Research Article

Fuzzy Stability of an n-Dimensional Quadratic and Additive Functional Equation

Yang Hi Lee1 and Soon-Mo Jung2

1Department of Mathematics Education, Gongju National University of Education, Gongju 314-711, Republic of Korea
2Mathematics Section, College of Science and Technology, Hongik University, Jochiwon 339-701, Republic of Korea

Correspondence should be addressed to Soon-Mo Jung, smjung@hongik.ac.kr

Received 15 December 2011; Accepted 6 April 2012

Academic Editor: Uzay Kaymak

Copyright © 2012 Y. H. Lee and S.-M. Jung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We will investigate a fuzzy version of stability for the functional equation $2f(\sum_{i=1}^n x_i) + \sum_{1 \leq i < j \leq n} f(x_i - x_j) = (n + 1) \sum_{i=1}^n f(x_i) + (n - 1) \sum_{i=1}^n f(-x_i)$ in the sense of Mirmostafaei and Moslehian.

1. Introduction

In 1940, Ulam [1] gave a wide-ranging talk before a Mathematical Colloquium at the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the following question concerning the stability of homomorphisms.

Let G_1 be a group and let G_2 be a metric group with a metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if a function $h : G_1 \rightarrow G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$, then there is a homomorphism $H : G_1 \rightarrow G_2$ with $d(h(x), H(x)) < \epsilon$ for all $x \in G_1$?

If the answer is affirmative, we say that the functional equation for homomorphisms is stable. Hyers [2] was the first mathematician to present the result concerning the stability of functional equations. He answered the question of Ulam for the case where G_1 and G_2 are assumed to be Banach spaces. This result of Hyers is stated as follows.

Let $f : E_1 \rightarrow E_2$ be a function between Banach spaces such that

$$\|f(x + y) - f(x) - f(y)\| \leq \delta$$

for some $\delta > 0$ and for all $x, y \in E_1$. Then the limit $A(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$ exists for each $x \in E_1$, and $A : E_1 \rightarrow E_2$ is the unique additive function such that $\|f(x) - A(x)\| \leq \delta$ for every $x \in E_1$. Moreover, if $f(tx)$ is continuous in t for each fixed $x \in E_1$, then the function A is linear.

We remark that the additive function A is directly constructed from the given function f, and this method is called the direct method. The direct method is a very powerful method for studying the stability problems of various functional equations. Taking this famous result into consideration, the additive Cauchy equation $f(x + y) = f(x) + f(y)$ is said to have the Hyers-Ulam stability on (E_1, E_2) if for every function $f : E_1 \rightarrow E_2$ satisfying (1) for some $\delta > 0$ and for all $x, y \in E_1$, there exists an additive function $A : E_1 \rightarrow E_2$ such that $f - A$ is bounded on E_1.

In 1950, Aoki [3] generalized the theorem of Hyers for additive functions, and in the following year, Bourgin [4] extended the theorem without proof. Unfortunately, it seems that their results failed to receive attention from mathematicians at that time. No one has made use of these results for a long time.

In 1978, Rassias [5] addressed the Hyers’s stability theorem and attempted to weaken the condition for the bound of the norm of Cauchy difference and generalized the theorem of Hyers for linear functions.

Let $f : E_1 \rightarrow E_2$ be a function between Banach spaces. If f satisfies the functional inequality

$$\|f(x + y) - f(x) - f(y)\| \leq \theta(\|x\|^p + \|y\|^p)$$

for some $\theta \geq 0$, p with $0 \leq p < 1$ and for all $x, y \in E_1$, then there exists a unique additive function $A : E_1 \rightarrow E_2$ such that $\|f(x) - A(x)\| \leq (2\theta/(2 - 2^p))\|x\|^p$ for each $x \in E_1$. If, in
addition, \(f(tx) \) is continuous in \(t \) for each fixed \(x \in E_1 \), then the function \(A \) is linear.

This result of Rassias attracted a number of mathematicians who began to be stimulated to investigate the stability problems of functional equations. By regarding a large influence of Ulam, Hyers, and Rassias on the study of stability problems of functional equations, the stability phenomenon proved by Rassias is called the Hyers-Ulam-Rassias stability. For the last thirty years many results concerning the Hyers-Ulam-Rassias stability of various functional equations have been obtained (see [6–17]).

In this paper, we investigate a general stability of the n-dimensional quadratic and additive functional equation

\[
2f \left(\sum_{i=1}^{n} x_i \right) + \sum_{1 \leq i, j \neq n}^{n} f(x_i - x_j) = (n + 1) \sum_{i=1}^{n} f(x_i) + (n - 1) \sum_{i=1}^{n} f(-x_i)
\]

in the fuzzy normed space. We will call each solution of (3) a quadratic-additive function.

In 2006, Jun and Kim [10] proved the stability of (3) by constructing an additive function \(A \) and a quadratic function \(Q \) separately and by approximating the given function \(f \) with a quadratic-additive function \(F = A + Q \). In their approach, \(A \) and \(Q \) approximate the odd part and the even part of \(f \), respectively. However, their method is not efficient in comparison with our method which approximates the function \(f \) with the quadratic-additive function \(F \) simultaneously. Indeed, we introduce a Cauchy sequence \(\{f^n(x)\} \) by making use of the given function \(f \), and the sequence \(\{f^n(x)\} \) converges to a quadratic-additive function \(F \) which approximates the function \(f \) in the fuzzy sense. Our idea seems to be a refinement of previous studies.

2. Preliminaries

In 1984, Katsaras [18] defined a fuzzy norm on a linear space to construct a fuzzy structure on the space. Since then, mathematicians have introduced several types of fuzzy norm in different points of view. In particular, adhering to the point of view of Cheng and Mordeson, Bag and Samanta suggested an idea of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type (see [19–21]).

We introduce the definition of a fuzzy normed space to establish a reasonable fuzzy version of stability for the n-dimensional quadratic and additive functional equation (3) in the fuzzy normed space (cf. [19]).

Definition 1. Let \(X \) be a real linear space. A function \(N : X \times \mathbb{R} \to [0,1] \) is said to be a fuzzy norm on \(X \) if the following conditions are true for all \(x, y \in X \) and all \(s, t \in \mathbb{R} \):

- \((F_1) \ N(x,t) = 0 \) for \(t \leq 0; \)
- \((F_2) \ x = 0 \) if and only if \(N(x,t) = 1 \) for all \(t > 0; \)
- \((F_3) \ N(cx,t) = N(x,t/|c|) \) if \(c \neq 0; \)
- \((F_4) \ N(x + y, s + t) \geq \min \{N(x,s), N(y,t)\}; \)
- \((F_5) \ N(x, \cdot) \) is a nondecreasing function on \(\mathbb{R} \) and \(\lim_{t \to -\infty} N(x, t) = 1. \)

The pair \((X, N)\) is called a fuzzy normed space. Let \((X, N)\) be a fuzzy normed space. A sequence \(\{x_n\} \) in \(X \) is said to be convergent if there exists an \(x \in X \) such that \(\lim_{n \to \infty} N(x_n-x,t) = 1 \) for all \(t > 0 \). In this case, \(x \) is called the limit of the sequence \(\{x_n\} \) and we write \(N(\lim_{n \to \infty} x_n) = x \). A sequence \(\{x_n\} \) in \(X \) is called Cauchy if for each \(\epsilon > 0 \) and each \(t > 0 \) there exists an \(n_0 \in \mathbb{N} \) such that \(N(x_n + p - x_m, t) > 1 - \epsilon \) for all \(n \geq n_0 \) and all \(p \in \mathbb{N} \). It is known that every convergent sequence in a fuzzy normed space is Cauchy. If every Cauchy sequence in \(X \) converges in \(X \), then the fuzzy norm is said to be complete, and the fuzzy normed space is called a fuzzy Banach space.

In 2008, Mirmostafaei and Moslehi suggested an idea of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type (see [19–21]).

3. Fuzzy Stability of (3)

Let \((X, N_1)\) and \((Y, N_2)\) be a fuzzy normed space and a fuzzy Banach space, respectively. Assume that \(n \) is a fixed integer greater than 1. For a given function \(f : X \to Y \), we use the abbreviation

\[
Df(x_1, x_2, \ldots, x_n) := 2f \left(\sum_{i=1}^{n} x_i \right) + \sum_{1 \leq i, j \neq n}^{n} f(x_i - x_j) - (n + 1) \sum_{i=1}^{n} f(x_i) + (n - 1) \sum_{i=1}^{n} f(-x_i)
\]

for all \(x_1, x_2, \ldots, x_n \in X \). For a given \(\alpha > 0 \), the function \(f : X \to Y \) is called a fuzzy \(q \)-almost quadratic-additive function if

\[
N_2(Df(x_1, x_2, \ldots, x_n), t_1 + \cdots + t_n) \geq \min \left\{ N_1 \left(x_1, t_1' \right), \ldots, N_1 \left(x_n, t_n' \right) \right\}
\]

for all \(x_1, x_2, \ldots, x_n \in X \) and all \(t_1, t_2, \ldots, t_n \geq 0 \).

The following theorem gives a fuzzy version of the stability of the n-dimensional quadratic and additive functional equation \(Df(x_1, x_2, \ldots, x_n) = 0 \).

Theorem 2. Let \(\alpha \) be a positive real number with \(\alpha \notin \{1/2, 1\} \). If a function \(f : X \to Y \) is a fuzzy \(q \)-almost quadratic-additive function from a fuzzy normed space \((X, N_1)\) into a fuzzy Banach space \((Y, N_2)\), then there exists a unique quadratic-additive function \(F : X \to Y \) such that

\[
N_2(F(x) - f(x), t) \leq \begin{cases}
\sup_{0 \leq t' < ct} N_1(x, 2t' \alpha^{-q} (n - \alpha)^{2} t'^{q}) & \text{if } q > 1, \\
\sup_{0 \leq t' < ct} N_1(x, 2t' \alpha^{-q} (n - \alpha)^{2} t'^{q}) & \text{if } 1/2 < q < 1, \\
\sup_{0 \leq t' < ct} N_1(x, 2t' \alpha^{-q} (n - \alpha)^{2} t'^{q}) & \text{if } 0 < q < 1/2
\end{cases}
\]

for each \(x \in X \) and \(t > 0 \), where \(p = 1/q \).
Proof. It follows from (F3), (F4), and (5) that

\[N_2(f(0), t) = N_2(Df(0, \ldots, 0), (n-1)(n+2)t) \]

\[\geq N_1\left(0, \left(\frac{(n-1)(n+2)t}{n}\right)^n\right) \]

\[= 1 \]

for all \(t > 0 \). Thus, it follows from (F2) that \(f(0) = 0 \).

We will split the proof into three parts according to the value of \(q \), namely, \(q > 1, 1/2 < q < 1 \), or \(0 < q < 1/2 \).

Case 1. Assume that \(q > 1 \) and let \(J^m f : X \to Y \) be a function defined by

\[J^m f(x) = \frac{1}{2n^m} (f(n^m x) + f(-n^m x)) \]

\[+ \frac{1}{n^m} (f(n^m x) - f(-n^m x)) \]

for all \(x \in X \) and \(m \in \mathbb{N}_0 \). Then, \(J^0 f(x) = f(x) \) and by a long manipulation, we get

\[J^i f(x) - J^{i+1} f(x) = -\frac{(n^{i+1} + 1)Df(n^i x, \ldots, n^i x)}{4n^{2i+2}} \]

\[+ \frac{(n^{i+1} - 1)Df(-n^i x, \ldots, -n^i x)}{4n^{2i+2}} \]

(9)

for all \(x \in X \) and for any \(i \in \mathbb{N}_0 \). Together with (F3), (F4), and (5), this equation implies that if \(m' + m > m \geq 0 \) then

\[N_2\left(J^m f(x) - J^{m'+m} f(x), \sum_{i=m}^{m'+m} \left(\frac{n^p}{n}\right)^{i t^p} \right) \]

\[= N_2\left(\sum_{i=m}^{m'+m} \left(J^i f(x) - J^{i+1} f(x), \sum_{i=m}^{m'+m} \left(\frac{n^p}{n}\right)^{i t^p} \right) \right) \]

\[\geq \min_{m \leq i < m'+m} N_2\left(-(n^{i+1} + 1)Df(n^i x, \ldots, n^i x), \frac{(n^{i+1} + 1)n^{i t^p}}{4n^{2i+2}}\right) \]

\[\geq \min_{m \leq i < m'+m} N_2\left(-(n^{i+1} + 1)Df(n^i x, \ldots, n^i x), \frac{(n^{i+1} + 1)n^{i t^p}}{4n^{2i+2}}\right) \]

\[= N_1(x, t) \]

(10)

for all \(x \in X \) and for all \(t > 0 \).

Let \(\varepsilon > 0 \) be given. Since \(\lim_{t \to 0} N_1(x, t) = 1 \), there exists an \(t_0 > 0 \) such that

\[N_1(x, t_0) \geq 1 - \varepsilon. \]

(11)

We observe that for some \(\tilde{t} > t_0 \), the series \(\sum_{i=0}^{m} (n^p/n)^i t^p/2 \) converges for \(p = 1/q < 1 \). Hence, for an arbitrarily given \(c > 0 \), there exists an \(m_0 \geq 0 \) such that

\[\sum_{i=m}^{m+m'1} \left(\frac{n^p}{n}\right)^{i t^p} < c \]

(12)

for each \(m \geq m_0 \) and \(m' > 0 \). By (F5) and (10), we have

\[N_2\left(J^m f(x) - J^{m'+m} f(x), c \right) \]

\[\geq N_2\left(J^m f(x) - J^{m'+m} f(x), \sum_{i=m}^{m'+m-1} \left(\frac{n^p}{n}\right)^{i t^p} \right) \]

\[\geq N_1\left(x, \tilde{t} \right) \]

\[\geq 1 - \varepsilon \]

for all \(x \in X \) and for each \(c > 0 \). Hence, \(\{J^m f(x)\} \) is a Cauchy sequence in the fuzzy Banach space \((Y, N_2)\), and, thus, we can define a function \(F : X \to Y \) by

\[F(x) := N_2 - \lim_{m \to \infty} J^m f(x) \]

(14)

for all \(x \in X \). Moreover, if we put \(m = 0 \) and replace \(t \) with \(2^i t^i / (\sum_{i=0}^{m-1} (n^p/n)^i t^p) \) in (10), then we have

\[N_2\left(J^m f(x) - J^m f(x, t), \sum_{i=m}^{m'} \left(\frac{n^p}{n}\right)^{i t^p} \right) \]

\[\geq \min_{m \leq i < m'+m} N_2\left(-\frac{(n^{i+1}+1)Df(n^i x, \ldots, n^i x)}{4n^{2i+2}}, \frac{(n^{i+1}+1)n^{i t^p}}{4n^{2i+2}}\right) \]

\[\geq \min_{m \leq i < m'+m} N_2\left(-\frac{(n^{i+1}+1)Df(n^i x, \ldots, n^i x)}{4n^{2i+2}}, \frac{(n^{i+1}+1)n^{i t^p}}{4n^{2i+2}}\right) \]

\[= N_1(x, t) \]

(15)

for all \(x \in X \) and for any \(t > 0 \).

Next, we will show that \(F \) is a quadratic-additive function. Using (F4) and (4), we have

\[N_2(DF(x_1, \ldots, x_n), t) \]

\[\geq \min \left\{ N_2\left(2(F - J^m f)\left(\sum_{i=1}^{n} x_i, \frac{t}{5}\right), 0\right), \min_{1 \leq i, j \leq n, n \neq i} N_2\left((F - J^m f)(x_i - x_j), \frac{t}{5n(n-1)}\right), \min_{1 \leq i \leq n} N_2\left((n+1)(J^m f - F)(x_i), \frac{t}{5n}\right), \min_{1 \leq i \leq n} N_2\left((n-1)(J^m f - F)(-x_i), \frac{t}{5n}\right) \right\} \]

\[= N_2\left(DF(x_1, x_2, \ldots, x_n, \frac{t}{5})\right) \]

(16)

for all \(x_1, \ldots, x_n \in X, t > 0, \) and \(m \in \mathbb{N} \). In view of the definition of \(F \) and (F2), the first four terms on the right hand
side of (16) tend to 1 as \(m \to \infty \). It follows from (4) and (8) that

\[
DJ^m f(x_1, x_2, \ldots, x_n) \\
= \frac{1}{2n^{2m}} Df(n^m x_1, \ldots, n^m x_n) \\
+ \frac{1}{2n^{2m}} Df(-n^m x_1, \ldots, -n^m x_n) \\
- \frac{1}{2n^{2m}} Df(n^m x_1, \ldots, n^m x_n)
\]

(17)

for all \(x_1, x_2, \ldots, x_n \in X \) and \(m \in \mathbb{N}_0 \). Hence, by (F3) and (F4), we have

\[
N_2 \left(DJ^m f(x_1, x_2, \ldots, x_n), \frac{t}{2} \right) \\
\geq \min \left\{ N_2 \left(Df(n^m x_1, \ldots, n^m x_n), \frac{t}{20} \right), \right.
\]

\[
N_2 \left(Df(-n^m x_1, \ldots, -n^m x_n), \frac{t}{20} \right), \right.
\]

\[
N_2 \left(Df(n^m x_1, \ldots, n^m x_n), \frac{t}{20} \right), \right.
\]

(18)

\[
N_2 \left(Df(-n^m x_1, \ldots, -n^m x_n), \frac{t}{20} \right)
\]

for all \(x_1, x_2, \ldots, x_n \in X \) and \(t > 0 \).

By (F3) and (5), we obtain

\[
N_2 \left(Df(\pm n^m x_1, \ldots, \pm n^m x_n), \frac{t}{20} \right) \\
\geq \min \left\{ N_1 \left(x_1, 10^{-q} w^{(2q-1)m-q} \right), \right.
\]

\[
N_1 \left(x_n, 10^{-q} w^{(2q-1)m-q} \right), \right.
\]

(19)

\[
N_2 \left(Df(\pm n^m x_1, \ldots, \pm n^m x_n), \frac{t}{20} \right)
\]

for all \(x_1, x_2, \ldots, x_n \in X \), \(t > 0 \), and \(m \in \mathbb{N} \). Since \(q > 1 \), it follows from (F3) that the last term in (16) also goes to 1 as \(m \to \infty \). In view of (16), we conclude that

\[
N_2(DF(x_1, x_2, \ldots, x_n), t) = 1
\]

(20)

for all \(x_1, x_2, \ldots, x_n \in X \) and \(t > 0 \). By (F2), this implies that

\[
N_2(DF(x_1, x_2, \ldots, x_n)) = 0
\]

(21)

for all \(x_1, x_2, \ldots, x_n \in X \).

We will now prove the first inequality in (6). Let \(x \in X \), let \(t > t' > 0 \), and let \(0 < \epsilon < 1 \) be given. Since \(F \) is the limit of the sequence \(\{J^m f(x)\} \), there exists an \(m \in \mathbb{N} \) such that

\[
N_2(F(x) - J^m f(x), t - t') \geq 1 - \epsilon.
\]

(22)

By (F4) and (15), we have

\[
N_2(F(x) - f(x), t) \\
\geq \min \{N_2(F(x) - J^m f(x), t - t'), \}
\]

\[
N_2(J^m f(x) - f(x), t') \}
\]

(23)

\[
\geq \min \left\{ 1 - \epsilon, N_1 (x, \left(\sum_{i=0}^{m-1} (n^p/n_i)^q \right) \right\}
\]

\[
\geq \min \{1 - \epsilon, N_1 (x, 2^n q^{-q} (n - n^p)^q t'^q) \}
\]

Because \(0 < \epsilon < 1 \) is arbitrary, we get the first inequality in (6) for the case of \(q > 1 \).

Finally, it remains to prove the uniqueness of \(F \). Let \(G : X \to Y \) be another quadratic-additive function satisfying the first inequality in (6). Then, by (9) and (21), we get

\[
F(x) - J^m F(x) = \sum_{i=0}^{m-1} (J^i F(x) - J^{i+1} F(x)) = 0,
\]

(24)

\[
G(x) - J^m G(x) = \sum_{i=0}^{m-1} (J^i G(x) - J^{i+1} G(x)) = 0
\]

for all \(x \in X \) and \(m \in \mathbb{N} \). Together with (F3), (F4), (F5), (6), and (8), this implies that

\[
N_2(F(x) - G(x), t) \\
= N_2(J^m F(x) - J^m G(x), t)
\]

(25)

\[
\geq \min \left\{ N_2 \left(J^m F - J^m G \right)(x), \frac{t}{2} \right\}, \right.
\]

\[
N_2 \left(J^m f - J^m g \right)(x), \frac{t}{2} \right\}
\]

(26)

\[
\geq \min \left\{ N_2 \left(J^m F - J^m G \right)(x), \frac{t}{8} \right\}, \right.
\]

\[
N_2 \left(J^m f - J^m g \right)(x), \frac{t}{8} \right\}, \right.
\]

(27)

\[
N_2 \left(J^m F - J^m G \right)(x), \frac{t}{8} \right\}, \right.
\]

\[
N_2 \left(J^m f - J^m g \right)(x), \frac{t}{8} \right\}
\]

for all \(x \in X \) and \(t > 0 \). This implies that \(N_2(F(x) - G(x), t) = 1 \) for all \(x \in X \) and \(t > 0 \). Thus, it follows from (F4) that

\[
F(x) = G(x)
\]

(26)

for all \(x \in X \).
Case 2. Assume that $1/2 < q < 1$. Let us define a function $J^m f : X \to Y$ by

$$J^m f(x) := \frac{1}{2n^{2m}}(f(n^m x) + f(-n^m x)) + \frac{n^m}{2}(\frac{x}{n^m} - f(\frac{x}{n^m}))$$ \hspace{1cm} (27)

for all $x \in X$ and $m \in \mathbb{N}_0$. Then, we have $J^0 f(x) = f(x)$, and it follows from (4) and (27) that

$$J^i f(x) - J^{i+1} f(x) = -\frac{Df(n^i x, \ldots, n^i x)}{4n^{2i+2}} - \frac{Df(-n^i x, \ldots, -n^i x)}{4n^{2i+2}} + \frac{n^i}{4} Df\left(\frac{x}{n^{i+1}}, \ldots, \frac{x}{n^{i+1}}\right)$$ \hspace{1cm} (28)

for all $x \in X$ and $i \in \mathbb{N}_0$. If $m' + m > m \geq 0$, then it follows from (F3), (F4), and (5) that

$$N_2 \left(J^m f(x) - J^{m'+m} f(x), \sum_{i=m}^{m'+m-1} \left(J^i f(x) - J^{i+1} f(x) \right) \right)$$

$$\geq N_2 \left(\sum_{i=m}^{m'+m-1} \left(J^i f(x) - J^{i+1} f(x) \right) \right)$$

$$\geq \min_{m \leq m' \leq m'+m} \left\{ N_2 \left(-\frac{Df(n^i x, \ldots, n^i x)}{4n^{2i+2}}, \frac{n^i}{4} \frac{x}{n^{i+1}} \right), \frac{n^i}{4} \right\}$$

$$\geq \min_{m \leq m' \leq m'+m} \left\{ N_1 \left(x, t \right) \right\}$$ \hspace{1cm} (29)

for all $x \in X$ and $t > 0$.

By a similar argument of the preceding part, we can define the limit $F(x) := \lim_{m \to \infty} J^m f(x)$ of the Cauchy sequence $\{ J^m f(x) \}$ in the fuzzy Banach space Y. Moreover, putting $m = 0$ and replacing t with $t/((\sum_{i=0}^{m'-1}((1/2n)(n^p/n^2)^i + (n/2n^p)(n/n^p)^i))^{q}$ in the last inequality yield

$$N_2 \left(f(x) - J^{m'} f(x), t \right)$$

$$\geq N_1 \left(x, t/((\sum_{i=0}^{m'-1}((1/2n)(n^p/n^2)^i + (n/2n^p)(n/n^p)^i))^{q} \right)$$ \hspace{1cm} (30)

for each $x \in X$ and for each $m' \in \mathbb{N}$.

To prove that F is a quadratic-additive function, it suffices to show that the last term of (16) tends to 1 as $m \to \infty$. By (4) and (27), we obtain

$$DJ^m f(x_1, x_2, \ldots, x_n)$$

$$= \frac{1}{2n^{2m}} Df(n^m x_1, \ldots, n^m x_n)$$

$$+ \frac{n^m}{2} Df\left(\frac{x_1}{n^m}, \ldots, \frac{x_n}{n^m} \right)$$

for all $x_1, x_2, \ldots, x_n \in X$ and $m \in \mathbb{N}_0$. Hence, it follows from (F3), (F4), (F5), and (5) that

$$N_2 \left(DJ^m f(x_1, x_2, \ldots, x_n), \frac{t}{5} \right)$$

$$\geq \min \left\{ N_2 \left(\frac{1}{2n^{2m}} Df(n^m x_1, \ldots, n^m x_n), \frac{t}{20} \right), \frac{n^m}{2} Df\left(\frac{x_1}{n^m}, \ldots, \frac{x_n}{n^m} \right), \frac{t}{20} \right\}$$

$$\geq \min \left\{ N_1 \left(x_1, 10^{-q}n^{(2q-1)m-q} t \right), \ldots, N_1 \left(x_n, 10^{-q}n^{(2q-1)m-q} t \right) \right\}$$

$$\to 1$$ \hspace{1cm} (32)

for all $x_1, x_2, \ldots, x_n \in X$ and $t > 0$, since $1/2 < q < 1$. Hence, as we did for the preceding case of $q > 1$, it follows from (16) that $DF(x_1, x_2, \ldots, x_n) = 0$ for all $x_1, x_2, \ldots, x_n \in X$.

By a similar way as the first inequality in (6) follows from (15), we see that the second inequality of (6) follows from (30).

We will prove the uniqueness of F. Let G be another quadratic-additive function satisfying the second inequality
in (6). Notice that (24) also holds true for the case of $1/2 < q < 1$. Then, by (F3), (F4), (F5), (6), (24), and (27), we have

\[
N_2(F(x) - G(x), t) = N_2(J^m F(x) - J^m G(x), t) \\
\geq \min \left\{ N_2\left(J^m F - J^m G\right)(x), \frac{t}{2} \right\}, \\
N_2\left((f - G)(n x^m), \frac{t}{8}\right), \\
N_2\left((F - f)(n x^m), \frac{t}{8}\right), \\
N_2\left((f - G)(n x^m), \frac{t}{8}\right), \\
N_2\left((F - f)(n x^m), \frac{t}{8}\right),
\]

for all $x \in X$ and $t > 0$, since $\lim_{m \to \infty} n^{1/2-q-1}m = \lim_{m \to \infty} n^{1/2-q} = 0$. This implies that $N_2(F(x) - G(x), t) = 1$ for all $x \in X$ and $t > 0$, and hence $F(x) = G(x)$ for all $x \in X$ by (F2).

Case 3. Finally, we consider the case of $0 < q < 1/2$. Let us define a function $F : X \to Y$ by

\[
J^m f(x) := n^m \left(\frac{f\left(\frac{x}{n^m}\right) + f\left(-\frac{x}{n^m}\right)}{2} \right)
\]

for all $x \in X$ and $m \in \mathbb{N}_0$. Then, we have $J^0 f(x) = f(x)$, and a somewhat tedious manipulation yields

\[
J^i f(x) - J^{i+1} f(x) = \frac{n^i(n^i + 1)}{4} D f\left(\frac{x}{n^{i+1}}, \ldots, \frac{x}{n^{i+1}} \right) \\
+ \frac{n^i(n^i - 1)}{4} D f\left(-\frac{x}{n^{i+1}}, \ldots, -\frac{x}{n^{i+1}} \right)
\]

for all $x \in X$ and $i \in \mathbb{N}_0$.

If m and m' are nonnegative integers with $m' + m > m$, then it follows from (F3), (F4), and (5) that

\[
N_2\left(J^m f(x) - J^{m'+m} f(x), \sum_{i=m}^{m'+m-1} \frac{n^i}{n^p} \frac{t^p}{2^n} \right) \\
\geq \min \left\{ N_2\left(\frac{n^i(n^i + 1)}{4} D f\left(\frac{x}{n^{i+1}}, \ldots, \frac{x}{n^{i+1}} \right), \frac{n^i(n^i - 1)}{4} D f\left(-\frac{x}{n^{i+1}}, \ldots, -\frac{x}{n^{i+1}} \right) \right) \right\} \\
= N_1\left(\frac{x}{n^{m+1}}, \frac{t}{n^{m+1}} \right)
\]

for all $x \in X$ and $t > 0$.

Similarly to the preceding cases, let us define a function $F : X \to Y$ by $F(x) := N_2\lim_{m \to \infty} J^m f(x)$. Putting $m = 0$ and replacing t with $2^{m} n^{q \ell} / (\sum_{i=0}^{m-1} (n^i n^p)^{\ell+1})$ in the last inequality yield

\[
N_2\left(f(x) - J^{m'} f(x), t \right) \geq N_1\left(\frac{2^{m} n^{q \ell}}{(\sum_{i=0}^{m-1} (n^i n^p)^{\ell+1})} \right)
\]

(37)

for all $x \in X$ and $t > 0$. Notice that

\[
DJ^m f(x_1, x_2, \ldots, x_n) = \frac{n^m}{2} D f\left(\frac{x_1}{n^m}, \ldots, \frac{x_n}{n^m} \right) + \frac{n^m}{2} D f\left(-\frac{x_1}{n^m}, \ldots, -\frac{x_n}{n^m} \right)
\]

\[+ \frac{n^m}{2} D f\left(\frac{x_1}{n^m}, \ldots, \frac{x_n}{n^m} \right) - \frac{n^m}{2} D f\left(-\frac{x_1}{n^m}, \ldots, -\frac{x_n}{n^m} \right)
\]

(38)

for all $x_1, x_2, \ldots, x_n \in X$. Hence, it follows from (F3), (F4), and (5) that

\[
N_2\left(DJ^m f(x_1, x_2, \ldots, x_n), \frac{t}{20} \right) \\
= \min \left\{ N_2\left(\frac{n^m}{2} D f\left(\frac{x_1}{n^m}, \ldots, \frac{x_n}{n^m} \right), \frac{t}{20} \right) \right\}, \\
N_2\left(\frac{n^m}{2} D f\left(-\frac{x_1}{n^m}, \ldots, -\frac{x_n}{n^m} \right), \frac{t}{20} \right), \\
N_2\left(\frac{n^m}{2} D f\left(\frac{x_1}{n^m}, \ldots, \frac{x_n}{n^m} \right), \frac{t}{20} \right) \\
N_2\left(\frac{n^m}{2} D f\left(-\frac{x_1}{n^m}, \ldots, -\frac{x_n}{n^m} \right), \frac{t}{20} \right)
\]

(39)
\[
\geq \min \left\{ N_t(x_1, 10^{-q^2} n^{(1-2q)m-q^2}), \ldots, N_t(x_n, 10^{-q^2} n^{(1-2q)m-q^2}) \right\} \to 1 \text{ as } m \to \infty
\]

for all \(x_1, x_2, \ldots, x_n \in X\) and \(t > 0\), since \(0 < q < 1/2\). Thus, all terms on the right-hand side of (16) tend to 1 as \(m \to \infty\). Therefore, it follows from (F2) and (16) that \(DF(x_1, x_2, \ldots, x_n) = 0\) for all \(x_1, x_2, \ldots, x_n \in X\). Moreover, using the same argument as in the first case, the third inequality in (6) follows from (37) for the case of \(0 < q < 1/2\).

We will prove the uniqueness of \(F\). Let \(G : X \to Y\) be another quadratic-additive function satisfying the third inequality in (6). Then, (F3), (F4), (F5), (6), (24), and by (34), we get

\[
N_2(F(x) - G(x), t) \geq \min \left\{ N_2\left(\left(J^mF - J^mG \right)(x), \frac{t}{2} \right) \right\} \to 1 \text{ as } m \to \infty
\]

(39)

for all \(x_1, x_2, \ldots, x_n \in X\) and \(t > 0\), since \(0 < q < 1/2\).

4. Applications

Corollary 3. If an even function \(f : X \to Y\) satisfies all of the conditions of Theorem 2, then there exists a unique quadratic function \(F : X \to Y\) such that

\[
N_2(F(x) - f(x), t) \geq \sup_{0 < c < t} N_1(x, 2^q n^p n^{(1-2q)m-q^2} t^q)
\]

for all \(x \in X\) and \(t > 0\), where \(q \notin \{1/2, 1\}\).

Proof. Let \(J^m f : X \to Y\) be defined as in Theorem 2. Since \(f\) is an even function, it follows from (8), (27), and (34) that

\[
J^m f(x) = \begin{cases}
\frac{1}{2n^m} (f(n^m x) + f(-n^m x)) & \text{if } q > 1/2, \ q \neq 1, \\
\frac{n^m}{4} \left(f \left(\frac{x}{n^m} \right) + f \left(-\frac{x}{n^m} \right) \right) & \text{if } 0 < q < 1/2 \end{cases}
\]

(42)

for all \(x \in X\). Notice that \(J^0 f(x) = f(x)\) and

\[
J^i f(x) - J^{i+1} f(x)
\]

\[
\frac{Df(n^i x, \ldots, n^i x)}{4n^{2i+2}} - \frac{Df(-n^i x, \ldots, -n^i x)}{4n^{2i+2}}
\]

(43)

for all \(x \in X\) and \(i \in \mathbb{N}_0\). From these equalities, using the similar method as presented in Theorem 2, we obtain the quadratic-additive function \(F\) satisfying (41). Notice that \(F(x) := N_2 \lim_{m \to \infty} J^m f(x)\) for all \(x \in X\), \(F\) is even, and \(DF(x_1, x_2, \ldots, x_n) = 0\) for all \(x_1, x_2, \ldots, x_n \in X\). Hence, we get

\[
F(x + y) + F(x - y) - 2F(x) - 2F(y) = \frac{1}{2} DF(x, y, 0, \ldots, 0) = 0
\]

(44)

for all \(x, y \in X\). This implies that \(F\) is a quadratic function. \(\square\)

Corollary 4. If an odd function \(f : X \to Y\) satisfies all of the conditions of Theorem 2, then there exists a unique additive function \(F : X \to Y\) such that

\[
N_2(F(x) - f(x), t) \geq \sup_{0 < c < t} N_1(x, 2^q n^p n^{(1-2q)m-q^2} t^q)
\]

(45)

for all \(x \in X\) and \(t > 0\), where \(p = 1/q\) and \(q \notin \{1/2, 1\}\).

Proof. Let \(J^m f : X \to Y\) be defined as in Theorem 2. Since \(f\) is an odd function, we obtain

\[
J^m f(x) = \begin{cases}
\frac{1}{2n^m} (f(n^m x) - f(-n^m x)) & \text{if } q > 1, \\
\frac{n^m}{2} \left(f \left(\frac{x}{n^m} \right) - f \left(-\frac{x}{n^m} \right) \right) & \text{if } 0 < q < 1/2 \end{cases}
\]

(46)

for all \(x \in X\) and \(t > 0\), where \(q \notin \{1/2, 1\}\).
for all \(x \in X \). Notice that \(f^0(x) = f(x) \) and

\[
\frac{1}{4}Df\left(n^i x, \ldots, n^i x\right) + \frac{1}{4}Df\left(-n^i x, \ldots, -n^i x\right),
\]

\[
= \begin{cases}
\frac{n^i}{4}Df\left(\frac{x}{n^i+1}, \ldots, \frac{x}{n^i+1}\right) - \frac{n^i}{4}Df\left(-\frac{x}{n^i+1}, \ldots, -\frac{x}{n^i+1}\right), & \text{if } 0 < q < 1, \quad q \neq 1/2 \\
\end{cases}
\]

(47)

for all \(x \in X \) and \(i \in \mathbb{N}_0 \). From these equalities, by using a similar method in Theorem 2, we obtain the quadratic-additive function \(F \) satisfying (45). Notice that \(F(x) := N_2\lim_{n \to \infty}f^n(x) \) for all \(x \in X \), \(F \) is odd, and \(DF(x_1, x_2, \ldots, x_n) = 0 \) for all \(x_1, x_2, \ldots, x_n \in X \). Hence, we get

\[
F(x + y) - F(x) - F(y) = \frac{1}{2}DF(x, y, 0, \ldots, 0) = 0
\]

(48)

for all \(x, y \in X \). This implies that \(F \) is an additive function.

We can use Theorem 2 to prove a classical result in the framework of normed spaces. Let \((X, \| \cdot \|) \) be a normed space and let \((Y, \| \cdot \|) \) be a Banach space. Then we can define fuzzy norms by

\[
N_x(t, s) = \begin{cases}
0 & \text{if } t \leq \|x\|, \\
1 & \text{if } t > \|x\|,
\end{cases}
\]

\[
N_y(t, s) = \begin{cases}
0 & \text{if } t \leq \|y\|, \\
1 & \text{if } t > \|y\|,
\end{cases}
\]

(49)

where \(x \in X \), \(y \in Y \) and \(t \in \mathbb{R} \) (see [22]). Suppose a function \(f : X \to Y \) satisfies

\[
\|DF(x_1, x_2, \ldots, x_n)\| \leq \|x_1\|^p + \|x_2\|^p + \cdots + \|x_n\|^p
\]

(50)

for all \(x_1, x_2, \ldots, x_n \in X \), \(n > 0 \) and \(p \in \{1, 2\} \). Let \(N_Y \) be a fuzzy norm on \(Y \). Then we get

\[
N_Y(DF(x_1, \ldots, x_n), t_1 + \cdots + t_n)
\]

\[
= \begin{cases}
0 & \text{if } t_1 + \cdots + t_n \leq \|DF(x_1, \ldots, x_n)\|, \\
\end{cases}
\]

(51)

for all \(x_1, x_2, \ldots, x_n \in X \) and \(t_1, \ldots, t_n \in \mathbb{R} \).

Consider the case

\[
N_Y(DF(x_1, \ldots, x_n), t_1 + \cdots + t_n) = 0.
\]

(52)

This implies that

\[
\|x_1\|^p + \|x_2\|^p + \cdots + \|x_n\|^p
\]

\[
\geq \|DF(x_1, x_2, \ldots, x_n)\| \geq t_1 + \cdots + t_n.
\]

(53)

Hence, there exists an \(i \in \{1, \ldots, n\} \) such that \(\|x_i\|^p \geq t_i \).

Thus, with \(q = 1/p \), we have

\[
\min\left\{N_x(t_1^q), \ldots, N_x(t_n^q)\right\} = 0
\]

(54)

for all \(x_1, x_2, \ldots, x_n \in X \) and \(t_1, \ldots, t_n > 0 \). Therefore, the inequality

\[
N_Y(DF(x_1, \ldots, x_n), t_1 + \cdots + t_n)
\]

\[
\geq \min\left\{N_x(t_1^q), \ldots, N_x(t_n^q)\right\}
\]

(55)

holds true. That is, \(f \) is a fuzzy \(q \)-almost quadratic-additive function, and by Theorem 2, we obtain the following stability result.

Corollary 5. Let \((X, \| \cdot \|) \) be a normed linear space and let \((Y, \| \cdot \|) \) be a Banach space. Assume that \(n \) is an integer greater than 1 and \(p \) is a positive real number with \(p \neq \{1, 2\} \). If a function \(f : X \to Y \) satisfies

\[
\|DF(x_1, x_2, \ldots, x_n)\| \leq \|x_1\|^p + \|x_2\|^p + \cdots + \|x_n\|^p
\]

(56)

for all \(x_1, x_2, \ldots, x_n \in X \), then there exists a unique quadratic-additive function \(F : X \to Y \) such that

\[
\|F(x) - f(x)\|
\]

\[
= \begin{cases}
\frac{n}{2}|n^p - n^2| \|x\|^p & \text{if } p > 2, \\
\left(\frac{n}{2}|n^p - n| + \frac{n}{2}|n^p - n|\right) \|x\|^p & \text{if } 1 < p < 2, \\
\frac{n\|x\|^p}{2(n - n^2)} & \text{if } p < 1
\end{cases}
\]

(57)

for all \(x \in X \).

Acknowledgment

The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2011-0004919).

References

Submit your manuscripts at
http://www.hindawi.com