Research Article

Rough Fuzzy Hyperideals in Ternary Semihypergroups

Naveed Yaqoob,1 Muhammad Aslam,1 and Kostaq Hila2

1Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
2Department of Mathematics and Computer Science, University of Gjirokastra, Gjirokastra, Albania

Correspondence should be addressed to Naveed Yaqoob, nayaqoob@ymail.com

Received 29 April 2012; Accepted 25 June 2012

1. Introduction

The notion of a rough set was proposed by Pawlak [1] as a formal tool for modeling and processing incomplete information in information systems. Since then the subject has been investigated in many papers. The theory of rough sets is an extension of set theory, in which a subset of an universe is described by a pair of ordinary sets called the lower and upper approximations. A key notion in the Pawlak rough set model is the equivalence relation. The equivalence classes are the building blocks for the construction of the lower and upper approximations. The lower approximation of a given set is the union of all equivalence classes which are subsets of the set, and the upper approximation is the union of all equivalence classes which have a nonempty intersection with the set. It is a natural question to ask what happens if we substitute the universe set with an algebraic system. Some authors have studied the algebraic properties of rough sets. Aslam et al. [2] introduced the notion of roughness in left almost semigroups. Chinram [3], introduced rough prime ideals and rough fuzzy prime ideals in Γ-semigroups. Petchkhaew and Chinram [4], introduced the notion of rough fuzzy ideals in ternary semigroups. In [5], Davvaz considered the relationship between rough sets and ring theory, considered a ring as a universal set, and introduced the notion of rough ideals and rough subrings with respect to the ideal of a ring. Also, rough modules have been investigated by Davvaz and Mahdavipour [6]. Davvaz et al. applied rough theory to Γ-semihypergroups [7], hyperrings [8], and Γ-semihyperrings [9]. Yaqoob [10] introduced the notion of rough Γ-hyperideals in left almost Γ-semihypergroups, also see [11, 12]. Kuroki, in [13], introduced the notion of a rough ideal in a semigroup. Jun applied the rough set theory to BCK-algebras [14].

Hyperstructure theory was introduced in 1934, when Marty [15] defined hypergroups, began to analyze their properties and applied them to groups. In the following decades and nowadays, a number of different hyperstructures are widely studied from the theoretical point of view and for their applications to many subjects of pure and applied mathematics by many mathematicians. Nowadays, hyperstructures have a lot of applications to several domains of mathematics and computer science and they are studied in many countries of the world. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. A lot of papers and several books have been written on hyperstructure theory, see [16–19]. A recent book on hyperstructures [16] points out on their applications in rough set theory, cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs, and hypergraphs. Another book [18] is devoted especially to
the study of hyperring theory. Several kinds of hyperrings are introduced and analyzed. The volume ends with an outline of applications in chemistry and physics, analyzing several special kinds of hyperstructures: e-hyperstructures and transposition hypergroups.

Hila and Naka [20–22] worked out on ternary semihypergroups and introduced some properties of hyperideals in ternary semihypergroups, also see [23].

The concept of a fuzzy set, introduced by Zadeh in his classic paper [24], provides a natural framework for generalizing some of the notions of classical algebraic structures. Fuzzy semigroups have been first considered by Kuroki [25]. After the introduction of the concept of fuzzy sets by Zadeh, several researches conducted the researches to a set. In 1971, Rosenfeld [26] defined the concept of fuzzy semigroups by attributing a degree to which a certain object belongs to a set. In 1971, Rosenfeld [26] defined the concept of fuzzy subsets. In what follows, let \(S \) be a nonempty semihypergroup.

In this section we will present some basic definitions of ternary semihypergroups.

2. Ternary Semihypergroups

In this section we will present some basic definitions of ternary semihypergroups.

A map \(\circ : H \times H \rightarrow \mathcal{P}(H) \) is called hyperoperation or join operation on the set \(H \), where \(H \) is a nonempty set and \(\mathcal{P}(H) = \mathcal{P}(H) \setminus \{ \emptyset \} \) denotes the set of all nonempty subsets of \(H \).

A hypergroupoid is a set \(H \) with together a (binary) hyperoperation.

Definition 1. A hypergroupoid \((H, \circ) \), which is associative, that is, \(x \circ (y \circ z) = (x \circ y) \circ z \), for all \(x, y, z \in S \), is called a semihypergroup.

Let \(A \) and \(B \) be two nonempty subsets of \(H \). Then, we define

\[
A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad a \circ A = \{a\} \circ A, \quad a \circ B = \{a\} \circ B.
\]

Definition 2. A map \(f : H \times H \times H \rightarrow \mathcal{P}(H) \) is called ternary hyperoperation on the set \(H \), where \(H \) is a nonempty set and \(\mathcal{P}(H) = \mathcal{P}(H) \setminus \{ \emptyset \} \) denotes the set of all nonempty subsets of \(H \).

Definition 3. A ternary hypergroupoid is called the pair \((H, f) \), where \(f \) is a ternary hyperoperation on the set \(H \).

Definition 4. A ternary hypergroupoid \((S, f) \) is called a ternary semihypergroup if for all \(a_1, a_2, \ldots, a_5 \in S \), we have

\[
f(f(a_1, a_2, a_3), a_4, a_5) = f(a_1, f(a_2, a_3, a_4), a_5) = f(a_1, a_2, f(a_3, a_4, a_5)).
\]

Definition 5. Let \((S, f) \) be a ternary semihypergroup. Then \(S \) is called a ternary hypergroup if for all \(a, b, c \in S \), there exist \(x, y, z \in S \) such that

\[
c \in f(x, a, b) \cap f(a, y, b) \cap f(a, b, z).
\]

Definition 6. Let \((S, f) \) be a ternary semihypergroup and \(T \) a nonempty subset of \(H \). Then \(T \) is called a subsemihypergroup of \(S \) if and only if \(f(T, T, T) \subseteq T \).

Definition 7. A nonempty subset \(I \) of a ternary semihypergroup \(S \) is called a left (right, lateral) hyperideal of \(S \) if

\[
f(S, S, I) \subseteq I \quad (f(I, S, S) \subseteq I, \ f(S, I, S) \subseteq I).
\]

Definition 8. A subsemihypergroup \(B \) of a ternary semihypergroup \(S \) is called a bi-hyperideal of \(S \) if

\[
f(B, S, B, S, B) \subseteq B.
\]

Definition 9. Let \((S, f) \) be a ternary semihypergroup and \(Q \) a subset of \(S \). Then \(Q \) is called a quasi-hyperideal of \(S \) if and only if

\[
f(Q, S, S) \cap f(S, Q, S) \cap f(S, S, Q) \subseteq Q,
\] \(\quad f(Q, S, S) \cap f(S, S, Q, S) \cap f(S, Q, S) \subseteq Q. \)

3. Rough Hyperideals in Ternary Semihypergroups

In what follows, let \(S \) denote a ternary semihypergroup unless otherwise specified. In this section, for simplicity we write \(f(a, b, c) \) as \(a \cdot b \cdot c \) and consider the ternary hyperoperation \(f \) as “-”. Suppose that \(S \) is a ternary semihypergroup. A partition or classification of \(S \) is a family \(\mathcal{P} \) of nonempty subsets of \(S \) such that each element of \(S \) is contained in exactly one element of \(\mathcal{P} \).

Given a ternary semihypergroup \(S \), by \(\mathcal{P}(S) \) we will denote the power-set of \(S \). Let \(A \) and \(B \) be two nonempty
subsets of S. We define $(A, B) \in \mathcal{P}$ if for every $a \in A$ there exists $b \in B$ such that $(a, b) \in \rho$ and for every $d \in B$ there exists $c \in A$ such that $(c, d) \in \rho$. If ρ is an equivalence relation on S, then, for every $x \in S$, $[x]_\rho$ stands for the equivalence class of x with the represent ρ.

Definition 10. Let S be a ternary semihypergroup. An equivalence relation ρ on S is called regular on S if

$$(a, b) \in \rho \text{ implies } (x \cdot y \cdot a, x \cdot y \cdot b) \in \mathcal{P},$$

$$(x \cdot a \cdot y, x \cdot b \cdot y) \in \mathcal{P},$$

$$(a \cdot x \cdot y, b \cdot x \cdot y) \in \mathcal{P},$$

for all $a, b, x, y \in S$.

A regular relation ρ on S is called complete if $[a]_\rho \cdot [b]_\rho \cdot [c]_\rho = [a \cdot b \cdot c]_\rho$ for all $a, b, c \in S$.

Lemma 11. Let S be a ternary semihypergroup and ρ be a regular relation on S. If $a, b \in S$, then $[a]_\rho \cdot [b]_\rho \cdot [c]_\rho \leq [a \cdot b \cdot c]_\rho$.

Proof. Let $x \in [a]_\rho \cdot [b]_\rho \cdot [c]_\rho$. Then there exist $p \in [a]_\rho$, $q \in [b]_\rho$, and $r \in [c]_\rho$ such that $x \in p \cdot q \cdot r$. Since $(a, p) \in \rho$, $(b, q) \in \rho$ and $(c, r) \in \rho$ then by regularity of ρ, we have

$$(a \cdot b \cdot c, p \cdot q \cdot r) \in \mathcal{P}.$$

So $x \in p \cdot q \cdot r$ implies that there exists $y \in a \cdot b \cdot c$ such that $(x, y) \in \rho$, and therefore $x \in [a \cdot b \cdot c]_\rho$. \square

Let A be a nonempty subset of a ternary semihypergroup S and ρ be a regular relation on S. Then, the sets

$$\mathcal{AP}_{\rho}(A) = \{x \in S : [x]_\rho \cap A \neq \emptyset \},$$

$$A_{\rho}(A) = \{x \in S : [x]_\rho \subseteq A \}$$

are called ρ-upper and ρ-lower approximations of A, respectively. For a nonempty subset A of S, $\mathcal{AP}_{\rho}(A) = \langle A_{\rho}(A), \mathcal{AP}_{\rho}(A) \rangle$ is called a rough set with respect to ρ if $A_{\rho}(A) \neq \mathcal{AP}_{\rho}(A)$.

Theorem 12. Let ρ and ϕ be regular relations on a ternary semihypergroup S. If A and B are nonempty subsets of S, then the following hold:

1. $\mathcal{AP}_{\rho}(A) \subseteq A \subseteq \mathcal{AP}_{\rho}(A)$;
2. $\mathcal{AP}_{\rho}(A \cup B) = \mathcal{AP}_{\rho}(A) \cup \mathcal{AP}_{\rho}(B)$;
3. $\mathcal{AP}_{\rho}(A \cap B) = \mathcal{AP}_{\rho}(A) \cap \mathcal{AP}_{\rho}(B)$;
4. $A \subseteq B$ implies $\mathcal{AP}_{\rho}(A) \subseteq \mathcal{AP}_{\rho}(B)$;
5. $A \subseteq B$ implies $\mathcal{AP}_{\rho}(A) \subseteq \mathcal{AP}_{\rho}(B)$;
6. $\mathcal{AP}_{\rho}(A \cup B) = \mathcal{AP}_{\rho}(A) \cup \mathcal{AP}_{\rho}(B)$;
7. $\mathcal{AP}_{\rho}(A \cap B) = \mathcal{AP}_{\rho}(A) \cap \mathcal{AP}_{\rho}(B)$;
8. $\rho \subseteq \phi$ implies $\mathcal{AP}_{\rho}(A) \subseteq \mathcal{AP}_{\rho}(A)$;
9. $\rho \subseteq \phi$ implies $\mathcal{AP}_{\rho}(A) \subseteq \mathcal{AP}_{\rho}(A)$.

Proof. The proof of this theorem is similar to [13, Theorem 2.1].

Theorem 13. Let ρ be a regular relation on a ternary semihypergroup S and let A, B and C be nonempty subsets of S. Then

1. $\mathcal{AP}_{\rho}(A) \cdot \mathcal{AP}_{\rho}(B) \cdot \mathcal{AP}_{\rho}(C) \subseteq \mathcal{AP}_{\rho}(A \cdot B \cdot C)$;
2. If ρ is complete, then $\mathcal{AP}_{\rho}(A) \cdot \mathcal{AP}_{\rho}(B) \cdot \mathcal{AP}_{\rho}(C) \subseteq \mathcal{AP}_{\rho}(A \cdot B \cdot C)$.

Proof. (1) Let $x \in \mathcal{AP}_{\rho}(A) \cdot \mathcal{AP}_{\rho}(B) \cdot \mathcal{AP}_{\rho}(C)$. Then $x \in a \cdot b \cdot c$ for $a \in \mathcal{AP}_{\rho}(A)$, $b \in \mathcal{AP}_{\rho}(B)$ and $c \in \mathcal{AP}_{\rho}(C)$.

There exist $r, s, t \in S$ such that $r \in [a]_\rho \cap A$, $s \in [b]_\rho \cap B$ and $t \in [c]_\rho \cap C$. Since ρ is regular, it follows that

$$r \cdot s \cdot t \in [a]_\rho \cdot [b]_\rho \cdot [c]_\rho \subseteq [a \cdot b \cdot c]_\rho.$$

On the other hand, since $r \cdot s \cdot t \subseteq [a \cdot b \cdot c]_\rho \cap A \cdot B \cdot C$, we have

$$r \cdot s \cdot t \subseteq [a \cdot b \cdot c]_\rho \cap A \cdot B \cdot C,$$

and so $x \in [a \cdot b \cdot c]_\rho \subseteq \mathcal{AP}_{\rho}(A \cdot B \cdot C)$. This shows that $\mathcal{AP}_{\rho}(A) \cdot \mathcal{AP}_{\rho}(B) \cdot \mathcal{AP}_{\rho}(C) \subseteq \mathcal{AP}_{\rho}(A \cdot B \cdot C)$.

(2) Let $x \in \mathcal{AP}_{\rho}(A) \cdot \mathcal{AP}_{\rho}(B) \cdot \mathcal{AP}_{\rho}(C)$. Then $x \in a \cdot b \cdot c$ for $a \in \mathcal{AP}_{\rho}(A)$, $b \in \mathcal{AP}_{\rho}(B)$ and $c \in \mathcal{AP}_{\rho}(C)$.

It follows that $[a]_\rho \subseteq A$, $[b]_\rho \subseteq B$ and $[c]_\rho \subseteq C$. Since ρ is complete, we have

$$[a]_\rho \cdot [b]_\rho \cdot [c]_\rho = [a \cdot b \cdot c]_\rho \subseteq A \cdot B \cdot C,$$

and so $x \in [a \cdot b \cdot c]_\rho \subseteq \mathcal{AP}_{\rho}(A \cdot B \cdot C)$. Hence $\mathcal{AP}_{\rho}(A) \cdot \mathcal{AP}_{\rho}(B) \cdot \mathcal{AP}_{\rho}(C) \subseteq \mathcal{AP}_{\rho}(A \cdot B \cdot C)$.

Definition 14. Let S be a ternary semihypergroup. A nonempty subset A of S is called a subsemihypergroup of S if $A \cdot A \cdot A \subseteq A$.

Let ρ be a regular relation on a ternary semihypergroup S. Then a nonempty subset A of S is called a ρ-upper (ρ-lower) rough subsemihypergroup of S if $A_{\rho}(A)(A_{\rho}(A))$ is a subsemihypergroup of S.

Theorem 15. Let ρ be a regular relation on a ternary semihypergroup S and let A be a subsemihypergroup of S. Then

1. $\mathcal{AP}_{\rho}(A)$ is a subsemihypergroup of S;
2. if ρ is complete, then $\mathcal{AP}_{\rho}(A)$ is, if it is nonempty, a subsemihypergroup of S.

Proof. (1) Let A be a subsemihypergroup of S. Now by Theorem 13(1),

$$\mathcal{AP}_{\rho}(A) \cdot \mathcal{AP}_{\rho}(A) \cdot \mathcal{AP}_{\rho}(A) \subseteq \mathcal{AP}_{\rho}(A \cdot A \cdot A) \subseteq \mathcal{AP}_{\rho}(A).$$
This shows that $\overline{A\rho}(A)$ is a subsemihypergroup of S, that is, A is a ρ-upper rough subsemihypergroup of S.

(2) Let A be a subsemihypergroup of S. Now by Theorem 13(2)

$$\overline{A\rho}(A) \cdot \overline{A\rho}(A) \cdot \overline{A\rho}(A) \leq \overline{A\rho}(A \cdot A \cdot A) \subseteq \overline{A\rho}(A).$$ (14)

This shows that $\overline{A\rho}(A)$ is a subsemihypergroup of S, that is, A is a ρ-lower rough subsemihypergroup of S.

Definition 16. A nonempty subset A of a ternary semihypergroup S is called left (right, lateral) hyperideal of S if $S \cdot S \cdot A \subseteq A(A \cdot S \cdot S \subseteq A, S \cdot A \cdot S \subseteq A)$.

A nonempty subset A of a ternary semihypergroup S is called a hyperideal of S if it is a left, right and lateral hyperideal of S. A nonempty subset A of a ternary semihypergroup S is called two-sided hyperideal of S if it is a left and right hyperideal of S. A lateral hyperideal A of a ternary semihypergroup S is called a proper lateral hyperideal of S if $A \neq S$.

Let ρ be a regular relation on a ternary semihypergroup S. Then a nonempty subset A of S is called a ρ-upper (ρ-lower) rough left hyperideal of S if $\overline{A\rho}(A) \cdot \overline{A\rho}(A)$ is a left hyperideal of S. Similarly ρ-upper (ρ-lower) rough right and rough lateral hyperideals of S can be defined.

Theorem 17. Let ρ be a regular relation on a ternary semihypergroup S and let A be a left (right, lateral) hyperideal of S. Then

(1) $\overline{A\rho}(A)$ is a left (right, lateral) hyperideal of S.

(2) If ρ is complete, then $\overline{A\rho}(A)$ is, if it is nonempty, a left (right, lateral) hyperideal of S.

Proof. (1) Let A be a right hyperideal of S. Now by Theorem 13(1),

$$\overline{A\rho}(A) \cdot S \cdot S = \overline{A\rho}(A) \cdot \overline{A\rho}(S) \cdot \overline{A\rho}(S) \subseteq \overline{A\rho}(A \cdot S \cdot S) \subseteq \overline{A\rho}(A).$$ (15)

This shows that $\overline{A\rho}(A)$ is a right hyperideal of S, that is, A is a ρ-upper rough right hyperideal of S.

(2) Let A be a right hyperideal of S. Now by Theorem 13(2),

$$\overline{A\rho}(A) \cdot S \cdot S = \overline{A\rho}(A) \cdot \overline{A\rho}(S) \cdot \overline{A\rho}(S) \subseteq \overline{A\rho}(A \cdot S \cdot S) \subseteq \overline{A\rho}(A).$$ (16)

This shows that $\overline{A\rho}(A)$ is a right hyperideal of S, that is, A is a ρ-lower rough right hyperideal of S. The case for left (lateral) hyperideal can be seen in a similar way.

Theorem 18. Let ρ be a regular relation on a ternary semihypergroup S. If A, B, and C are a right hyperideal, a lateral hyperideal, and a left hyperideal of S, respectively. Then

(1) $\overline{A\rho}(A \cdot B \cdot C) \subseteq \overline{A\rho}(A) \cdot \overline{A\rho}(B) \cdot \overline{A\rho}(C)$.

(2) $\overline{A\rho}(A \cdot B \cdot C) \subseteq \overline{A\rho}(A) \cdot \overline{A\rho}(B) \cdot \overline{A\rho}(C)$.

Proof. Since A is a right hyperideal of S, so $A \cdot B \cdot C \subseteq A \cdot S \cdot S \subseteq A$. Since B is a lateral hyperideal of S, so $A \cdot B \cdot C \subseteq S \cdot B \cdot S \subseteq B$, also C is a left hyperideal of S, so $A \cdot B \cdot C \subseteq S \cdot S \cdot C \subseteq C$, thus $A \cdot B \cdot C \subseteq A \cdot B \cdot C$. Then by Theorem 12(7), we have

$$\overline{A\rho}(A \cdot B \cdot C) \subseteq \overline{A\rho}(A) \cdot \overline{A\rho}(B) \cdot \overline{A\rho}(C).$$ (17)

Also by Theorem 12(3), we have

$$\overline{A\rho}(A \cdot B \cdot C) \subseteq \overline{A\rho}(A) \cdot \overline{A\rho}(B) \cdot \overline{A\rho}(C).$$ (18)

This completes the proof.

Definition 19. A subsemihypergroup B of a ternary semihypergroup S is called a bi-hyperideal of S if $B \cdot B \cdot S \cdot B \cdot B \subseteq B$.

Let ρ be a regular relation on a ternary semihypergroup S. Then a subsemihypergroup B of S is called a ρ-upper (ρ-lower) rough bi-hyperideal of S if $\overline{A\rho}(A) \cdot \overline{A\rho}(A)$ is a bi-hyperideal of S.

Theorem 20. Let ρ be a regular relation on a ternary semihypergroup S and let B be a bi-hyperideal of S. Then

(1) $\overline{A\rho}(B)$ is a bi-hyperideal of S.

(2) If ρ is complete, then $\overline{A\rho}(B)$ is, if it is nonempty, a bi-hyperideal of S.

Proof. (1) Let B be a bi-hyperideal of S. Now by Theorem 13(1)

$$\overline{A\rho}(B) \cdot S \cdot \overline{A\rho}(B) \cdot S \cdot \overline{A\rho}(B)$$

$$= \overline{A\rho}(B) \cdot \overline{A\rho}(B) \cdot S \cdot \overline{A\rho}(B)$$

$$\subseteq \overline{A\rho}(B) \cdot \overline{A\rho}(B) \cdot S \cdot \overline{A\rho}(B)$$

$$\subseteq \overline{A\rho}(B).$$ (19)

From this and Theorem 15(1), $\overline{A\rho}(B)$ is a bi-hyperideal of S, that is, A is a ρ-upper rough bi-hyperideal of S.

(2) Let B be a bi-hyperideal of S. Now by Theorem 13(2)

$$\overline{A\rho}(B) \cdot S \cdot \overline{A\rho}(B) \cdot S \cdot \overline{A\rho}(B)$$

$$= \overline{A\rho}(B) \cdot \overline{A\rho}(B) \cdot S \cdot \overline{A\rho}(B)$$

$$\subseteq \overline{A\rho}(B) \cdot \overline{A\rho}(B) \cdot S \cdot \overline{A\rho}(B)$$

$$\subseteq \overline{A\rho}(B).$$ (20)
From this and Theorem 15(2), $\text{Apr}_\rho (B)$ is a bi-hyperideal of S, that is, A is a ρ-lower rough bi-hyperideal of S.

The following example shows that the converse of above theorem does not hold.

Example 21. Let $H = \{0, a, b, c, d, e, g\}$ and $f(x, y, z) = (x \ast y) \ast z$ for all $x, y, z \in H$, where \ast is defined by Table 1.

Then (H, f) is a ternary semihypergroup. Let ρ be a complete regular relation on S such that ρ-regular classes are the subsets $\{0\}, \{a, b, c, d, e, g\}$. Now for $A = \{0, e, g\} \subseteq S$, $\text{Apr}_\rho (A) = \{0, a, b, c, d, e, g\}$ and $\text{Apr}_\rho (A) = \{0\}$. It is clear that $\text{Apr}_\rho (A)$ and $\text{Apr}_\rho (A)$ are bi-hyperideals of S, but the subsemihypergroup $\{0, e, g\}$ of S is not a bi-hyperideal of S.

Definition 22. A subset Q of a ternary semihypergroup S is called a quasi-hyperideal of S if

$$Q \cdot S \cdot S \cap S \cdot Q \cdot S \cap S \cdot Q = Q, \quad Q \cdot S \cdot S \cap S \cdot Q \cdot S \cdot S \cap S \cdot Q \subseteq Q.$$ (21)

Let ρ be a regular relation on a ternary semihypergroup S. Then a subset Q of S is called a ρ-upper (ρ-lower) rough quasi-hyperideal of S if $\text{Apr}_\rho (A) \text{Apr}_\rho (A)$ is a quasi-hyperideal of S.

Theorem 23. Let ρ be a complete regular relation on a ternary semihypergroup S and let Q be a bi-hyperideal of S. Then $\text{Apr}_\rho (Q)$ is, if it is nonempty, a quasi-hyperideal of S.

Proof. Let Q be a quasi-hyperideal of S. Now by Theorems 13(2) and 12(3)

$$\text{Apr}_\rho (Q) \cdot S \cdot S \cap S \cdot S \cdot \text{Apr}_\rho (Q) \cdot S \cdot S \cdot \text{Apr}_\rho (Q) \subseteq \text{Apr}_\rho (Q).$$

Also we can show that

$$\text{Apr}_\rho (Q) \cdot S \cdot S \cap S \cdot S \cdot \text{Apr}_\rho (Q) \cdot S \cdot S \cdot \text{Apr}_\rho (Q) \subseteq \text{Apr}_\rho (Q).$$

Hence $\text{Apr}_\rho (Q)$ is a quasi-hyperideal of S, that is, A is a ρ-lower rough quasi-hyperideal of S.

4. Rough Hyperideals in the Quotient Ternary Semihypergroups

Let ρ be a regular relation on a ternary semihypergroup S. The ρ-upper approximation and ρ-lower approximation of a nonempty subset A of S can be presented in an equivalent form as shown below:

$$\text{Apr}_\rho (A) = \left\{ \left[x \right]_\rho : \left[x \right]_\rho \cap A \neq \emptyset \right\},$$

$$\text{Apr}_\rho (A) = \left\{ \left[x \right]_\rho : \left[x \right]_\rho \subseteq A \right\},$$

respectively.

Theorem 24. Let ρ be a regular relation on a ternary semihypergroup S and let A be a subsemihypergroup of S. Then

1. $\text{Apr}_\rho (A)$ is a subsemihypergroup of S.
2. If ρ is complete, then $\text{Apr}_\rho (A)$ is, if it is nonempty, a subsemihypergroup of S.

Proof.

1. Let $[a]_\rho, [b]_\rho, [c]_\rho \in \text{Apr}_\rho (A)$. Then $[a]_\rho \cap A \neq \emptyset$, $[b]_\rho \cap A \neq \emptyset$ and $[c]_\rho \cap A \neq \emptyset$. So there exist $x \in [a]_\rho \cap A, y \in [b]_\rho \cap A$ and $z \in [c]_\rho \cap A$. Since A is a subsemihypergroup of S, we have $x \cdot y \cdot z \in A$. By Lemma 11, we have

$$x \cdot y \cdot z \in [a]_\rho \cdot [b]_\rho \cdot [c]_\rho = [a \cdot b \cdot c]_\rho.$$ (25)

Thus $[a \cdot b \cdot c]_\rho \cap A \neq \emptyset$, which implies that $[a]_\rho \cdot [b]_\rho \cdot [c]_\rho \subseteq \text{Apr}_\rho (A)$. Hence $\text{Apr}_\rho (A)$ is a subsemihypergroup of S.

2. Let $[a]_\rho, [b]_\rho, [c]_\rho \in \text{Apr}_\rho (A)$. Then $[a]_\rho \subseteq A, [b]_\rho \subseteq A$ and $[c]_\rho \subseteq A$. Since A is a subsemihypergroup of S, we have

$$[a]_\rho \cdot [b]_\rho \cdot [c]_\rho = [a \cdot b \cdot c]_\rho \subseteq A \cdot A \cdot A = A.$$ (26)

This means that $\text{Apr}_\rho (A)$ is a subsemihypergroup of S.

Theorem 25. Let ρ be a regular relation on a ternary semihypergroup S and let A be a left (right, lateral) hyperideal of S. Then

1. $\text{Apr}_\rho (A)$ is a left (right, lateral) hyperideal of S.
2. If ρ is complete, then $\text{Apr}_\rho (A)$ is, if it is nonempty, a left (right, lateral) hyperideal of S.
Theorem 26. Let \(\rho \) be a regular relation on a ternary semihiyeragroup \(S \) and let \(A \) be a bi-hyperideal of \(S / \rho \). Then

1. \(\overline{A{pr}}_\rho(A) \) is a bi-hyperideal of \(S / \rho \),
2. if \(\rho \) is complete, then \(A{pr}_\rho(A) \) is, if it is nonempty, a bi-hyperideal of \(S / \rho \).

Proof. (1) Let \(A \) be a bi-hyperideal of \(S \). Let \([x]_\rho \in \overline{A{pr}}_\rho(A) \) and \([y]_\rho, [z]_\rho \in S/\rho \). Then \([x]_\rho \cap A \neq \emptyset \), hence \(x \in \overline{A{pr}}_\rho(A) \). Since \(A \) is a left hyperideal of \(S \), by Theorem 17(1), \(\overline{A{pr}}_\rho(A) \) is a left hyperideal of \(S \). So, we have

\[
y \cdot z \cdot x \subseteq \overline{A{pr}}_\rho(A).
\] (27)

Now, for every \(m \in y \cdot z \cdot x \), we have \([m]_\rho \cap A \neq \emptyset \). On the other hand, from \(m \in y \cdot z \cdot x \), we obtain \([m]_\rho \subseteq [y]_\rho \cdot [z]_\rho \cdot [x]_\rho \). Therefore \([y]_\rho \cdot [z]_\rho \cdot [x]_\rho \subseteq \overline{A{pr}}_\rho(A) \). This means that \(\overline{A{pr}}_\rho(A) \) is a left hyperideal of \(S / \rho \).

(2) Let \(A \) be a left hyperideal of \(S \). Let \([x]_\rho \in \overline{A{pr}}_\rho(A) \) and \([y]_\rho, [z]_\rho \in S/\rho \). Then, \([x]_\rho \subseteq A \), which implies \(x \in \overline{A{pr}}_\rho(A) \). Since \(A \) is a left hyperideal of \(S \), by Theorem 17(2), \(A{pr}_\rho(A) \) is a left hyperideal of \(S \). Thus, we have

\[
y \cdot z \cdot x \subseteq A{pr}_\rho(A).
\] (28)

Now, for every \(m \in y \cdot z \cdot x \), we have \(m \in A{pr}_\rho(A) \), which implies \([m]_\rho \subseteq A \). Hence, \([m]_\rho \in A{pr}_\rho(A) \). On the other hand, from \(m \in y \cdot z \cdot x \), we have \([m]_\rho \subseteq [y]_\rho \cdot [z]_\rho \cdot [x]_\rho \). Therefore \([y]_\rho \cdot [z]_\rho \cdot [x]_\rho \subseteq A{pr}_\rho(A) \). This means that \(A{pr}_\rho(A) \) is, if it is nonempty, a left hyperideal of \(S / \rho \). The other cases can be seen in a similar way. \(\square \)

Theorem 26. Let \(\rho \) be a regular relation on a ternary semihiyeragroup \(S \) and let \(A \) be a bi-hyperideal of \(S / \rho \). Then

1. \(\overline{A{pr}}_\rho(A) \) is a bi-hyperideal of \(S / \rho \),
2. if \(\rho \) is complete, then \(A{pr}_\rho(A) \) is, if it is nonempty, a bi-hyperideal of \(S / \rho \).

Proof. (1) Let \(A \) be a bi-hyperideal of \(S \). Let \([x]_\rho \in \overline{A{pr}}_\rho(A) \) and \([y]_\rho, [z]_\rho \in S/\rho \). Then, \([x]_\rho \cap A \neq \emptyset \), hence \(x \in \overline{A{pr}}_\rho(A) \). Since \(A \) is a left hyperideal of \(S \), by Theorem 17(1), \(\overline{A{pr}}_\rho(A) \) is a left hyperideal of \(S \). So, we have

\[
x \cdot s \cdot y \cdot t \cdot z \subseteq \overline{A{pr}}_\rho(A).
\] (30)

Now, for every \(m \in x \cdot s \cdot y \cdot t \cdot z \), we obtain

\[
[m]_\rho \subseteq [x]_\rho \cdot [s]_\rho \cdot [y]_\rho \cdot [t]_\rho \cdot [z]_\rho.
\] (31)

On the other hand, since \(m \in \overline{A{pr}}_\rho(A) \), we have \([m]_\rho \cap A \neq \emptyset \). Thus, we have

\[
[x]_\rho \cdot [s]_\rho \cdot [y]_\rho \cdot [t]_\rho \cdot [z]_\rho \subseteq \overline{A{pr}}_\rho(A).
\] (32)

Therefore, from this and Theorem 24(1), \(\overline{A{pr}}_\rho(A) \) is a bi-hyperideal of \(S / \rho \).
Let f be a fuzzy subset of a set (a ternary semihypergroup) S. For any $t \in [0,1]$, the set
\[
T = \{ x \in S | f(x) \geq t \}
\]
are called a τ—level set and a τ—strong level set of f, respectively.

Theorem 30. Let f be a fuzzy subset of a ternary semihypergroup S. The following statements hold true:

1. f is a fuzzy ternary semihypergroup of S if and only if for all $t \in [0,1]$, if $f_t = \emptyset$, then f_t is a ternary semihypergroup of S.

2. f is a fuzzy left hyperideal (fuzzy right hyperideal, fuzzy lateral hyperideal, fuzzy hyperideal) of S if and only if for all $t \in [0,1]$, if $f_t \neq \emptyset$, then f_t is a left hyperideal (right hyperideal, lateral hyperideal, hyperideal) of S.

Proof. (1) Let us assume that f is a fuzzy ternary semihypergroup of S. Let $t \in [0,1]$ such that $f_t = \emptyset$. Let $x, y, z \in S$. If $f(x), f(y), f(z) \geq t$, then $f(x), f(y), f(z) \geq t$. Since f is a fuzzy ternary semihypergroup of S, $f(x) \geq t$ and $f(y) \geq t$. Thus $f(x), f(y), f(z) \geq t$. Since f is a fuzzy ternary semihypergroup of S, $f(x) \geq t$. Hence $f(x), f(y), f(z) \geq t$. Therefore, $f(x), f(y), f(z) \geq t$.

(2) Let us assume that f is a fuzzy left hyperideal of S. Let $t \in [0,1]$. Let us suppose that $f_t \neq \emptyset$. Let $x, y, z \in S$ and $f(x) \geq t$. Since $f(x) \geq t$, $f(x) \geq t$. Hence $f(x), f(y), f(z) \geq t$. Thus $f(x), f(y), f(z) \geq t$. Therefore, $f(x), f(y), f(z) \geq t$.

The remaining parts can be proved in a similar way. \(\square\)

Theorem 31. Let S be a ternary semihypergroup and f be a fuzzy of S. The following statements hold true:

1. f is a prime fuzzy subset of S if and only if for all $t \in [0,1]$, if $f_t \neq \emptyset$, then f_t is a prime subset of S.

2. f is a prime fuzzy ternary semihypergroup (prime fuzzy left hyperideal, prime fuzzy right hyperideal, prime fuzzy lateral hyperideal, prime fuzzy hyperideal) of S if and only if for all $t \in [0,1]$, if $f_t \neq \emptyset$, then f_t is a prime ternary semihypergroup (prime ternary left hyperideal, prime ternary right hyperideal, prime ternary lateral hyperideal, prime ternary hyperideal) of S.

Proof. (1) Let us assume that f is a prime fuzzy subset of S. Let $x, y, z \in S$. If $x, y, z \in S$, then $x, y, z \in S$. Hence $x, y, z \in S$. Since $f(x), f(y), f(z) \geq t$, then $f(x), f(y), f(z) \geq t$. Since f is prime, $f(x) \geq t$ or $f(y) \geq t$ or $f(z) \geq t$. This implies $x \in f_t$ or $y \in f_t$ or $z \in f_t$. Thus $f(x), f(y), f(z) \geq t$.

Conversely, let $x, y, z \in S$. Let us take $t = \min\{f(x), f(y), f(z)\}$. Then $f(x), f(y), f(z) \geq t$. Thus $f(x), f(y), f(z) \geq t$. Hence $f(x), f(y), f(z) \geq t$.

(2) It follows from (1) and Theorem 28. \(\square\)
Theorem 32. Let S be a ternary semihypergroup and f be a fuzzy subset of S. Then f is a prime fuzzy subset (prime fuzzy ternary subsemihypergroup, prime fuzzy left hyperideal, prime fuzzy right hyperideal, prime fuzzy lateral hyperideal, prime fuzzy hyperideal) of S if and only if for all $t \in [0, 1]$, if $f_t^\rho \neq \emptyset$, then f_t^ρ is a prime subset (prime ternary subsemihypergroup, prime left hyperideal, prime right hyperideal, prime lateral hyperideal, prime hyperideal) of S.

Proof. The proof is similar to the proof of Theorem 30. \qed

6. Rough Fuzzy Hyperideals of Ternary Semihypergroups

In this section we study rough fuzzy ternary semihypergroups, left hyperideals, right hyperideals, lateral hyperideals and hyperideals of ternary semihypergroups.

Let S be a ternary semihypergroup and f be a fuzzy set of S. Then the sets

$$A_{\rho}^P(f)(x) = \sup_{a \in [x]_{\rho}} f(a), \quad A_{\rho}^P(f)(x) = \inf_{a \in [x]_{\rho}} f(a)$$

are called the ρ-upper and ρ-lower approximations of a fuzzy set f, respectively.

Lemma 33. Let S be a ternary semihypergroup, ρ a regular relation on S, f a fuzzy subset of S and $t \in [0, 1]$, then

1. $(A_{\rho}^P(f))(t) = A_{\rho}^P(f_t^\rho)$,
2. $(A_{\rho}^P(f))(t) = A_{\rho}^P(f_t^\rho)$.

Proof. Let $x \in (A_{\rho}^P(f))(t)$. Then $A_{\rho}^P(f)(x) \geq t$. So inf$_{a \in [x]_{\rho}} f(a) \geq t$. Therefore, $f(a) \geq t$ for all $a \in [x]_{\rho}$. This implies $[x]_{\rho} \subseteq f_t^\rho$. Therefore, $x \in A_{\rho}^P(f_t^\rho)$.

Conversely, let us assume that $x \in A_{\rho}^P(f_t^\rho)$. Then $[x]_{\rho} \subseteq f_t^\rho$. Hence $f(a) \geq t$ for all $a \in [x]_{\rho}$. This implies $A_{\rho}^P(f)(x) \geq t$.

Similarly, we can prove the other case. \qed

Theorem 34. Let S be a ternary semihypergroup and ρ be a regular relation on S. If f is a fuzzy ternary subsemihypergroup (fuzzy left hyperideal, fuzzy right hyperideal, fuzzy lateral hyperideal, fuzzy hyperideal) of S, then $A_{\rho}^P(f)$ and $A_{\rho}^P(f)$ are fuzzy ternary subsemihypergroups (fuzzy left hyperideals, fuzzy right hyperideals, fuzzy lateral hyperideals, fuzzy hyperideals) of S.

Proof. It can be obtained easily by Theorems 29, 31, 15, and 17 and Lemma 33. \qed

7. Fuzzy Bi-Hyperideals of Ternary Semihypergroups

Let S be a ternary semihypergroup. A fuzzy subset f of S is called a fuzzy bi-hyperideal of S if $f(x, y, z)$ and $h \in h_{xyz}$, $f(h) \geq \min\{f(x), f(y), f(z)\}$ for all $x, y, z, p, q \in S$.

Theorem 35. Let S be a ternary semihypergroup and A a nonempty subset of S. Then A is a bi-hyperideal of S if and only if f_A is a fuzzy bi-hyperideal of S.

Proof. Let us assume that A is a bi-hyperideal of S. Let $a, b, x, y, z \in S$.

1. $x, y, z \in A$. Since A is a bi-hyperideal of S, then $xy, xaybz \subseteq A$. Therefore $f_A(x, y, z) = 1 \geq \min\{f_A(x), f_A(y), f_A(z)\}$.

2. $x \notin A$ or $y \notin A$ or $z \notin A$. Thus $f_A(x) = 0$ or $f_A(y) = 0$ or $f_A(z) = 0$. Hence $\min\{f_A(x), f_A(y), f_A(z)\} = 0 \leq f_A(x, y, z) = f_A(x, y, z)$.

Let S be a ternary semihypergroup. A bi-hyperideal T of S is called a prime bi-hyperideal of S if T is a prime subset of S. A fuzzy bi-hyperideal f of S is called a prime fuzzy bi-hyperideal of S if f is a prime fuzzy subset of S.

Theorem 36. Let S be a ternary semihypergroup and A a nonempty subset of S. Then A is a prime bi-hyperideal of S if and only if f_A is a prime fuzzy bi-hyperideal of S.

Proof. It follows from Theorems 29 and 35. \qed

Theorem 37. Let S be a ternary semihypergroup and f a fuzzy subset of S. Then f is a fuzzy bi-hyperideal of S if and only if for all $t \in [0, 1]$, if $f_t \neq \emptyset$, then f_t is a bi-hyperideal of S.

Proof. Let us assume that f is a fuzzy bi-hyperideal of S. Let $t \in [0, 1]$ such that $f_t \neq \emptyset$. Let $x, y, z \in f_t$. Then $f(x) \geq t, f(y) \geq t$ and $f(z) \geq t$. Since f is a fuzzy bi-hyperideal of S, $f_{h_{xyz}}(h) \geq \min\{f(x), f(y), f(z)\}$.

Conversely, let us assume that for all $t \in [0, 1]$, if $f_t \neq \emptyset$, then f_t is a bi-hyperideal of S. Let $a, b, x, y, z \in S$. Let we take $t = \min\{f(x), f(y), f(z)\}$. Then $x, y, z \in f_t$. This implies that $f_t \neq \emptyset$. By assumption, we have f_t is a bi-hyperideal of S. So $xyz, xaybz \subseteq f_t$. Therefore, $f_A(x, y, z) \geq t$ and $f_A(x, y, z) \geq t$. Hence $f_{h_{xyz}}(h) \geq \min\{f(x), f(y), f(z)\}$.

Theorem 38. Let S be a ternary semihypergroup and f a fuzzy subset of S. Then f is a prime fuzzy bi-hyperideal of S if and
only if for all $t \in [0, 1]$, if $f_t \neq \emptyset$, then f_t is a prime bi-hyperideal of S.

Proof. It follows from Theorems 31 and 37.

Theorem 39. Let S be a ternary semihypergroup and f a fuzzy subset of S. Then f is a fuzzy bi-hyperideal of S if and only if for all $t \in [0, 1]$, if $f_t^\rho \neq \emptyset$, then f_t^ρ is a prime bi-hyperideal of S.

Proof. The proof is similar to the proof of Theorem 37.

Theorem 40. Let S be a ternary semihypergroup and f a fuzzy subset of S. Then f is a prime bi-hyperideal of S if and only if for all $t \in [0, 1]$, if $f_t^\rho \neq \emptyset$, then f_t^ρ is a prime bi-hyperideal of S.

Proof. It follows from Theorems 31 and 39.

8. Rough Fuzzy Bi-Hyperideals of Ternary Semihypergroups

Theorem 41. Let S be a ternary semihypergroup and ρ be a complete regular relation on S. If f is a fuzzy bi-hyperideal of S, then $\overrightarrow{\text{Pr}}_{\rho}(f)$ and $\overrightarrow{\text{Pr}}_{\rho}(f)$ are fuzzy bi-hyperideals.

Proof. This proof follows from Theorems 37, 39, and 20, and Lemma 33.

Note that if $\overrightarrow{\text{Pr}}_{\rho}(f)$ and $\overrightarrow{\text{Pr}}_{\rho}(f)$ are fuzzy bi-hyperideals of a ternary semihypergroup S in general, f need not be a fuzzy bi-hyperideal of S.

References

Submit your manuscripts at http://www.hindawi.com