cycle (case 𝑡

1
> 𝜇).

The cost 𝐶
1
(𝑡
1
) in the time interval [0, 𝑇] is the sum of

holding, shortage, deterioration, and opportunity costs and
is given by

𝐶
1
(𝑡
1
)

= [𝜉 + 𝑐
1
{∫

𝑡
1

0

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝑡
1

𝑡

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡}

+ 𝑐
3
{∫

𝑡
1

0

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 − ∫

𝑡
1

0

𝑓 (𝑡) 𝑑𝑡}

+ 𝑐
2
{∫

𝜇

𝑡
1

(𝜇 − 𝑡) 𝑓 (𝑡) 𝛽 (𝑇 − 𝑡) 𝑑𝑡

+ 𝑓 (𝜇)∫

𝑇

𝜇

[∫

𝑡

𝜇

𝛽 (𝑇 − 𝑥) 𝑑𝑥] 𝑑𝑡

+ ∫

𝑇

𝜇

[∫

𝜇

𝑡
1

𝑓 (𝑥) 𝛽 (𝑇 − 𝑥) 𝑑𝑥] 𝑑𝑡}

+ 𝑐
4
{∫

𝜇

𝑡
1

(1 − 𝛽 (𝑇 − 𝑡)) 𝑓 (𝑡) 𝑑𝑡

+𝑓 (𝜇)∫

𝑇

𝜇

(1 − 𝛽 (𝑇 − 𝑡)) 𝑑𝑡}] .

(15)

Case 2 ((𝑡
1

> 𝜇) (see Figure 2)). In this case, (2) reduces to
the following two equations:

𝐼
󸀠
(𝑡)+(𝜃 − 𝑚 (𝜉)) 𝐼 (𝑡) = −𝑓 (𝑡) , 0 ≤ 𝑡 ≤ 𝜇,

𝐼 (𝜇
−
) = 𝐼 (𝜇

+
) ,

𝐼
󸀠
(𝑡)+(𝜃 − 𝑚 (𝜉)) 𝐼 (𝑡)=−𝑓 (𝜇) , 𝜇 ≤ 𝑡 ≤ 𝑡

1
, 𝐼 (𝑡
1
) = 0.

(16)

Equation (3) becomes

𝐼
󸀠
(𝑡) = −𝑓 (𝜇) 𝛽 (𝑇 − 𝑡) , 𝑡

1
≤ 𝑡 ≤ 𝑇, 𝐼 (𝑡

1
) = 0. (17)

Their solutions are, respectively,

𝐼 (𝑡) = 𝑒
−(𝜃−𝑚(𝜉))𝑡

× [∫

𝜇

𝑡

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 + 𝑓 (𝜇)∫

𝑡
1

𝜇

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] ,

0 ≤ 𝑡 ≤ 𝜇,

(18)

𝐼 (𝑡) = 𝑓 (𝜇) 𝑒
−(𝜃−𝑚(𝜉))𝑡

∫

𝑡
1

𝑡

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥, 𝜇 ≤ 𝑡 ≤ 𝑡
1
, (19)

𝐼 (𝑡) = −𝑓 (𝜇)∫

𝑡
1

𝑡

𝛽 (𝑇 − 𝑥) 𝑑𝑥, 𝑡
1
≤ 𝑡 ≤ 𝑇. (20)

The total amount of deteriorated items during [0, 𝑡
1
] is

𝐷 = ∫

𝜇

0

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥

+ 𝑓 (𝜇)∫

𝑡
1

𝜇

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 − ∫

𝜇

0

𝑓 (𝑡) 𝑑𝑡 − ∫

𝑡
1

𝜇

𝑓 (𝜇) 𝑑𝑡.

(21)

The total inventory carried in the interval [0, 𝑡
1
] is found from

(18) and (19) and is

𝐼
1
= ∫

𝑡
1

0

𝐼 (𝑡) 𝑑𝑡 = ∫

𝜇

0

𝐼 (𝑡) 𝑑𝑡 + ∫

𝑡
1

𝜇

𝐼 (𝑡) 𝑑𝑡

= ∫

𝜇

0

𝑒
−(𝜃−𝑚(𝜉))𝑡

× [∫

𝜇

𝑡

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥+𝑓 (𝜇)∫

𝑡
1

𝜇

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥]𝑑𝑡

+ 𝑓 (𝜇)∫

𝑡
1

𝜇

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝑡
1

𝑡

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡.

(22)

The time-weighted backorders due to shortages during the
interval [𝑡

1
, 𝑇] are

𝐼
2
= ∫

𝑇

𝑡
1

[−𝐼 (𝑡)] 𝑑𝑡 = 𝑓 (𝜇)∫

𝑇

𝑡
1

[∫

𝑡

𝑡
1

𝛽 (𝑇 − 𝑥) 𝑑𝑥] 𝑑𝑡

= 𝑓 (𝜇)∫

𝑇

𝑡
1

(𝑇 − 𝑥) 𝛽 (𝑇 − 𝑥) 𝑑𝑥.

(23)

The amount of lost sales during [𝑡
1
, 𝑇] is

𝐿 = 𝑓 (𝜇)∫

𝑇

𝑡
1

[1 − 𝛽 (𝑇 − 𝑡)] 𝑑𝑡. (24)
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The cost 𝐶
2
(𝑡
1
) in the time interval [0, 𝑇] is the sum of

holding, shortage, deterioration and opportunity costs and is
given by

𝐶
2
(𝑡
1
)

= [𝜉 + 𝑐
1
{∫

𝜇

0

𝑒
−(𝜃−𝑚(𝜉))𝑡

× [∫

𝜇

𝑡

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥

+𝑓 (𝜇)∫

𝑡
1

𝜇

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡

+𝑓 (𝜇)∫

𝑡
1

𝜇

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝑡
1

𝑡

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡}

+ 𝑐
3
{∫

𝜇

0

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 + 𝑓 (𝜇)

×∫

𝑡
1

𝜇

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 − ∫

𝜇

0

𝑓 (𝑡) 𝑑𝑡 − ∫

𝑡
1

𝜇

𝑓 (𝜇) 𝑑𝑡}

+ 𝑐
2
{𝑓 (𝜇)∫

𝑇

𝑡
1

(𝑇 − 𝑥) 𝛽 (𝑇 − 𝑥) 𝑑𝑥}

+𝑐
4
{𝑓 (𝜇)∫

𝑇

𝑡
1

(1 − 𝛽 (𝑇 − 𝑡)) 𝑑𝑡}] .

(25)

4. The Inventory Model When 𝑀
1

≤ 𝜇 < 𝑀
2

<

𝑇

In order to obtain the total cost for thismodel, the purchasing
cost, interest charges for the items kept in stock, and the
interest earned should be taken into account. Since the sup-
plier offers cash discount if payment is paid within 𝑀

1
, there

are two payment policies for the buyer. Either the payment
is paid at time 𝑀

1
to receive the cash discount (Case 1) or

the payment is paid at time 𝑀
2
so as not to receive the cash

discount (Case 2). Then, these two cases will be discussed.

Case 1 (payment is made at time𝑀
1
). In this case, the follow-

ing subcases should be considered.

Subcase 1.1 ( 𝑡
1
≤ 𝑀
1
≤ 𝜇 < 𝑇).The purchasing cost is

𝐶
𝐴1,1

(𝑡
1
) = 𝐶
𝑝
(1 − 𝑟)

× [∫

𝑡
1

0

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 + 𝑓 (𝜇)

× ∫

𝑇

𝜇

𝛽(𝑇 − 𝑥) 𝑑𝑥+∫

𝜇

𝑡
1

𝑓 (𝑥) 𝛽 (𝑇 − 𝑥)𝑑𝑥] .

(26)

The interest earned, 𝐼
𝑇1,1

, during the period of positive inven-
tory level is

𝐼
𝑇1,1

(𝑡
1
)

= 𝑝𝐼
𝑒
∫

𝑡
1

0

[∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡 + 𝑝𝐼
𝑒
(𝑀
1
− 𝑡
1
) ∫

𝑡
1

0

𝑓 (𝑥) 𝑑𝑥.

(27)
Since 𝑡

1
≤ 𝜇, the total cost in the time interval [0, 𝑇] is

calculated using (15), (26), and (27):
𝑇𝐶
1,1

(𝑡
1
) = 𝐶
1
(𝑡
1
) + 𝐶
𝐴1,1

(𝑡
1
) − 𝐼
𝑇1,1

(𝑡
1
) . (28)

Subcase 1.2 ( 𝑀
1
< 𝑡
1
≤ 𝜇 < 𝑇).The purchasing cost is 𝐶

𝐴1,1

(relation (26)).
The interest payable for the inventory not being sold after

the due date 𝑀
1
is

𝑃
𝑇2,1

(𝑡
1
)

= 𝐶
𝑝
(1 − 𝑟) 𝐼

𝑐
∫

𝑡
1

𝑀
1

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝑡
1

𝑡

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡.

(29)
The interest earned, 𝐼

𝑇2,1
, is

𝐼
𝑇2,1

(𝑡
1
) = 𝑝𝐼

𝑒
∫

𝑀
1

0

[∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡. (30)

Since again 𝑡
1
≤ 𝜇, the total cost over [0, 𝑇] is calculated using

the relations (15), (26), (29), and (30) and is
𝑇𝐶
1,2

(𝑡
1
) = 𝐶
1
(𝑡
1
) + 𝐶
𝐴1,1

(𝑡
1
) + 𝑃
𝑇2,1

(𝑡
1
) − 𝐼
𝑇2,1

(𝑡
1
) .

(31)
Subcase 1.3 ( 𝑀

1
≤ 𝜇 ≤ 𝑡

1
≤ 𝑇).The purchasing cost is

𝐶
𝐴2,1

(𝑡
1
) = 𝐶
𝑝
(1 − 𝑟)

× [∫

𝜇

0

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 + 𝑓 (𝜇)

× ∫

𝑡
1

𝜇

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥 + 𝑓 (𝜇)∫

𝑇

𝑡
1

𝛽 (𝑇 − 𝑥) 𝑑𝑥] .

(32)
The interest earned, 𝐼

𝑇3,1
, is

𝐼
𝑇3,1

(𝑡
1
) = 𝑝𝐼

𝑒
∫

𝑀
1

0

[∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡. (33)

The interest payable for the inventory not being sold after the
due date 𝑀

1
is

𝑃
𝑇3,1

(𝑡
1
) = 𝐶
𝑝
(1 − 𝑟) 𝐼

𝑐

× [∫

𝜇

𝑀
1

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝜇

𝑡

𝑓 (𝑥) 𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡

+ 𝑓 (𝜇)∫

𝜇

𝑀
1

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝑡
1

𝜇

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡

+ 𝑓 (𝜇)∫

𝑡
1

𝜇

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝑡
1

𝑡

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥]𝑑𝑡].

(34)
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Since 𝜇 < 𝑡
1
, the total cost over (0, 𝑇) is again calculated from

(25), (32)–(34) and is

𝑇𝐶
1,3

(𝑡
1
) = 𝐶
2
(𝑡
1
) + 𝐶
𝐴3,1

(𝑡
1
) + 𝑃
𝑇3,1

(𝑡
1
) − 𝐼
𝑇3,1

(𝑡
1
) .

(35)

The results obtained lead to the following total cost function:

𝑇𝐶
1
(𝑡
1
) =

{{

{{

{

𝑇𝐶
1,1

(𝑡
1
) , 𝑡
1
≤ 𝑀
1
≤ 𝜇 < 𝑇,

𝑇𝐶
1,2

(𝑡
1
) , 𝑀

1
< 𝑡
1
≤ 𝜇 < 𝑇,

𝑇𝐶
1,3

(𝑡
1
) , 𝑀

1
≤ 𝜇 ≤ 𝑡

1
≤ 𝑇.

(36)

So the problem is

min𝑇𝐶
1

𝑡
1

(𝑡
1
) . (37)

Its solution requires, separately, studying each of the three
branches and then combining the results to obtain the
optimal policy. It is easy to check that 𝑇𝐶

1
(𝑡
1
) is continuous

at the points 𝑀
1
and 𝜇.

The first-order condition for a minimum of 𝑇𝐶
1,1

(𝑡
1
) is

𝑑𝑇𝐶
1,1

(𝑡
1
)

𝑑𝑡
1

= {
{𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))}

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 1)

− 𝑐
2
(𝑇 − 𝑡

1
) 𝛽 (𝑇 − 𝑡

1
)

− 𝑐
4
(1 − 𝛽 (𝑇 − 𝑡

1
))

− 𝑝𝐼
𝑒
(𝑀
1
− 𝑡
1
) + 𝐶
𝑝
(1 − 𝑟)

× (𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 𝛽 (𝑇 − 𝑡
1
)) }𝑓 (𝑡

1
) = 0.

(38)

Since 𝑑𝑇𝐶
1,1

(0)/𝑑𝑡
1

< 0 and 𝑑𝑇𝐶
1,1

(𝑇)/𝑑𝑡
1

> 0, (38) has at
least one root. So if 𝑡

1,1
is the root of (38) and if 𝑐

2
𝛽(𝑥) +

𝑐
2
𝑥𝛽
󸀠
(𝑥) − 𝑐

4
𝛽
󸀠
(𝑥) ≥ 0, then this corresponds to minimum

as

(
𝑑
2
𝑇𝐶
1,1

(𝑡
1
)

𝑑𝑡
2

1

)

𝑡
1
=𝑡
1,1

= {{𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))} 𝑒

(𝜃−𝑚(𝜉))𝑡
1,1

+ {𝑐
2
𝛽 (𝑇 − 𝑡

1,1
) + 𝑐
2
(𝑇 − 𝑡

1,1
)

×𝛽
󸀠
(𝑇 − 𝑡

1,1
) − 𝑐
4
𝛽
󸀠
(𝑇 − 𝑡

1,1
)}

+ 𝑝𝐼
𝑒
+ 𝐶
𝑝
(1 − 𝑟)

× {(𝜃 − 𝑚 (𝜉)) 𝑒
(𝜃−𝑚(𝜉))𝑡

1,1 + 𝛽
󸀠
(𝑇 − 𝑡

1
)}} 𝑓 (𝑡

1,1
) > 0.

(39)

Consequently, 𝑡
1,1

is the unique unconstrained minimum of
𝑇𝐶
1,1

(𝑡
1
).

The first-order condition for a minimum of 𝑇𝐶
1,2

(𝑡
1
) is

𝑑𝑇𝐶
1,2

(𝑡
1
)

𝑑𝑡
1

= (
{𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))}

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 1)

− 𝑐
2
(𝑇 − 𝑡

1
) 𝛽 (𝑇 − 𝑡

1
) − 𝑐
4
{1 − 𝛽 (𝑇 − 𝑡

1
)}

+ 𝐶
𝑝
(1 − 𝑟) (𝑒

(𝜃−𝑚(𝜉))𝑡
1 − 𝛽 (𝑇 − 𝑡

1
))

+

𝐶
𝑝
(1 − 𝑟) 𝐼

𝑐

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))(𝑡

1
−𝑀
1
)
− 1))𝑓 (𝑡

1
) = 0.

(40)

If 𝑡
1,2

is the root of (40) (thismay ormaynot exist) and further
if 𝑐
2
𝛽(𝑥) + 𝑐

2
𝑥𝛽
󸀠
(𝑥) − 𝑐

4
𝛽
󸀠
(𝑥) ≥ 0, then

(
𝑑
2
𝑇𝐶
1,2

(𝑡
1
)

𝑑𝑡
2

1

)

𝑡
1
=𝑡
1,2

= ({𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))} 𝑒

(𝜃−𝑚(𝜉))𝑡
1,2

+ 𝐶
𝑝
(1 − 𝑟) 𝐼

𝑐
𝑒
(𝜃−𝑚(𝜉))(𝑡

1,2
−𝑀
1
)

+ {𝑐
2
𝛽 (𝑇 − 𝑡

1,2
) + 𝑐
2
(𝑇 − 𝑡

1,2
)

× 𝛽
󸀠
(𝑇 − 𝑡

1,2
) − 𝑐
4
𝛽
󸀠
(𝑇 − 𝑡

1,2
)} + 𝐶

𝑝
(1 − 𝑟)

× {(𝜃 −𝑚 (𝜉)) 𝑒
(𝜃−𝑚(𝜉))𝑡

1,2+ 𝛽
󸀠
(𝑇 − 𝑡

1,2
)}) 𝑓 (𝑡

1,2
)> 0,

(41)

and this 𝑡
1,2

corresponds to unconstrained minimum of
𝑇𝐶
1,2

(𝑡
1
).

The first-order condition for a minimum of 𝑇𝐶
1,3

(𝑡
1
) is

𝑑𝑇𝐶
1,3

(𝑡
1
)

𝑑𝑡
1

= (
{𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))}

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 1)

− 𝑐
2
(𝑇 − 𝑡

1
) 𝛽 (𝑇 − 𝑡

1
) − 𝑐
4
(1 − 𝛽 (𝑇 − 𝑡

1
))

+ 𝐶
𝑝
(1 − 𝑟) (𝑒

(𝜃−𝑚(𝜉))𝑡
1 − 𝛽 (𝑇 − 𝑡

1
))

+

𝐶
𝑝
(1 − 𝑟) 𝐼

𝑐

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))(𝑡

1
−𝑀
1
)
− 1))𝑓 (𝜇) = 0.

(42)
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If 𝑡
1,3

is the root of (42) (this may or may not exist) and
𝑐
2
𝛽(𝑥) + 𝑐

2
𝑥𝛽
󸀠
(𝑥) − 𝑐

4
𝛽
󸀠
(𝑥) ≥ 0, then

(
𝑑
2
𝑇𝐶
1,3

(𝑡
1
)

𝑑𝑡
2

1

)

𝑡
1
=𝑡
1,3

= ({𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))} 𝑒

(𝜃−𝑚(𝜉))𝑡
1,3

+ 𝐶
𝑝
(1 − 𝑟) 𝐼

𝑐
𝑒
(𝜃−𝑚(𝜉))(𝑡

1,3
−𝑀
1
)

+ 𝐶
𝑝
(1 − 𝑟) ((𝜃 − 𝑚 (𝜉)) 𝑒

(𝜃−𝑚(𝜉))𝑡
1,3 + 𝛽

󸀠
(𝑇 − 𝑡

1,3
))

+ {𝑐
2
𝛽 (𝑇 − 𝑡

1,3
) + 𝑐
2
(𝑇 − 𝑡

1,3
) 𝛽
󸀠
(𝑇 − 𝑡

1,3
)

−𝑐
4
𝛽
󸀠
(𝑇 − 𝑡

1,3
)}) 𝑓 (𝜇) > 0.

(43)

This 𝑡
1,3

corresponds to unconstrained minimum of
𝑇𝐶
1,3

(𝑡
1
).

Remark 1. The function 𝑇𝐶
1
(𝑡
1
) is not differentiable in 𝑀

1
.

Then, the following procedure summarizes the previous
results for the determination of the optimal replenishment
policy, when payment is made at time 𝑀

1
.

Step 1. Find the global minimum of 𝑇𝐶
1,1

(𝑡
1
), say 𝑡

∗

1,1,𝑀
1

, as
follows.

Substep 1.1.Compute 𝑡
1,1,𝑀

1

from (38); if 𝑡
1,1,𝑀

1

< 𝑀
1
, then set

𝑡
∗

1,1,𝑀
1

= 𝑡
1,1,𝑀

1

and compute 𝑇𝐶
1,1

(𝑡
∗

1,1,𝑀
1

); else go to Substep
1.2.

Substep 1.2. Find the min{𝑇𝐶
1,1

(0), 𝑇𝐶
1,1

(𝑀
1
)} and accord-

ingly set 𝑡∗
1,1,𝑀

1

.

Step 2. Find the global minimum of 𝑇𝐶
1,2

(𝑡
1
), say 𝑡

∗

1,2,𝑀
1

, as
follows.

Substep 2.1. Compute 𝑡
1,2,𝑀

1

from (40); if 𝑀
1

< 𝑡
1,2,𝑀

1

< 𝜇,
then set 𝑡∗

1,2,𝑀
1

= 𝑡
1,2,𝑀

1

and compute 𝑇𝐶
1,2

(𝑡
∗

1,2,𝑀
1

); else go to
Substep 2.2.

Substep 2.2. Find the min{𝑇𝐶
1,2

(𝑀
1
), 𝑇𝐶
1,2

(𝜇)} and accord-
ingly set 𝑡∗

1,2,𝑀
1

.

Step 3. Find the global minimum of 𝑇𝐶
1,3

(𝑡
1
), say 𝑡

∗

1,3,𝑀
1

, as
follows.

Substep 3.1. Compute 𝑡
1,3,𝑀

1

from (42); if 𝜇 < 𝑡
1,3,𝑀

1

, then set
𝑡
∗

1,3,𝑀
1

= 𝑡
1,3,𝑀

1

and compute 𝑇𝐶
1,3

(𝑡
∗

1,3,𝑀
1

); else go to Substep
3.2.
Substep 3.2. Find the min{𝑇𝐶

1,3
(𝜇), 𝑇𝐶

1,3
(𝑇)} and accord-

ingly set 𝑡∗
1,3,𝑀

1

.

Step 4.Find themin{𝑇𝐶
1,1

(𝑡
∗

1,1,𝑀
1

),𝑇𝐶
1,2

(𝑡
∗

1,2,𝑀
1

),𝑇𝐶
1,3

(𝑡
∗

1,3,𝑀
1

)}

and accordingly select the optimal value for 𝑡
1
, say 𝑡
∗

1,𝑀
1

, with
optimal cost 𝑇𝐶

1
(𝑡
∗

1,𝑀
1

).

Case 2 (payment is made at time 𝑀
2
). When the payment is

made at time 𝑀
2
the following cases should be considered.

Subcase 2.1 ( 𝑡
1
≤ 𝜇 < 𝑀

2
< 𝑇).The purchasing cost is

𝐶
𝐴1,2

(𝑡
1
) =

𝐶
𝐴1,1

(𝑡
1
)

(1 − 𝑟)
. (44)

The interest earned during the period of positive inventory
level is

𝐼
𝑇1,2

(𝑡
1
) = 𝑝𝐼

𝑒
∫

𝑡
1

0

[∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡

+ 𝑝𝐼
𝑒
(𝑀
2
− 𝑡
1
) ∫

𝑡
1

0

𝑓 (𝑥) 𝑑𝑥.

(45)

Since 𝑡
1

≤ 𝜇, the total cost in the time interval [0, 𝑇] is cal-
culated using (15), (44), and (45):

𝑇𝐶
2,1

(𝑡
1
) = 𝐶
1
(𝑡
1
) + 𝐶
𝐴1,2

(𝑡
1
) − 𝐼
𝑇1,2

(𝑡
1
) . (46)

Subcase 2.2 ( 𝜇 < 𝑡
1
≤ 𝑀
2
< 𝑇).The purchasing cost is

𝐶
𝐴2,2

(𝑡
1
) =

𝐶
𝐴2,1

(𝑡
1
)

(1 − 𝑟)
. (47)

The interest earned, 𝐼
𝑇2,2

(𝑡
1
), is

𝐼
𝑇2,2

(𝑡
1
)

= 𝑝𝐼
𝑒
[∫

𝜇

0

[∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡 + ∫

𝑀
2

𝜇

[∫

𝜇

0

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡

+ ∫

𝑡
1

𝜇

[∫

𝑡

𝜇

𝑓 (𝜇) 𝑑𝑥] 𝑑𝑡 + ∫

𝑀
2

𝑡
1

[∫

𝑡
1

𝜇

𝑓 (𝜇) 𝑑𝑥] 𝑑𝑡] .

(48)

Since again 𝜇 ≤ 𝑡
1
, the total cost over [0, 𝑇] is calculated using

the relations (25), (47), and (48) and is

𝑇𝐶
2,2

(𝑡
1
) = 𝐶
2
(𝑡
1
) + 𝐶
𝐴2,2

(𝑡
1
) − 𝐼
𝑇2,2

(𝑡
1
) . (49)

Subcase 2.3 ( 𝜇 ≤ 𝑀
2

≤ 𝑡
1

≤ 𝑇). The purchasing cost is
𝐶
𝐴2,2

(𝑡
1
).

The interest earned, 𝐼
𝑇3,2

, is

𝐼
𝑇3,2

(𝑡
1
)

= 𝑝𝐼
𝑒
[∫

𝜇

0

[∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡 + ∫

𝑀
2

𝜇

[∫

𝜇

0

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑡] .

(50)

The interest payable for the inventory not being sold after the
due date 𝑀

2
is

𝑃
𝑇3,2

(𝑡
1
)

= 𝐶
𝑝
𝐼
𝑐
𝑓 (𝜇) [∫

𝑡
1

𝑀
2

𝑒
−(𝜃−𝑚(𝜉))𝑡

[∫

𝑡
1

𝑡

𝑒
(𝜃−𝑚(𝜉))𝑥

𝑑𝑥] 𝑑𝑡] .

(51)
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Since 𝜇 < 𝑡
1
, the total cost over [0, 𝑇] is again calculated from

(25), (47), (50), and (51) and is

𝑇𝐶
2,3

(𝑡
1
) = 𝐶
2
(𝑡
1
) + 𝐶
𝐴2,2

(𝑡
1
) + 𝑃
𝑇3,2

(𝑡
1
) − 𝐼
𝑇3,2

(𝑡
1
) .

(52)

The results obtained lead to the following total cost function:

𝑇𝐶
2
(𝑡
1
) =

{{

{{

{

𝑇𝐶
2,1

(𝑡
1
) , 𝑡
1
≤ 𝜇 < 𝑀

2
< 𝑇,

𝑇𝐶
2,2

(𝑡
1
) , 𝜇 < 𝑡

1
≤ 𝑀
2
< 𝑇,

𝑇𝐶
2,3

(𝑡
1
) , 𝜇 ≤ 𝑀

2
≤ 𝑡
1
≤ 𝑇.

(53)

So the problem is

min𝑇𝐶
2

𝑡
1

(𝑡
1
) . (54)

Its solution, as in the previous case, requires, separately,
studying each of the three branches and then combining the
results to obtain the optimal policy. It is easy to check that
𝑇𝐶
2
(𝑡
1
) is continuous at the points 𝑀

2
and 𝜇.

The first-order condition for the minimum for 𝑇𝐶
2,1

(𝑡
1
)

is

𝑑𝑇𝐶
2,1

(𝑡
1
)

𝑑𝑡
1

= {
{𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))}

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 1)

− 𝑐
2
(𝑇 − 𝑡

1
) 𝛽 (𝑇 − 𝑡

1
)

− 𝑐
4
(1 − 𝛽 (𝑇 − 𝑡

1
)) − 𝑝𝐼

𝑒
(𝑀
2
− 𝑡
1
)

+𝐶
𝑝
{𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 𝛽 (𝑇 − 𝑡
1
)} }𝑓 (𝑡

1
) = 0.

(55)

Since 𝑑𝑇𝐶
2,1

(0)/𝑑𝑡
1

< 0 and 𝑑𝑇𝐶
2,1

(𝑇)/𝑑𝑡
1

> 0, (55) has at
least one root. So, if 𝑡

1,1
is the root of (55), this corresponds

to minimum if 𝑐
2
𝛽(𝑥) + 𝑐

2
𝑥𝛽
󸀠
(𝑥) − 𝑐

4
𝛽
󸀠
(𝑥) ≥ 0 as

(
𝑑
2
𝑇𝐶
2,1

(𝑡
1
)

𝑑𝑡
2

1

)

𝑡
1
=𝑡
1,1

= {{𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))} 𝑒

(𝜃−𝑚(𝜉))𝑡
1,1

+ {𝑐
2
𝛽 (𝑇 − 𝑡

1,1
) + 𝑐
2
(𝑇 − 𝑡

1,1
) 𝛽
󸀠
(𝑇 − 𝑡

1,1
)

−𝑐
4
𝛽
󸀠
(𝑇 − 𝑡

1,1
)} + 𝑝𝐼

𝑒

+𝐶
𝑝
{(𝜃−𝑚 (𝜉)) 𝑒

(𝜃−𝑚(𝜉))𝑡
1,1+𝛽
󸀠
(𝑇 − 𝑡

1
)}} 𝑓 (𝑡

1,1
)>0.

(56)

So, 𝑡
1,1

is the unconstrained minimum of 𝑇𝐶
2,1

(𝑡
1
).

The first-order condition for a minimum of 𝑇𝐶
2,2

(𝑡
1
) is

𝑑𝑇𝐶
2,2

(𝑡
1
)

𝑑𝑡
1

= (
{𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))}

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 1)

− 𝑐
2
(𝑇 − 𝑡

1
) 𝛽 (𝑇 − 𝑡

1
)

− 𝑐
4
(1 − 𝛽 (𝑇 − 𝑡

1
)) + 𝐶

𝑝
{𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 𝛽 (𝑇 − 𝑡
1
)}

−𝑝𝐼
𝑒
(𝑀
2
− 𝑡
1
) )𝑓 (𝜇) = 0.

(57)

If 𝑡
1,2

is the root of (57) (this may or may not exist), this cor-
responds to unconstrained minimum of 𝑇𝐶

2,2
(𝑡
1
) if 𝑐
2
𝛽(𝑥) +

𝑐
2
𝑥𝛽
󸀠
(𝑥) − 𝑐

4
𝛽
󸀠
(𝑥) ≥ 0 as

(
𝑑
2
𝑇𝐶
2,2

(𝑡
1
)

𝑑𝑡
2

1

)

𝑡
1
=𝑡
1,2

= ({𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))} 𝑒

(𝜃−𝑚(𝜉))𝑡
1,2

+ {𝑐
2
𝛽 (𝑇 − 𝑡

1,2
) + 𝑐
2
(𝑇 − 𝑡

1,2
)

× 𝛽
󸀠
(𝑇 − 𝑡

1,2
) − 𝑐
4
𝛽
󸀠
(𝑇 − 𝑡

1,2
)} + 𝑝𝐼

𝑒

+𝐶
𝑝
{(𝜃 − 𝑚 (𝜉)) 𝑒

(𝜃−𝑚(𝜉))𝑡
1,2+𝛽
󸀠
(𝑇 − 𝑡

1,2
)})𝑓 (𝜇)> 0.

(58)

The first-order condition for a minimum of 𝑇𝐶
2,3

(𝑡
1
) is

𝑑𝑇𝐶
2,3

(𝑡
1
)

𝑑𝑡
1

= (
{𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))}

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 1)

− 𝑐
2
(𝑇 − 𝑡

1
) 𝛽 (𝑇 − 𝑡

1
) − 𝑐
4
(1 − 𝛽 (𝑇 − 𝑡

1
))

+ 𝐶
𝑝
(𝑒
(𝜃−𝑚(𝜉))𝑡

1 − 𝛽 (𝑇 − 𝑡
1
))

+

𝐶
𝑝
𝐼
𝑐

(𝜃 − 𝑚 (𝜉))
(𝑒
(𝜃−𝑚(𝜉))(𝑡

1
−𝑀
2
)
− 1))𝑓 (𝜇) = 0.

(59)

If 𝑡
1,3

is a root of (59) (this may or may not exist) and
this corresponds to unconstrained minimum of 𝑇𝐶

2,3
(𝑡
1
)
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if 𝑐
2
𝛽(𝑥) + 𝑐

2
𝑥𝛽
󸀠
(𝑥) − 𝑐

4
𝛽
󸀠
(𝑥) ≥ 0 as

(
𝑑
2
𝑇𝐶
2,3

(𝑡
1
)

𝑑𝑡
2

1

)

𝑡
1
=𝑡
1,3

= ({𝑐
1
+ 𝑐
3
(𝜃 − 𝑚 (𝜉))} 𝑒

(𝜃−𝑚(𝜉))𝑡
1,3

+ {𝑐
2
𝛽 (𝑇 − 𝑡

1,3
) + 𝑐
2
(𝑇 − 𝑡

1,3
)

× 𝛽
󸀠
(𝑇 − 𝑡

1,3
) − 𝑐
4
𝛽
󸀠
(𝑇 − 𝑡

1,3
)}

+ 𝐶
𝑝
{(𝜃 − 𝑚 (𝜉)) 𝑒

(𝜃−𝑚(𝜉))𝑡
1,3 + 𝛽

󸀠
(𝑇 − 𝑡

1,3
)}

+𝐶
𝑝
𝐼
𝑐
𝑒
(𝜃−𝑚(𝜉))(𝑡

1,3
−𝑀
2
)
) 𝑓 (𝜇) > 0.

(60)

Remark 2. The function 𝑇𝐶
2
(𝑡
1
) is not differentiable in 𝑀

2
.

Then, the following procedure summarizes the previous
results for the determination of the optimal replenishment
policy, when payment is made at time 𝑀

2
.

Step 1. Find the global minimum of 𝑇𝐶
2,1

(𝑡
1
), say 𝑡

∗

1,1,𝑀
2

, as
follows.

Substep 1.1. Compute 𝑡
1,1,𝑀

2

from (55); if 𝑡
1,1,𝑀

2

< 𝜇, then set
𝑡
∗

1,1,𝑀
2

= 𝑡
1,1,𝑀

2

and compute 𝑇𝐶
2,1

(𝑡
∗

1,1,𝑀
2

); else go to Substep
1.2.

Substep 1.2. Find themin{𝑇𝐶
2,1

(0), 𝑇𝐶
2,1

(𝜇)} and accordingly
set 𝑡∗
1,1,𝑀

2

.

Step 2. Find the global minimum of 𝑇𝐶
2,2

(𝑡
1
), say 𝑡

∗

1,2,𝑀
2

, as
follows.

Substep 2.1. Compute 𝑡
1,2,𝑀

2

from (57); if 𝜇 < 𝑡
1,2,𝑀

2

< 𝑀
2
,

then set 𝑡∗
1,2,𝑀

2

= 𝑡
1,2,𝑀

2

and compute 𝑇𝐶
2,2

(𝑡
∗

1,2,𝑀
2

); else go to
Substep 2.2.

Substep 2.2. Find the min{𝑇𝐶
2,2

(𝜇), 𝑇𝐶
2,2

(𝑀
2
)} and accord-

ingly set 𝑡∗
1,2,𝑀

2

.

Step 3. Find the global minimum of 𝑇𝐶
2,3

(𝑡
1
), say 𝑡

∗

1,3,𝑀
2

, as
follows.

Substep 3.1. Compute 𝑡
1,3,𝑀

2

from (59); if 𝑀
2

< 𝑡
1,3,𝑀

2

< 𝑇,
then set 𝑡∗

1,3,𝑀
2

= 𝑡
1,3,𝑀

2

and compute 𝑇𝐶
2,3

(𝑡
∗

1,3,𝑀
2

); else go to
Substep 3.2.

Substep 3.2. Find the min{𝑇𝐶
2,3

(𝑀
2
), 𝑇𝐶
2,3

(𝑇)} and accord-
ingly set 𝑡∗

1,3,𝑀
2

.

Step 4.Find themin{𝑇𝐶
2,1

(𝑡
∗

1,1,𝑀
2

),𝑇𝐶
2,2

(𝑡
∗

1,2,𝑀
2

),𝑇𝐶
2,3

(𝑡
∗

1,3,𝑀
2

)}

and accordingly select the optimal value for 𝑡
1
say 𝑡
∗

1,𝑀
2

, with
optimal cost 𝑇𝐶

2
(𝑡
∗

1,𝑀
2

).

Finally to find the overall optimum 𝑡
1
for the problem

under consideration, the results obtained for the two pre-
sented cases (i.e., payment is made at 𝑀

1
and payment is

made at 𝑀
2
) are combined; that is, find min{𝑇𝐶

1
(𝑡
∗

1,𝑀
1

),

𝑇𝐶
2
(𝑡
∗

1,𝑀
2

)} and accordingly select the optimal value 𝑡
∗

1
.

5. Numerical Examples and
Sensitivity Analysis

In this section, a numerical example is provided to illustrate
the results obtained in previous sections. In addition, a sen-
sitivity analysis, with respect to system parameters, is carried
out. Here, 𝑚(𝜉) is a function of the preservation technology
cost 𝜉 such that 𝑚(𝜉) = 𝜃(1 − 𝑒

−𝑎𝜉
), 𝑎 ≥ 0, and 𝑎 is the

simulation coefficient representing the percentage increase
in 𝑚(𝜉) per euro increase in 𝜉, which means 𝑚(𝜉) is an
increasing function bounded above by 𝜃.

The input parameters are 𝑐
1
= 3C per unit per unit time,

𝑐
2

= 15C per unit per unit time, 𝑐
3

= 5C per unit, 𝑐
4

= 20C
per unit per unit time, 𝑟 = 0.005, 𝜇 = 0.3 years, 𝜃 = 0.001,
𝑎 = 0.001, 𝜉 = 20C, 𝑇 = 0.5 years, 𝑓(𝑡) = 3𝑒

4.5𝑡 and 𝛽(𝑥) =

𝑒
−0.2𝑥, 𝑀

1
= 0.13 years, 𝑀

2
= 0.43 years, 𝑝 = 15, 𝐶

𝑝
= 10C,

𝐼
𝑒
= 0.12, and 𝐼

𝑐
= 0.15.

5.1. The Payment Is Made at 𝑀
1
. From (38), 𝑡

1,1,𝑀
1

=

0.398924, which is not feasible as 𝑡
1,1,𝑀

1

> 𝑀
1
. Since

𝑇𝐶
1,1

(0) = 75.469 and 𝑇𝐶
1,1

(𝑀
1
) = 71.9633, it follows that

𝑡
∗

1,1,𝑀
1

= 𝑀
1
. From (40), 𝑡

1,2,𝑀
1

= 0.40288, which is not valid
again as 𝑡

1,2,𝑀
1

> 𝜇. Since 𝑇𝐶
1,1

(𝑀
1
) = 𝑇𝐶

1,2
(𝑀
1
) = 71.9633

and 𝑇𝐶
1,2

(𝜇) = 67.0128, the optimal value for 𝑡
∗

1,2,𝑀
1

= 𝜇.
From (42), 𝑡

1,3,𝑀
1

= 0.412557; this value for 𝑡
1
is valid as 𝜇 <

𝑡
1,3,𝑀

1

< 𝑇, so 𝑡
∗

1,3,𝑀
1

= 𝑡
1,3,𝑀

1

and 𝑇𝐶
1,3

(𝑡
∗

1,3,𝑀
1

) = 65.5819.
Finally, 𝑇𝐶

1
(𝑡
∗

1,𝑀
1

) = min{𝑇𝐶
1,1

(𝑀
1
), 𝑇𝐶
1,2

(𝜇),

𝑇𝐶
1,3

(𝑡
∗

1,3,𝑀
1

)} = 65.5819, and consequently 𝑡
∗

1,𝑀
1

=

0.412557.

5.2. The Payment Is Made at 𝑀
2
. From (55), 𝑡

1,1,𝑀
2

=

0.424279 which is not feasible as 𝑡
1,1,𝑀

2

> 𝜇. Since 𝑇𝐶
2,1

(0) =

75.6719, 𝑇𝐶
2,1

(𝜇) = 66.2333, it follows that 𝑡∗
1,1,𝑀

2

= 𝜇. From
(57), 𝑡

1,2,𝑀
2

= 0.424279 which is valid again as 𝜇 < 𝑡
1,2

< 𝑀
2

so 𝑡
∗

1,2,𝑀
2

= 0.424279 and𝑇𝐶
2,2

(𝑡
∗

1,2,𝑀
2

) = 64.3494. From (59),
𝑡
1,3,𝑀

2

= 0.424197; this value for 𝑡
1
is not valid as 𝑡

1,3
< 𝑀
2
.

Since 𝑇𝐶
2,3

(𝑀
2
) = 64.5295, 𝑇𝐶

2,3
(𝑇) = 65.2301 so 𝑡

∗

1,3,𝑀
2

=

𝑀
2
and 𝑇𝐶

2,3
(𝑡
∗

1,3,𝑀
2

) = 64.5295.
Finally, 𝑇𝐶

2
(𝑡
∗

1,𝑀
2

) = min{𝑇𝐶
2,1

(𝜇), 𝑇𝐶
2,2

(𝑡
∗

1,2,𝑀
2

),

𝑇𝐶
2,3

(𝑀
2
)} = 64.3494, and consequently 𝑡

∗

1,𝑀
2

= 0.424279.
So, as 𝑇𝐶(𝑡

∗

1
) = min{𝑇𝐶

1
(𝑡
∗

1,𝑀
1

), 𝑇𝐶
2
(𝑡
∗

1,𝑀
2

)} = 64.3494,
the optimal 𝑡

1
is 𝑡
∗

1
= 𝑡
∗

1,𝑀
2

= 0.424279, which leads to a pay-
ment at 𝑀

2
.

6. Sensitivity Analysis

Using the data of the previous example, a sensitivity analysis is
carried out to explore the effect of change on the basicmodel’s
parameters to the optimal policy (i.e., 𝑡

1
time of payment and

optimal total cost). The results are presented in Tables 1 and
2, and some observations are summarized as follows.
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Table 1: The effect of changing the parameter (i) while keeping all other parameters unchanged.

Parameter (i) Percentage of changes (%) 𝑡
∗

1
TC(𝑡∗
1
)

𝑐
1

−20 0.436535 63.8099
−10 0.430325 64.0842
+10 0.418390 64.6058
+20 0.412653 64.8538

𝑐
2

−20 0.412116 64.2352
−10 0.418648 64.2965
+10 0.429184 64.3955
+20 0.433494 64.4360

𝜇

−20 0.424279 57.5810
−10 0.424279 60.9523
+10 0.424279 67.7020
+20 0.424279 70.9180

𝑐
3

−20 0.424299 64.3486
−10 0.424289 64.3490
+10 0.424269 64.3499
+20 0.424260 64.3503

𝑐
4

−20 0.421352 64.3220
−10 0.422843 64.3360
+10 0.425662 64.3624
+20 0.426995 64.3749

𝜃

−20 0.424340 64.3468
−10 0.424310 64.3481
+10 0.424249 64.3508
+20 0.424218 64.3521

𝜉

−20 0.424278 60.3495
−10 0.424278 62.3495
+10 0.424280 66.3494
+20 0.424280 68.3494

𝐼
𝑒

−20 0.424181 64.5541
−10 0.424230 64.4518
+10 0.424327 64.2471
+20 0.424374 64.1448

p

−20 0.424181 64.5541
−10 0.424230 64.4518
+10 0.424327 64.2471
+20 0.424374 64.1448

𝐶
𝑝

−20 0.425700 55.9219
−10 0.424996 60.1357
+10 0.423548 68.5630
+20 0.422804 72.7765

Table 2: The effect of simulation coefficient (a) while keeping all other parameters unchanged.

Parameter (i) Changing value 𝑡
∗

1
TC(𝑡∗
1
)

a

0.0005 0.424276 64.3496
0.005 0.424303 64.3484
0.01 0.424329 64.3473
0.02 0.424375 64.3453
0.05 0.424470 64.3412
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(1) It is observed that as the holding cost 𝑐
1
decreases or

increases the optimal time 𝑡
∗

1
increases or decreases,

and the optimal total cost 𝑇𝐶(𝑡
∗

1
) decreases or

increases, respectively.
(2) It is seen that as the shortage cost 𝑐

2
decreases or

increases both the optimal time 𝑡
∗

1
and the optimal

total cost 𝑇𝐶(𝑡
∗

1
) decrease or increase, respectively.

(3) It is examined that as the time (at which demand
becomes constant) 𝜇 decreases or increases there is
no effect on the optimal time 𝑡

∗

1
but the optimal total

cost 𝑇𝐶(𝑡
∗

1
) decreases or increases, respectively.

(4) It is observed that as the deterioration cost 𝑐
3

decreases or increases the optimal time 𝑡
∗

1
slightly

increases or decreases, and the optimal total cost
𝑇𝐶(𝑡
∗

1
) also slightly decreases or increases, respec-

tively.
(5) It is seen that as the lost sales cost 𝑐

4
decrease or

increase both the optimal time 𝑡
∗

1
and the optimal

total cost 𝑇𝐶(𝑡
∗

1
) slightly decrease or increase, respec-

tively.
(6) It is seen that as the decay rate 𝜃 decreases or

increases the optimal time 𝑡
∗

1
increases or decreases

and the optimal total cost 𝑇𝐶(𝑡
∗

1
) slightly decreases

or increases, respectively.
(7) It is observed that as the preservation cost 𝜉 decreases

or increases the optimal time 𝑡
∗

1
and the optimal total

cost 𝑇𝐶(𝑡
∗

1
) decrease or increase, respectively.

(8) It is noticed that as the rate of interest earned 𝐼
𝑒

decreases or increases the optimal time 𝑡
∗

1
decreases

or increases, and the optimal total cost𝑇𝐶(𝑡
∗

1
) slightly

increases or decreases, respectively.
(9) It is noticed that as the selling price 𝑝 decreases or

increases the optimal time 𝑡
∗

1
decreases or increases,

but the optimal total cost 𝑇𝐶(𝑡
∗

1
) increases or

decreases, respectively.
(10) It is seen that as the purchasing cost 𝐶

𝑝
decreases or

increases the optimal time 𝑡
∗

1
increases or decreases,

and the optimal total cost 𝑇𝐶(𝑡
∗

1
) decreases or

increases, respectively.
(11) It is observed that as the preservation parameter 𝑎

decreases or increases the optimal time 𝑡
∗

1
decreases

or increases, but the optimal total cost 𝑇𝐶(𝑡
∗

1
)

increases or decreases, respectively.

7. Concluding Remarks

In this paper, we have developed an inventory model with
ramp type demand rate, partially backlogged shortages, pre-
servation technology, and two-level trade credit. The model
is discussed under the two cases (1) when the payment is
made at time 𝑀

1
to get the price discount and (2) when the

payment ismade at time𝑀
2
with no price discount.The effect

of preservation technology is also taken into consideration
throughout the model. The presented model is illustrated
through numerical experiments with sensitivity. From the

sensitivity table, it is observed that the changes in the param-
eters preservation technology cost (𝜉), time at which demand
becomes constant (𝜇), and purchasing cost (𝐶

𝑝
) have greater

effect on the system than the other parameters of the system.
The convexity of the cost function is also exposed analytically.

This model could be inclusive taking into consideration
numerous replenishment cycles throughout the planning
horizon.
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