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This paper derives a reverse logistic inventorymodel with imperfect production, stock-dependent demand, flexible manufacturing,
and shortages over infinite planning horizon. The objective is to determine the joint policy for optimal production, amount of
remanufacturing, collection of reusable items, and collection as well as disposal of defective items which minimizes the total cost
of the inventory system under consideration. To make the model more realistic, both of the cases of linear and nonlinear holding
costs have been discussed. The results are discussed with a numerical example to illustrate the theory.

1. Introduction

The assumption of perfect production is not ideal for prac-
tical production system. Even the best production system
may produce defective items. The governmental guidelines
clearly state reduction of wastages, conservation of precious
resources, protection of environment, and prevention of
environmental degradation as a guiding principles for the
business organizations. The manufacturing organizations
may reuse the defective items after suitably repairing and
removal of defects in order to avoid waste of resources. The
defective items which are either irreparable or cannot be
repaired easily and cost effectively are disposed off. They
also prefer to reuse or recycle the items procured from the
customers and reconvert through the appropriate process to
appear as new and useful.

2. Literature Review

The classical production inventorymodel assumes that all the
items produced are of perfect quality. Such an assumption
appears impractical in real system.Therefore researchers have
attracted towards model formation in which some parts of
the items produced are of imperfect quality and they can
be reworked and repaired. Rosenblatt and Lee [1], Lee and

Rosenblatt [2], Cheng [3], Das and Sarkar [4], and Chung
and Hou [5] worked on the issue of imperfect quality items
and proved that production inventory cost is affected by
rework or repair. Cheng [3] developed an economic order
quantity model with demand-dependent unit production
cost and imperfect production processes. Hayek and Salameh
[6] assumed that all of the defective items produced are
repairable and derived an optimal operating policy for EPQ
model under the effect of reworking of imperfect quality
items. Chung and Hou [5] investigated the production
inventory model with imperfect production processes and
allowable shortages. Chiu et al. [7] derived an economic
production quantity (EPQ) model with scrap, rework, and
stochastic machine breakdowns and assumed some portion
of the defective items to be scrapped and the other parts
to be repairable. S. R. Singh and C. Singh [8] developed an
imperfect production process with exponential demand rate
and Weibull distribution deterioration under inflation.

For the past few decades, reverse logistics have been
receiving much attention. The problem of optimal lot sizes
for production/procurement and recovery was first studied
by Schrady [9]. For issues in the greening process, Nahmias
and Rivera [10] studied an EPQ variant of Schrady’s model
[9] with a finite recovery rate. Richter [11, 12] and Richter and
Dobos [13] investigated a waste disposal model considering



2 Advances in Decision Sciences

the returned rate as a decision variable.They gave the optimal
number of production and reproduction batches depended
on the returned rate. Dobos and Richter [14, 15] investi-
gated a production/remanufacturing system with constant
demand that is satisfied by noninstantaneous production and
remanufacturing for single and multiple remanufacturing
and production cycle. Dobos and Richter [16] extended their
previous model and assumed that the quality of collected
returned items is not always suitable for further repairing.
El Saadany and Jaber [17] extended the models developed in
Dobos and Richter [14, 15] by assuming that the collection
rate of returned items is dependent on the purchasing price
and the acceptance quality level of these returns. That is, the
flow of used/returned items increases as the purchasing price
increases and decreases as the corresponding acceptance
quality level increases. A general reverse logistics inventory
model was developed by Alamri [18]. Chung and Wee [19]
developed an inventory model on short life-cycle deteriorat-
ing product remanufacturing in a green supply chain model.
Singh and Saxena [20] derived an optimal returned policy for
a reverse logistics inventory model with backorders.

An increase in the shelf space can influence more cus-
tomers. In this connection, the observations made by Levin
et al. [21] and Silver and Peterson [22] may be noted. They
observed that the presence of greater quantity of the same
item tends to attract more customers. The reason behind
this fact is a typical psychology of the customers. They may
have the feeling of obtaining a wide range for selection when
a large amount is stored/displayed. Gupta and Vrat [23]
developed models for stock-dependent consumption rate.
Mandal and Phaujdar [24] developed an inventory model
for deteriorating items and stock-dependent consumption
rate. Schweitzer and Seidmann [25] established optimizing
processing rate for flexible manufacturing systems. Giri and
Chaudhuri [26] developed deterministic model of perishable
inventory with stock-dependent demand rate and nonlinear
holding cost and proved that the nonlinear holding cost
affected the total average cost. Sana et al. [27] established
a production-inventory model for a deteriorating item with
trended demand and shortages. Teng and Chang [28] pro-
posed economic production model for deteriorating item
with price and stock-dependent demand. Singh and Jain [29]
worked on reserve money for an EOQ model in an infla-
tionary environment under supplier credits. S. R. Singh and
C. Singh [8] worked on supply chain model with stochastic
lead time under imprecise partially backlogging for expiring
items. Singh et al. [30] contributed on an inventory model
for deteriorating items with shortages and stock-dependent
demand under inflation for two shops under one man-
agement. Konstantaras and Skouri [31] presented a model
by considering a general cycle pattern in which a variable
number of reproduction lots of equal size were followed by
a variable number of manufacturing lots of equal size. They
also studied the case where shortages were allowed in each
manufacturing and reproduction cycle and similar sufficient
conditions, as the nonshortages case, were given. Yadav et
al. [32] developed an inventory model of deteriorating items
with stock-dependent demand using genetic algorithm in
fuzzy environment. Dem and Singh [33] investigated an EPQ

model for damageable items with multivariate demand and
flexible manufacturing. Dem and Singh [34] developed a
production model for imperfect production process under
volume flexibility. Goyal et al. [35] explored an inventory
system with variable demand as well as production under
partially backordered shortages.

3. Assumptions and Notations

The following assumptions and notations are used through-
out the model.

3.1. Assumptions

(1) Production rate is linear function of demand and
demand is a nonlinear function of on-hand inventory.
Thus production is a nonlinear function of on-hand
inventory.

(2) Demand rate remains stock-dependent for a certain
period after which a uniform demand rate follows as
the stock comes down to zero level. The functional
relationship between the demand rate 𝑓(𝑞) and the
inventory level 𝑞(𝑡) is given by the following expres-
sion:

𝑓 (𝑞) = 𝐷𝑞𝛽, 𝐷 > 0, 0 < 𝛽 < 1, 𝑞 ≥ 0, (1)

where 𝛽 denotes the shape parameter and is a mea-
sure of responsiveness of the demand to changes in
the level of on hand inventory and𝐷 denotes the scale
parameter.

(3) The repair work of defective items starts when the
regular production work stops. After repair, they are
as good as the new ones.

(4) Deterioration rate is constant.
(5) Items are returnable and are remanufactured. Reman-

ufactured items are as good as new ones and they
are used during the shortage period of forward
manufacturing.

(6) The time horizon of the inventory system is infinite.
Only a typical planning schedule of length 𝑇 is
considered, and all remaining cycles are identical.

(7) Shortages are allowed and completely backlogged.
(8) The production time interval including repair time

during forward production coincides with the collec-
tion time interval for reverse manufacturing. (This
assumption is not applicable during the period of
shortages.)

3.2. Notations

𝑞(𝑡): On hand inventory level during regular produc-
tion uptime
𝑓(𝑞): Demand rate, 𝑓(𝑞) = 𝐷𝑞𝛽,𝐷 > 0, 0 < 𝛽 < 1

𝑃: Production rate during regular production uptime,
𝑃 = 𝑙𝑓(𝑞), where 𝑙 is a scale parameter, 𝑃 > 𝑓(𝑞),
𝑙 > 1
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𝑃1: Production rate of defective items repaired, 𝑃1 =
𝑙1𝑓(𝑞), where 𝑙1 is a scale parameter, 𝑙1 > 1

𝐾: Setup cost
ℎ1: Holding cost per unit per unit time during
regular production uptime, repair time, and reverse
manufacturing
ℎ2: Holding cost per unit per unit time during the
collecting and consuming process of defective items
ℎ3: Holding cost per unit per unit time during the
collecting and consuming process for the reverse
manufacturing
𝑞𝑐(𝑡𝑐): Inventory level during collecting and consum-
ing process of defective items
𝑞𝑟𝑐(𝑡𝑟𝑐): Inventory level during the collecting process
of reverse manufacturing
𝑞𝑟𝑚(𝑡𝑟𝑚): Inventory level during the remanufacturing
process for reverse manufacturing
𝜉: Fraction of the production lot size in the
interval [0, 𝑡𝑝

1

] where 0 < 𝜉 < 1

𝑄: Maximum inventory level during regular produc-
tion uptime
𝑄𝑐: Maximum inventory level of defective items
collected
𝑄ℎ: Inventory level when repair work stops
𝑡𝑝: Time when regular production stops and repair
starts. It also represents the time when collection
process of defective items stops
𝑡𝑝
1

: Time when repair work of defective items stops
and remanufacturing starts. At this point of time
collection process of reusable items also stops
𝑡𝑠: Time when remanufacturing stops and also the
time when accumulated inventory of forward man-
ufacturing vanishes
𝑡𝑠
1

: Time when accumulated remanufactured inven-
tory vanishes and shortages start
𝑡𝑚: Time when production starts again during the
period of shortage. At this time collection of defective
items start again
𝑡𝑚
1

: Time when collection process of defective items
stops and their repair work starts during the period of
shortage
𝑇: Length of a complete cycle
𝐶𝑝: Production cost per unit of regular good quality
items produced
𝐶𝑟: Repair cost per unit of defective items repaired
𝐶𝑠: Shortage cost per unit per unit time
𝑠𝑟: Scrap cost per unit
𝑆󸀠: Maximum shortages
𝑆1: Maximum inventory level of remanufactured
items

𝑆𝑐: Collection of defective items during period of
shortage
𝑆ℎ: Shortage level when repair work starts
𝑅𝑐: Rate of collection of reusable items
𝑅𝑚: Rate of remanufacturing of reusable items
𝜃1: Rate of deterioration
HC: Total holding cost
SC: Total shortage cost
SR: Total scrap cost
RC: Total repair cost
PC: Total production cost.

4. Formulation of Model

This model consists of two systems: forward manufacturing
and reverse manufacturing. The manufacturing process is
flexible but imperfect, and hence it can produce as per the
demand rate, but it produces perfect as well as imperfect
items. At the beginning of each cycle, the inventory is zero.
The production starts at the very beginning of the cycle
and system produces perfect as well as imperfect items. As
production progresses, the inventory of perfect items piles
up even after meeting the market demand and imperfect
items are collected in a separate store. During the regular
production uptime, 𝑥 portion of produced items is assumed
to be defective and is generated at a production rate 𝑑 = 𝑃𝑥
where the regular production rate 𝑃 is a function of demand.
Among these defective items, 𝜃 portion is considered to be
scrap and the other portions can be reworked and repaired.
The rework or repair work starts when the regular production
work stops. Along with the two stores of perfect quality items
and imperfect quality items from the forward production
system, there is one more store in which reusable items are
collected from the customers, and therefore at the beginning
of each cycle, the process of collecting returnable items in a
separate store also begins and is continued till the forward
production process stops.More precisely, at a point where the
repair work during forward manufacturing system stops; the
collection process of returnable items also stops at the same
point (for simplicity, we assume that there is no collection
of used items, once the remanufacturing of collected items
starts). At this very point, the remanufacturing of reusable
items begin at a constant rate. The accumulated inventory
produced from the advanced manufacturing system in the
meanwhile starts getting consumed and ultimately becomes
nil. The accumulated inventory of remanufacturing products
(which are assumed to be as good as the newly produced
products) is consumed when the shortages from the forward
manufacturing system begin to surface. Also at this stage,
there is no production and inventory of remanufactured
items is consumed till it becomes nil. When the inventory of
remanufactured items is also nil, inventory shortages begin to
accumulate for some time. Thereafter, production starts and
collection of defective items also starts. After certain time,
repair work starts and after clearing the shortages, the cycle
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Figure 1: Production inventory model with imperfect production
and reverse manufacturing.

ends with zero inventory. Graphical description is shown in
Figure 1.

As the production system is not perfect, the items pro-
duced during regular production are a mixture of perfect
and imperfect quality. The production cycle begins with zero
inventory and starts at 𝑡 = 0. In the interval (0, 𝑡𝑝), the
inventory of perfect quality items piles up after meeting
demand and removing imperfect items and imperfect quality
items are collected in a separate store as shown by (2) and (5).
Feasibility of this assumption implies that 𝑙 − 1 − 𝑙𝑥 must be
greater than zero. Regular production is stopped at 𝑡 = 𝑡𝑝, and
at this very point repair work starts.The repairable portion of
imperfect items collected in the interval (0, 𝑡𝑝) is repaired at
a repair rate 𝑃1 = 𝑙1𝐷(𝑞) during the interval (𝑡𝑝, 𝑡𝑝

1

). After
repairing, these items are assumed to be as good to serve the
demand as the perfect quality items and contribute in rising
inventory of perfect quality items after meeting demand. As
the inventory of perfect quality items rises, the inventory of
defective items falls as shown by (3) and (6). The forward
production process stops at 𝑡 = 𝑡𝑝

1

. The inventory of perfect
quality items falls to zero level at 𝑡 = 𝑡𝑠.

4.1. ForwardManufacturing Process. The following equations
depict the inventory level of perfect quality items in various
intervals:

𝑑𝑞

𝑑𝑡
= 𝑃 − 𝐷𝑞𝛽 − 𝑃𝑥, 𝑞 (0) = 0, 0 ≤ 𝑡 ≤ 𝑡𝑝, (2)

𝑑𝑞

𝑑𝑡
= 𝑃1 − 𝐷𝑞𝛽, 𝑞 (𝑡𝑝) = 𝑄, 𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑝

1

, (3)

𝑑𝑞

𝑑𝑡
= −𝐷𝑞𝛽, 𝑞 (𝑡𝑠) = 0, 𝑡𝑝

1

≤ 𝑡 ≤ 𝑡𝑠. (4)

The following equations depict the inventory level of imper-
fect quality items (collection and consumption process):

𝑑𝑞𝑐
𝑑𝑡𝑐

= 𝑃𝑥 (1 − 𝜃) , 𝑞𝑐 (0) = 0, 0 ≤ 𝑡𝑐 ≤ 𝑡𝑝, (5)

𝑑𝑞𝑐
𝑑𝑡𝑐

= −𝑃1, 𝑞𝑐 (𝑡𝑝
1

) = 0, 𝑡𝑝 ≤ 𝑡𝑐 ≤ 𝑡𝑝
1

. (6)

Along with the two stores of perfect quality items and
imperfect quality items from the forward production system,

there is one more store in which reusable items are collected
from the customers. At the beginning of each cycle, the
process of collecting reusable items also starts at a rate of
collection𝑅𝑐. At time 𝑡 = 𝑡𝑝

1

, the collection process is stopped
and remanufacturing of collected items starts at a rate 𝑅𝑚.
At time 𝑡 = 𝑡𝑠, the inventory of reusable collected items
falls to zero and the inventory of remanufactured items rises
to 𝑆1. Also at this point, there is no inventory to serve the
demand from the forward production system, so that the
remanufactured items are used to serve the demand till its
falling to zero.

4.2. Reverse Collection and Consumption Process. One has

𝑑𝑞𝑟𝑐
𝑑𝑡𝑟𝑐

= 𝑅𝑐 − 𝜃1𝑞𝑟𝑐, 𝑞𝑟𝑐 (0) = 0, 0 ≤ 𝑡𝑟𝑐 ≤ 𝑡𝑝
1

,

𝑑𝑞𝑟𝑐
𝑑𝑡𝑟𝑐

= −𝑅𝑚 − 𝜃1𝑞𝑟𝑐, 𝑞𝑟𝑐 (𝑡𝑝
1

) = 𝐵𝜉, 𝑡𝑝
1

≤ 𝑡𝑟𝑐 ≤ 𝑡𝑠,

(7)

where 𝐵 = (𝑙/(𝑙 − 1 − 𝑙𝑥))𝑄 + (𝑙1/(𝑙1 − 1))(𝑄ℎ − 𝑄) is the
production lot size in the interval [0, 𝑡𝑝

1

] (see Appendix A).

4.3. Reverse Manufacturing Process.

𝑑𝑞𝑟𝑚
𝑑𝑡𝑟𝑚

= 𝑅𝑚 − 𝜃1𝑞𝑟𝑚, 𝑞𝑟𝑚 (𝑡𝑝
1

) = 0, 𝑡𝑝
1

≤ 𝑡𝑟𝑚 ≤ 𝑡𝑠,

𝑑𝑞

𝑑𝑡
= −𝐷𝑞𝛽 − 𝜃1𝑞, 𝑞 (𝑡𝑠) = 𝑆1, 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑠

1

.

(8)

4.4. Shortage Phase. At time 𝑡 = 𝑡𝑠
1

, the inventory of remanu-
factured items is also nil and shortages accumulate in the
interval (𝑡𝑠

1

, 𝑡𝑚) and rise to 𝑆󸀠 at 𝑡 = 𝑡𝑚. At time 𝑡 = 𝑡𝑚
production restarts and shortages start clearing gradually.
As the production starts, imperfect quality items also start
to accumulate. The imperfect quality items collected in the
interval (𝑡𝑚, 𝑡𝑚

1

) are repaired and used to clear the demand
in the interval (𝑡𝑚

1

, 𝑇).
The following are the equations depicting the behavior of

inventory during shortages as described above:

𝑑𝑞

𝑑𝑡
= −𝐷1, 𝑞 (𝑡𝑠

1

) = 0, 𝑡𝑠
1

≤ 𝑡 ≤ 𝑡𝑚,

𝑑𝑞

𝑑𝑡
= (𝑙 − 1 − 𝑙𝑥)𝐷1, 𝑞 (𝑡𝑚) = 𝑆󸀠, 𝑡𝑚 ≤ 𝑡 ≤ 𝑡𝑚

1

,

𝑑𝑞

𝑑𝑡
= (𝑙1 − 1)𝐷1, 𝑞 (𝑡𝑚

1

) = 𝑆ℎ, 𝑡𝑚
1

≤ 𝑡 ≤ 𝑇.

(9)

The following are the equations depicting the collection
and consumption of imperfect quality items during shortage
period:

𝑑𝑞𝑐
𝑑𝑡𝑐

= 𝑃𝑥 (1 − 𝜃) , 𝑞𝑐 (𝑡𝑚) = 0, 𝑡𝑚 ≤ 𝑡𝑐 ≤ 𝑡𝑚
1

,

𝑑𝑞𝑐
𝑑𝑡𝑐

= −𝑃1, 𝑞𝑐 (𝑇) = 0, 𝑡𝑚
1

≤ 𝑡𝑐 ≤ 𝑇.

(10)
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Solving (2), (3), and (4) and using the associated boundary
conditions, we get the inventory level of perfect quality items
at various stages during forward manufacturing:

𝑞𝛼 = (𝑙 − 1 − 𝑙𝑥)𝐷𝛼𝑡, 0 ≤ 𝑡 ≤ 𝑡𝑝, (11)

𝑞𝛼 = 𝑄𝛼 + (𝑙1 − 1)𝐷𝛼 (𝑡 − 𝑡𝑝) , 𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑝
1

, (12)

𝑞𝛼 = −𝛼𝐷 (𝑡 − 𝑡𝑠) , 𝑡𝑝
1

≤ 𝑡 ≤ 𝑡𝑠. (13)

Using 𝑞(𝑡𝑝) = 𝑄, 𝑞(𝑡𝑝
1

) = 𝑄ℎ, and 𝑞(𝑡𝑝
1

) = 𝑄ℎ in (11), (12),
and (13), respectively, we get the following relations:

𝑡𝑝 =
𝑄𝛼

(𝑙 − 1 − 𝑙𝑥)𝐷𝛼
, 𝑡𝑝

1

= 𝑡𝑝 +
𝑄𝛼ℎ − 𝑄𝛼

(𝑙1 − 1)𝐷𝛼
,

𝑡𝑠 =
1

𝛼𝐷
(𝑄𝛼ℎ + 𝛼𝐷𝑡𝑝

1

) .

(14)

For feasibility of the model 𝑡𝑝
1

must be greater than 𝑡𝑝;
otherwise the remanufacturing process will start during the
regular production time. Therefore 𝑡𝑝

1

> 𝑡𝑝, give rise to
the constraint (𝑄𝛼ℎ − 𝑄𝛼)/(𝑙1 − 1)𝐷𝛼 > 0 must be satisfied
which holds true (see Appendix B).The above constraint also
implies 𝑄𝛼ℎ > 𝑄𝛼 with means that inventory level at 𝑡𝑝

1

is
higher than the inventory level at 𝑡𝑝 which is shown in
Figure 1. Also, 𝑡𝑠 > 𝑡𝑝

1

as the interval (𝑡𝑝
1

, 𝑡𝑠) represents the
interval of remanufacturing which implies that 𝑄𝛼ℎ/𝛼𝐷 > 0
and which holds true.

Consider

Holding cost in [0, 𝑡𝑠]

= holding cost in [0, 𝑡𝑝] + holding cost in [𝑡𝑝, 𝑡𝑝
1

]

+ holding cost in [𝑡𝑝
1

, 𝑡𝑠]

= ℎ1 (∫
𝑄

𝑂
𝑞𝑛𝑑𝑡 + ∫

𝑄
ℎ

𝑄
𝑞𝑛𝑑𝑡 + ∫

0

𝑄
ℎ

𝑞𝑛𝑑𝑡)

= ℎ1 [
𝑄𝑛+𝛼

(𝑙 − 1 − 𝑙𝑥)𝐷 (𝑛 + 𝛼)
+

𝑄𝑛+𝛼ℎ 𝑙1

(𝑙1 − 1)𝐷 (𝑛 + 𝛼)

−
𝑄𝑛+𝛼

(𝑙1 − 1)𝐷 (𝑛 + 𝛼)
] .

(15)

Solving (5) and (6) and using boundary conditions, we get
inventory level of imperfect quality items during forward
manufacturing process:

𝑞𝛼𝑐 = 𝑙𝑥 (1 − 𝜃)𝐷𝛼𝑡𝑐, 0 ≤ 𝑡𝑐 ≤ 𝑡𝑝,

𝑞𝛼𝑐 = −𝐷𝛼 (𝑡𝑐 − 𝑡𝑝
1

) 𝑙1, 𝑡𝑝 ≤ 𝑡𝑐 ≤ 𝑡𝑝
1

.
(16)

Using 𝑞𝑐(𝑡𝑝) = 𝑄𝑐 in (16) and also using the values of 𝑡𝑝 and
𝑡𝑝
1

(already derived), we have

𝑄𝛼𝑐 =
𝑙𝑥 (1 − 𝜃)

𝑙 − 1 − 𝑙𝑥
𝑄𝛼, 𝑄𝛼ℎ − 𝑄𝛼 = (𝑙1 − 1)𝐷𝛼(

𝑄𝛼𝑐
𝑙1𝐷𝛼

) .

(17)

As 𝑙 − 1 − 𝑙𝑥 > 0, 𝑙1 − 1 > 0 ⇒ 𝑄𝛼𝑐 ≥ 0 and 𝑄𝛼ℎ > 𝑄𝛼 which
shows the existence of inventory levels at various stages.

Consider

Holding cost of imperfect quality items during interval

[0, 𝑡𝑝
1

] = holding cost in [0, 𝑡𝑝]

+ holding cost in [𝑡𝑝, 𝑡𝑝
1

]

= ℎ2 [
𝑄𝑛+𝛼𝑐

𝑙𝑥 (1 − 𝜃)𝐷 (𝑛 + 𝛼)
+

𝑄𝑛+𝛼𝑐
𝑙1𝐷 (𝑛 + 𝛼)

] .

(18)

Solving (7) and using boundary conditions, the inventory
level of reusable items in various intervals is calculated as
follows:

𝑞𝑟𝑐 =
𝑅𝑐
𝜃1

(1 − 𝑒−𝜃1𝑡𝑟𝑐) , 0 ≤ 𝑡𝑟𝑐 ≤ 𝑡𝑝
1

, (19)

𝑞𝑟𝑐 =
−𝑅𝑚
𝜃1

+ (𝐵𝜉 +
𝑅𝑚
𝜃1

) 𝑒𝜃1(𝑡𝑝1−𝑡𝑟𝑐), 𝑡𝑝
1

≤ 𝑡𝑟𝑐 ≤ 𝑡𝑠. (20)

Using 𝑞𝑟𝑐(𝑡𝑝
1

) = 𝐵𝜉 in (19), we have 𝐵𝜉 = 𝑅𝑐(𝑡𝑝
1

− 𝜃1𝑡
2
𝑝
1

/2)

which can be used to find the rate of collection of reusable
items.

Using 𝑞𝑟𝑐(𝑡𝑠) = 0, in (20), we have

𝐵𝜉

𝑅𝑚
−

𝐵2𝜉2𝜃1
2𝑅2𝑚

= (𝑡𝑠 − 𝑡𝑝
1

) . (21)

The above relation gives the rate of remanufacturing.
Consider

Holding cost of reverse collection in interval [0, 𝑡𝑠]

= holding cost in [0, 𝑡𝑝
1

] + holding cost in [𝑡𝑝
1

, 𝑡𝑠]

= ℎ2 [∫
𝐵𝜉

0
𝑞𝑛𝑟𝑐𝑑𝑡 + ∫

𝑡
𝑠

𝑡
𝑝1

𝑞𝑛𝑟𝑐𝑑𝑡𝑟𝑐]

= ℎ2 [
(𝐵𝜉)
𝑛+1

𝑅𝑐 (𝑛 + 1)
+

(𝐵𝜉)
𝑛+2

𝜃1
𝑅2𝑐 (𝑛 + 2)

+
(𝐵𝜉)
𝑛+1

𝑅𝑚 (𝑛 + 1)

−
(𝐵𝜉)
𝑛+2

𝜃1
(𝑛 + 2) 𝑅2𝑚

] ,

Deterioration cost

= 𝜃1𝐶𝑝 [
(𝐵𝜉)
𝑛+1

𝑅𝑐 (𝑛 + 1)
+

(𝐵𝜉)
𝑛+2

𝜃1
𝑅2𝑐 (𝑛 + 2)

+
(𝐵𝜉)
𝑛+1

𝑅𝑚 (𝑛 + 1)

−
(𝐵𝜉)
𝑛+2

𝜃1
(𝑛 + 2) 𝑅2𝑚

] .

(22)
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For reversemanufacturing process, after solving (8) andusing
boundary conditions, the inventory level of remanufactured
items can be obtained as

𝑞𝑟𝑚 =
𝑅𝑚
𝜃1

(1 − 𝑒𝜃1(𝑡𝑝1−𝑡𝑟𝑚)) , 𝑡𝑝
1

≤ 𝑡𝑟𝑚 ≤ 𝑡𝑠, (23)

𝑞𝛼 =
−𝐷

𝜃1
+ (𝑆𝛼1 +

𝐷

𝜃1
) 𝑒𝜃1𝛼(𝑡𝑠−𝑡), 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑠

1

, (24)

Holding cost in [𝑡𝑝
1

, 𝑡𝑠
1

]

= holding cost in [𝑡𝑝
1

, 𝑡𝑠] + holding cost in [𝑡𝑠, 𝑡𝑠
1

]

= ℎ1 [∫
𝑆
1

0
𝑞𝑛𝑟𝑚 (

1

𝑅𝑚
+

𝜃1𝑞𝑟𝑚
𝑅2𝑚

)𝑑𝑞𝑟𝑚

+∫
0

𝑆
1

𝑞𝑛 (
−𝑞𝛼−1

𝐷
+

𝜃1𝑞
2𝛼−1

𝐷2
)𝑑𝑞]

= ℎ1 [
𝑆𝑛+11

(𝑛 + 1) 𝑅𝑚
+

𝜃1𝑆
(𝑛+2)
1

𝑅2𝑚 (𝑛 + 2)

+(
𝑆𝛼+𝑛1

𝐷 (𝛼 + 𝑛)
−

𝜃1𝑆
𝑛+2𝛼
1

𝐷2 (𝑛 + 2𝛼)
)] ,

Deterioration cost

= 𝜃1𝐶𝑝 [
𝑆𝑛+11

(𝑛 + 1) 𝑅𝑚
+

𝜃1𝑆
(𝑛+2)
1

𝑅2𝑚 (𝑛 + 2)

+(
𝑆𝛼+𝑛1

𝐷(𝛼 + 𝑛)
−

𝜃1𝑆
𝑛+2𝛼
1

𝐷2 (𝑛 + 2𝛼)
)] .

(25)

Using 𝑞(𝑡𝑠
1

) = 0 in (24), we have 𝑡𝑠
1

= 𝑡𝑠 + 𝑆𝛼1/𝐷𝛼 − 𝜃1𝑆
2𝛼
1 /

2𝐷2𝛼, where 𝑡𝑠 = 𝑄𝛼𝑙(1 − 𝑥𝜃)/𝛼𝐷(𝑙 − 1 − 𝑙𝑥).
Solving (9), we have the shortage level in various intervals

as given as follows:

𝑞 = 𝐷1 (𝑡𝑠
1

− 𝑡) , 𝑡𝑠
1

≤ 𝑡 ≤ 𝑡𝑚, (26)

𝑞 = (𝑙 − 1 − 𝑙𝑥)𝐷1 (𝑡 − 𝑡𝑚) + 𝑆󸀠, 𝑡𝑚 ≤ 𝑡 ≤ 𝑡𝑚
1

, (27)

𝑞 = (𝑙1 − 1)𝐷1 (𝑡 − 𝑡𝑚
1

) + 𝑆󸀠ℎ, 𝑡𝑚
1

≤ 𝑡 ≤ 𝑇. (28)

Using 𝑞(𝑡𝑚) = 𝑆󸀠, 𝑞(𝑡𝑚
1

) = 𝑆ℎ, and 𝑞(𝑇) = 0 in (26), (27), and
(28), respectively, we have the following relations:

𝑡𝑚 = 𝑡𝑠
1

−
𝑆󸀠

𝐷1
, 𝑡𝑚

1

= 𝑡𝑚 +
𝑆ℎ − 𝑆󸀠

(𝑙 − 1 − 𝑙𝑥)𝐷1
,

−𝑆ℎ
(𝑙1 − 1)𝐷1

+ 𝑡𝑚
1

= 𝑇.

(29)

For feasibility of the practical situation, 𝑡𝑚
1

must be greater
than or equal to 𝑡𝑚 as there cannot be any collection of
imperfect items before production. Therefore (𝑆ℎ − 𝑆󸀠)/(𝑙 −
1 − 𝑙𝑥)𝐷1 ≥ 0 which implies 𝑆ℎ > 𝑆󸀠 which holds true.

Substituting all the relevant values, the cycle time is given
as

𝑇 = [
𝑄𝛼𝑙 (1 − 𝑥𝜃)

𝛼𝐷 (𝑙 − 1 − 𝑙𝑥)
+

𝑆𝛼1
𝐷𝛼

−
𝜃1𝑆
2𝛼
1

2𝐷2𝛼
−

𝑆󸀠

𝐷1
(

𝑙 (1 − 𝑥)

𝑙 − 1 − 𝑙𝑥
)

+
𝑆ℎ
𝐷1

(
𝑙1 − 𝑙 + 𝑙𝑥

(𝑙 − 1 − 𝑙𝑥) (𝑙1 − 1)
)] ,

(30)

where 𝑆ℎ = ((𝑙1 − 1)𝑙𝑥(1 − 𝜃)/(𝑙𝑥𝜃(1 − 𝑙1) − 𝑙𝑥 + 𝑙1(𝑙 − 1)))𝑆󸀠.
Consider

Total shortage cost in [𝑡𝑠
1

, 𝑇]

= SC = 𝐶𝑠 [
𝑆󸀠2

2𝐷1
−

1

𝐷1 (𝑙 − 1 − 𝑙𝑥)

× (
𝑆2ℎ
2

−
𝑆󸀠2

2
) +

𝑆2ℎ
2 (𝑙1 − 1)𝐷1

] .

(31)

Solving (10), the inventory levels of imperfect quality items
during period of shortage are

𝑞𝑐 = 𝑙𝑥 (1 − 𝜃)𝐷1 (𝑡𝑐 − 𝑡𝑚) , 𝑡𝑚 ≤ 𝑡𝑐 ≤ 𝑡𝑚
1

,

𝑞𝑐 = −𝑙1𝐷1 (𝑡𝑐 − 𝑇) , 𝑡𝑚
1

≤ 𝑡𝑐 ≤ 𝑇.
(32)

Using 𝑞𝑐(𝑡𝑚
1

) = 𝑆𝑐 in (32), we get

𝑆󸀠

𝑙 − 1 − 𝑙𝑥
= 𝑆ℎ (

1

𝑙 − 1 − 𝑙𝑥
+

𝑙1
(𝑙1 − 1) 𝑙𝑥 (1 − 𝜃)

) . (33)

Holding cost of imperfect quality items during period of
shortage

= ℎ2 [
𝑆(𝑛+1)𝑐

𝑙𝑥 (1 − 𝜃)𝐷1 (𝑛 + 1)
−

𝑆(𝑛+1)𝑐
𝑙1𝐷1

] . (34)

Total holding cost in complete cycle [0, 𝑇] is as follows:

HC = ℎ1 [
𝑄𝑛+𝛼

(𝑙 − 1 − 𝑙𝑥)𝐷 (𝑛 + 𝛼)
+

𝑄𝑛+𝛼ℎ
(𝑙1 − 1)𝐷 (𝑛 + 𝛼)

−
𝑄𝑛+𝛼

(𝑙1 − 1)𝐷 (𝑛 + 𝛼)
]

+ ℎ2 [
𝑄𝑛+𝛼𝑐

𝑙𝑥 (1 − 𝜃)𝐷 (𝑛 + 𝛼)
+

𝑄𝑛+𝛼𝑐
𝑙1𝐷 (𝑛 + 𝛼)

]
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+ ℎ3 [
(𝐵𝜉)
𝑛+1

𝑅𝑐 (𝑛 + 1)
+

(𝐵𝜉)
𝑛+2

𝜃1
𝑅2𝑐 (𝑛 + 2)

+
(𝐵𝜉)
𝑛+1

𝑅𝑚 (𝑛 + 1)

−
(𝐵𝜉)
𝑛+2

𝜃1
(𝑛 + 2) 𝑅2𝑚

]

+ ℎ1 [
𝑆𝑛+11

(𝑛 + 1) 𝑅𝑚
+

𝜃1𝑆
(𝑛+2)
1

𝑅2𝑚 (𝑛 + 2)

+ (
𝑆𝛼+𝑛1

𝐷 (𝛼 + 𝑛)
−

𝜃1𝑆
𝑛+2𝛼
1

𝐷2 (𝑛 + 2𝛼)
)]

+ ℎ2 [
𝑆(𝑛+1)𝑐

𝑙𝑥 (1 − 𝜃)𝐷1 (𝑛 + 1)
−

𝑆(𝑛+1)𝑐
𝑙1𝐷1

] .

(35)

Production cost is as follows:

PC = 𝐶𝑝 [∫
𝑡
𝑝

0
𝑃𝑑𝑡 + ∫

𝑡
𝑚1

𝑡
𝑚

𝑃𝑑𝑡]

=
𝐶𝑝𝑙

𝑙 − 1 − 𝑙𝑥
[𝑄 + (𝑆ℎ − 𝑆󸀠)] .

(36)

Repair cost is as follows:

RC = 𝐶𝑟 [∫
𝑡
𝑝1

𝑡
𝑝

𝑃1𝑑𝑡 + ∫
𝑇

𝑡
𝑚1

𝑃1𝑑𝑡]

= 𝐶𝑟 [
𝑙1 (𝑄ℎ − 𝑄)

𝑙1 − 1
−

𝑙1𝑆ℎ
𝑙1 − 1

] .

(37)

Scrap cost is as follows:

SR = 𝑆𝑟𝜃𝑥[
𝑙𝑄

𝑙 − 1 − 𝑙𝑥
+

𝑙 (𝑆ℎ − 𝑆󸀠)

𝑙 − 1 − 𝑙𝑥
] . (38)

Total deterioration cost is as follows:

DC = 𝜃1𝐶𝑝 × [
(𝐵𝜉)
𝑛+1

𝑅𝑐 (𝑛 + 1)
+

(𝐵𝜉)
𝑛+2

𝜃1
𝑅2𝑐 (𝑛 + 2)

+
(𝐵𝜉)
𝑛+1

𝑅𝑚 (𝑛 + 1)

−
(𝐵𝜉)
𝑛+2

𝜃1
(𝑛 + 2) 𝑅2𝑚

+
𝑆𝑛+11

(𝑛 + 1) 𝑅𝑚
+

𝜃1𝑆
(𝑛+2)
1

𝑅2𝑚 (𝑛 + 2)
] .

(39)

The total inventory cost per unit time is given by

TAC (𝑄, 𝑆󸀠) =
𝐾 +HC + DC + SC + PC + SC + RC

𝑇
.

(40)

Our problem is to find the time to stop the production
when 𝑞 takes optimum value 𝑄 and the time to again start

the production when maximum shortages accumulate. For
minimum value of total cost, we must have

𝜕

𝜕𝑄
(TAC) = 0,

𝜕

𝜕𝑆󸀠
(TAC) = 0,

𝑇 [
𝜕HC
𝜕𝑆󸀠

+
𝜕SC
𝜕𝑆󸀠

+
𝜕PC
𝜕𝑆󸀠

+
𝜕DC
𝜕𝑆󸀠

+
𝜕RC
𝜕𝑆󸀠

+
𝜕SR
𝜕𝑆󸀠

]

= (𝐾 +HC + DC + SC + PC + RC + SR) 𝜕𝑇

𝜕𝑆󸀠
,

𝑇 [
𝜕HC
𝜕𝑄󸀠

+
𝜕SC
𝜕𝑄󸀠

+
𝜕PC
𝜕𝑄󸀠

+
𝜕DC
𝜕𝑄󸀠

+
𝜕RC
𝜕𝑄󸀠

+
𝜕SR
𝜕𝑄󸀠

]

= (𝐾 +HC + DC + SC + PC + RC + SR) 𝜕𝑇

𝜕𝑄󸀠
.

(C1)

Provided the following condition of Hessian matrix, 𝐻 is
satisfied, where

𝐻 =
[
[
[

[

𝜕2TAC
𝜕𝑄2

𝜕2TAC
𝜕𝑄𝜕𝑆

𝜕2TAC
𝜕𝑆𝜕𝑄

𝜕2TAC
𝜕𝑆2

]
]
]

]

. (41)

The first principle minor determinant of 𝐻, |𝐻11| > 0 and
the second principle minor determinant of 𝐻, |𝐻22| > 0 (see
Appendix C).

Using (C1). We get the relation

(
𝜕HC
𝜕𝑆󸀠

+
𝜕SC
𝜕𝑆󸀠

+
𝜕PC
𝜕𝑆󸀠

+
𝜕DC
𝜕𝑆󸀠

+
𝜕RC
𝜕𝑆󸀠

+
𝜕SR
𝜕𝑆󸀠

)

× (
𝜕HC
𝜕𝑄

+
𝜕SC
𝜕𝑄

+
𝜕PC
𝜕𝑄

+
𝜕DC
𝜕𝑄

+
𝜕RC
𝜕𝑄

+
𝜕SR
𝜕𝑄

)
−1

=
𝜕𝑇/𝜕𝑆󸀠

𝜕𝑇/𝜕𝑄
.

(C2)

4.5. Special Case. If we relax some conditions so as to
approach the basic EOQ model with shortages.

As 𝑥 → 0, 𝜉 → 0, 𝜃1 → 0, 𝛼 → 1, 𝑛 → 1, and
𝐷 = 𝐷1, we have the following results: DC = 0, RC = 0,
SR = 0, PC = 𝐶𝑝(𝑙/(𝑙 − 1))(𝑄 − 𝑆󸀠), HC = ℎ1𝑙𝑄

2/2(𝑙 − 1)𝐷,
SC = 𝐶𝑠𝑆

󸀠2𝑙/2(𝑙 −1)𝐷1, and 𝑇 = 𝑄𝑙/(𝑙 − 1)𝐷+ (𝑙/(1− 𝑙)𝐷1)𝑆
󸀠.

Substituting all the above values in (C1) and (C2) and
solving for 𝑄, we have

𝑄∗ = √
2𝑘 (𝑙 − 1)𝐷𝑐𝑆
𝑙ℎ1 (𝑐𝑠 + ℎ1)

. (42)

As 𝑙 increases, production occurs at a more rapid rate. Hence
for large 𝑙, the model should approach the instantaneous
delivery situation of the EOQmodel. For large 𝑙, 1−1/𝑙 → 1.
Thus as 𝑙 increases towards infinity, the optimal run size for
the model approaches the EOQ when shortages are allowed.
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Table 1: Effect of 𝜉 on optimal values of 𝑄, 𝑇, and TAC when
holding cost is linear.

𝛼 = 1

𝑛 = 1

𝜉 0.2 0.4 0.6 0.8 1
𝑄 11.103 8.67645 7.12382 6.04315 5.24999
𝑇 42.9282 42.02219 41.44897 37.75955 36.47535
HC 90.85782 87.58654 85.42628 83.89338 82.77261
SC 109.1283 112.4023 114.562 116.0942 117.2156
PC 40.43753 37.15183 35.05367 33.59508 32.52352
SR 0.202188 0.185759 0.175268 0.167975 0.162618
RC 1.950454 1.686772 1.61653 1.586091 1.569654
TAC 5.650744 5.700709 5.725624 6.243906 6.432465

Table 2: Effect of 𝜉 on optimal values of 𝑄, 𝑇, and TAC when
holding cost is nonlinear.

𝛼 = 1

𝑛 = 2

𝜉 0.2 0.4 0.6 0.8 1
𝑄 3.98022 2.86567 2.06824 1.55932 1.22518
𝑇 31.06676 30.12545 29.4805 29.07657 28.81484
HC 50.06126 46.94452 44.62028 43.07698 42.03811
SC 100.0975 106.1109 110.7606 113.8455 115.9239
PC 28.74804 27.75043 27.06259 26.63059 26.35012
SR 0.14374 0.138752 0.135313 0.133153 0.131751
RC 1.890104 1.645637 1.592055 1.57176 1.561479
TAC 5.824253 6.060996 6.247208 6.371384 6.455194

5. Numerical Example

In this part, we have presented computational results
obtained by using Mathematica 7.0 which give insight about
the behavior of optimal run size𝑄∗, production cycle time 𝑇,
and the effects of reverse manufacturing on the total average
cost TAC. The parametric values in the models are taken as

𝐷 = 2, ℎ1 = ℎ2 = ℎ3 = 0.5, 𝐾 = 200,

𝑙 = 2, 𝑙1 = 1.5, 𝐶𝑠 = 0.5, 𝜃 = 0.1,

𝐶𝑝 = 0.6, 𝐶𝑟 = 0.4, 𝜃1 = 0.0001,

𝐷1 = 1.5, 𝑥 = 0.1, 𝑆𝑟 = 0.3.

(43)

The following observations are made from Table 1.

Case 1 (when holding cost is linear). Consider the following.

(i) As 𝜉 increases, production cost, scrap cost, and repair
cost decrease. For higher values of 𝜉, the reusable
items are producedmore that result in less production
from the forward manufacturing as some of the
demand is adjusted by the reusable items. Conse-
quently, less production leads to less production cost.
The lower production also leads to lower defectives
and hence decrease in scrap cost and repair cost.

(ii) As 𝜉 increases, holding cost decreases and the cycle
length also decreases. It is reasonable that lower hold-
ing cost and lower cycle length lead tomore shortages

Table 3: Effect of 𝛼 on optimal solution.

𝑛 = 1

𝛼 = 1 − 𝛽 0.2 0.4 0.6 0.8
𝑄 3.55002 6.61844 8.76254 10.101
𝑇 35.8966 36.316 37.6392 39.6777
HC 24.0557 33.5122 45.9702 64.2293
SC 98.64717 120.8368 123.672 119.2628
PC 27.93712 34.95404 38.46209 40.01435
SR 0.139686 0.17477 0.19231 0.200072
RC 1.880162 1.740152 1.673579 1.606051
TAC 4.252766 5.265391 5.578497 5.678569

and hence higher shortage cost. Consequently, there
is slight increase in the total average cost.

The following observations are made from Table 2.

Case 2 (when holding cost is nonlinear). In view of the
reasons discussed in Case 1, similar types of changes are
observed in Case 2 also.

(i) For higher values of 𝜉, inventory level𝑄 decreases and
decrease in inventory level leads to lower inventory
cost.

(ii) As 𝜉 increases, inventory level of regular production
falls and lower inventory level causes more shortages
which results in higher shortage cost.While balancing
between the inventory cost and shortage cost, there is
slight increase in the total average cost.

(iii) As 𝜉 increases, production cost, scrap cost, and repair
cost decrease.

The following are the comparative observations from
Tables 1 and 2.

(i) The optimal value of𝑄 ismuch higher in case of linear
holding cost as compared to nonlinear holding cost.
Generally, nonlinear holding cost leads to very high
inventory cost as compared to linear holding cost.
It is natural that higher inventory cost decreases the
production rate to reduce the inventory cost. So it is
very reasonable to have lower inventory level in case
of nonlinear holding cost as compared to inventory
level in case of linear holding cost.

(ii) The total average cost incurred is slightly less in case of
linear holding cost as compared to nonlinear holding
cost. Nonlinear holding cost causes high increase in
the inventory cost. To avoid high increase, there is
much decrease in the inventory level of Case 2 as
compared to Case 1. In spite of the lower inventory
level in Case 2 as compared to Case 1, there is slight
increase in the total average cost which shows the
existence of nonlinear factor.

The following observations are made from Table 3.

(i) As 𝛽 decreases, inventory level 𝑄 rises and holding
cost also increases. Higher inventory leads to higher
inventory cost.
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(ii) As 𝛽 decreases, scrap cost and production cost
increase but repair cost slightly decreases.

(iii) As 𝛽 decreases, total average cost slightly increases
and cycle length 𝑇 also increases.

6. Conclusion

This model addresses the various expected realistic features
that usually arise while working on the optimal production
policy that minimizes the associated inventory cost. It is
very important to take the production system imperfect as
no real system can be perfect in production. In view of the
highly competitive situations in the real business problems,
the production systemcannot afford to be inflexible, therefore
we have taken the production system flexible also. Alongwith
the issues raised above, the issue of environmental protection
by undertaking reverse manufacturing has also been incor-
porated and optimal production policy is derived which can
reduce the inventory cost as much as possible and also can
take care of the requirement of environmental protection.
When remanufacturing is undertaken along with imperfect
production, as the ratio 𝜉 increases, there is slight increase
in the total average cost consisting of holding cost, shortage
cost, deterioration cost, set-up cost, scrap cost, repair cost,
and production cost.The total average cost incurred is slightly
more in case of nonlinear holding cost as compared to linear
holding cost. Optimal solution is derived for different values
of the shape parameter. Further research can be extended
to consider more realistic assumptions into the proposed
model, for example, multiple production, stochastic nature
of demand, machine breakdown, collection of used items
during reverse manufacturing period, and so forth.

Appendices

A. Total Production

𝐵 is production lot size during forward manufacturing in
interval [0, 𝑡𝑝

1

]

∫
𝑡
𝑝

0
𝑃𝑑𝑡 + ∫

𝑡
𝑝1

𝑡
𝑝

𝑃1𝑑𝑡. (A.1)

Using (11) and (12)

= ∫
𝑄

0

𝑙𝑞𝛽+𝛼−1𝑑𝑞

𝑙 − 1 − 𝑙𝑥
+ ∫
𝑄
ℎ

𝑄

𝑙1𝑞
𝛼+𝛽−1𝑑𝑞

𝑙1 − 1

=
𝑙𝑄

𝑙 − 1 − 𝑙𝑥
+

𝑙1 (𝑄ℎ − 𝑄)

𝑙1 − 1
.

(A.2)

B. Comparison between Maximum and after
Repair Inventory Levels

Consider

𝑄𝛼ℎ − 𝑄𝛼 = (𝑙1 − 1)𝐷𝛼(
𝑄𝛼𝑐
𝑙1𝐷𝛼

) =
𝑙𝑥 (1 − 𝜃)𝑄𝛼

𝑙 − 1 − 𝑙𝑥
. (B.1)

As 𝑙 − 1 − 𝑙𝑥 > 0, 𝑙, 𝑥 > 0, 0 < 𝜃 < 1 ⇒ 𝑄𝛼ℎ − 𝑄𝛼 > 0.

C. Derivative Analysis

The first principle minor determinant of 𝐻, |𝐻11| > 0 and
the second principle minor determinant of 𝐻, |𝐻22| > 0.

First we check 𝜕2TAC/𝜕𝑆2 > 0

𝜕2TAC
𝜕𝑆2

=
𝜕2 (TC/𝑇)

𝜕𝑆2
=

𝑇 (𝜕2TC/𝜕𝑆2) − TC (𝜕2𝑇/𝜕𝑆2)

𝑇2
.

(C.1)

Now 𝜕2TAC/𝜕𝑆2 > 0 if 𝑇(𝜕2TC/𝜕𝑆2) − TC(𝜕2𝑇/𝜕𝑆2) > 0.
Using the value of 𝑇, we have 𝜕2𝑇/𝜕𝑆2 = 0.
Therefore 𝜕2TAC/𝜕𝑆2 > 0 if 𝑇(𝜕2TC/𝜕𝑆2) > 0,

𝜕2TC
𝜕𝑆2

=
ℎ1𝑛𝑆
𝑛−1
𝑐

𝐷1
(
𝜕𝑆𝑐
𝜕𝑆

)
2

(
𝑙1 − 𝑙𝑥 (1 − 𝜃)

𝑙1𝑙𝑥 (1 − 𝜃)
) . (C.2)

As 𝑆𝑐 > 0, 𝑙1 > 1, 𝑙 > 1, 0 < 𝑥(1 − 𝜃) < 1.
So 𝑙1 − 𝑙𝑥(1 − 𝜃) > 0.
Hence 𝜕2TC/𝜕𝑆2 > 0.
Similarly we check

𝜕2TC
𝜕𝑆2

> 0 if 𝑇𝜕2TC
𝜕𝑄2

− TC 𝜕2𝑇

𝜕𝑄2
> 0. (C3)

Using the value of 𝑇, we have 𝜕2𝑇/𝜕𝑄2 < 0 (as 𝛼 − 1 < 0).
Also 𝜕2TC/𝜕𝑄2 > 0 (as 𝑙 − 1 − 𝑙𝑥 > 0, 𝐷 > 0, 𝑙1 − 1 > 0,

𝑙𝑥(1 − 𝜃) > 0, 𝑛 + 𝛼 > 1).
Hence condition (C3) is satisfied.
Now to check (𝜕2TAC/𝜕𝑆2) ⋅ (𝜕2TAC/𝜕𝑄2) − (𝜕2TAC/

𝜕𝑄𝜕𝑆)2 > 0.
If

𝑇2
𝜕2TC
𝜕𝑆2

𝜕2TC
𝜕𝑄2

− 𝑇 ⋅ TC𝜕2TC
𝜕𝑆2

𝜕2𝑇

𝜕𝑄2
− 𝑇 ⋅ TC𝜕2𝑇

𝜕𝑆2
𝜕2TC
𝜕𝑄2

+ (TC)
2 𝜕
2𝑇

𝜕𝑆2
𝜕2𝑇

𝜕𝑄2
> 𝑇2(

𝜕2TC
𝜕𝑄𝜕𝑆

)

2

.

(C.3)

Using

𝜕2𝑇

𝜕𝑆2
= 0,

𝜕2𝑇

𝜕𝑄𝜕𝑆
= 0,

𝜕2TC
𝜕𝑄𝜕𝑆

= 0. (C.4)

If

𝑇2
𝜕2TC
𝜕𝑆2

𝜕2TC
𝜕𝑄2

− 𝑇 ⋅ TC𝜕2TC
𝜕𝑆2

𝜕2𝑇

𝜕𝑄2
> 0. (C.5)

If

𝑇
𝜕2TC
𝜕𝑄2

> TC 𝜕2𝑇

𝜕𝑄2
. (C.6)

Which is true as

𝜕2𝑇

𝜕𝑄2
< 0,

𝜕2TC
𝜕𝑄2

> 0, 𝑇 > 0, TC > 0. (C.7)
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