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Abstract. 
We introduce the notions of totally continuous functions, totally semicontinuous functions, and semitotally continuous functions in double fuzzy topological spaces. Their characterizations and the relationship with other already known kinds of functions are introduced and discussed.


1. Introduction
The concept of fuzzy sets was introduced by Zadeh in his classical paper [1]. In 1968, Chang [2] used fuzzy sets to introduce the notion of fuzzy topological spaces. Çoker [3, 4] defined the intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Later on, Demirci and Çoker [5] defined intuitionistic fuzzy topological spaces in Kubiak-Šostak’s sense as a generalization of Chang’s fuzzy topological spaces and intuitionistic fuzzy topological spaces. Mondal and Samanta [6] succeeded to make the topology itself intuitionistic. The resulting structure is given the new name “intuitionistic gradation of openness.” The name “intuitionistic” did not continue due to some doubts that were thrown about the suitability of this term. These doubts were quickly ended in 2005 by Gutiérrez García and Rodabaugh [7]. They proved that this term is unsuitable in mathematics and applications. Therefore, they replaced the word “intuitionistic” by “double” and renamed its related topologies. The notion of intuitionistic gradation of openness is given the new name “double fuzzy topological spaces.”
The fuzzy type of the notion of topology can be studied in the fuzzy mathematics, which has many applications in different branches of mathematics and physics theory. For example, fuzzy topological spaces can be applied in the modeling of spatial objects such as rivers, roads, trees, and buildings. Since double fuzzy topology forms an extension of fuzzy topology and general topology, we think that our results can be applied in modern physics and GIS Problems.
Jain et al. introduced totally continuous, fuzzy totally continuous, and intuitionistic fuzzy totally continuous functions in topological spaces, respectively (see [8–11]).
In this paper, we introduce the notions of totally continuous, totally semicontinuous, and semitotally continuous functions in double fuzzy topological spaces and investigate some of their characterizations. Also, we study the relationships between these new classes and other classes of functions in double fuzzy topological spaces.
2. Preliminaries
Throughout this paper, let 
	
		
			

				𝑋
			

		
	
 be a nonempty set and let 
	
		
			

				𝐼
			

		
	
 be the closed interval 
	
		
			
				[
				0
				,
				1
				]
			

		
	
, 
	
		
			

				𝐼
			

			

				0
			

			
				=
				(
				0
				,
				1
				]
			

		
	
 and 
	
		
			

				𝐼
			

			

				1
			

			
				=
				[
				0
				,
				1
				)
			

		
	
. The set of all fuzzy subsets (resp., fuzzy points) of 
	
		
			

				𝑋
			

		
	
 is denoted by 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 (resp., 
	
		
			

				𝑃
			

			

				𝑡
			

			
				(
				𝑋
				)
			

		
	
). For 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
 and 
	
		
			
				𝑡
				∈
				𝐼
			

			

				0
			

		
	
, a fuzzy point is defined by
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑡
			

			
				
				(
				𝑦
				)
				=
				𝑡
				,
				i
				f
				𝑦
				=
				𝑥
				,
				0
				,
				i
				f
				𝑦
				≠
				𝑥
				.
			

		
	

	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝜆
			

		
	
 if and only if 
	
		
			
				𝑡
				≤
				𝜆
				(
				𝑥
				)
			

		
	
. We denote a fuzzy set 
	
		
			

				𝜆
			

		
	
 which is quasicoincident with a fuzzy set 
	
		
			

				𝜇
			

		
	
 by 
	
		
			
				𝜆
				𝑞
				𝜇
			

		
	
, if there exists 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
 such that 
	
		
			
				𝜆
				(
				𝑥
				)
				+
				𝜇
				(
				𝑥
				)
				>
				1
			

		
	
, otherwise, by 
	
		
			

				𝜆
			

			
				
			
			
				𝑞
				𝜇
			

		
	
. Given a function 
	
		
			
				𝑓
				∶
				𝑋
				→
				𝑌
			

		
	
, 
	
		
			
				𝑓
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 are the direct image and the inverse image of 
	
		
			

				𝑓
			

		
	
, respectively, and are defined by 
	
		
			
				𝑓
				(
				𝜆
				)
				(
				𝑦
				)
				=
				∨
			

			
				𝑓
				(
				𝑥
				)
				=
				𝑦
			

			
				𝜆
				(
				𝑥
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				(
				𝑥
				)
				=
				𝜇
				(
				𝑓
				(
				𝑥
				)
				)
			

		
	
 for each 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, and 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
, respectively.
Definition 1 (see [12, 13]). The pair of functions 
	
		
			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				∶
				𝐼
			

			

				𝑋
			

			
				→
				𝐼
			

		
	
 is called a double fuzzy topology on 
	
		
			

				𝑋
			

		
	
 if it satisfies the following conditions. (O1)
	
		
			
				𝜏
				(
				𝜆
				)
				≤
				1
				−
				𝜏
			

			

				∗
			

			
				(
				𝜆
				)
			

		
	
 for each 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
.(O2)
	
		
			
				𝜏
				(
				𝜆
			

			

				1
			

			
				∧
				𝜆
			

			

				2
			

			
				)
				≥
				𝜏
				(
				𝜆
			

			

				1
			

			
				)
				∧
				𝜏
				(
				𝜆
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			

				𝜏
			

			

				∗
			

			
				(
				𝜆
			

			

				1
			

			
				∧
				𝜆
			

			

				2
			

			
				)
				≤
				𝜏
			

			

				∗
			

			
				(
				𝜆
			

			

				1
			

			
				)
				∨
				𝜏
			

			

				∗
			

			
				(
				𝜆
			

			

				2
			

			

				)
			

		
	
 for each 
	
		
			

				𝜆
			

			

				1
			

		
	
, 
	
		
			

				𝜆
			

			

				2
			

			
				∈
				𝐼
			

			

				𝑋
			

		
	
.(O3)
	
		
			
				𝜏
				(
				∨
			

			
				𝑖
				∈
				Γ
			

			
				)
				≥
				∧
			

			
				𝑖
				∈
				Γ
			

			
				𝜏
				(
				𝜆
			

			

				𝑖
			

			

				)
			

		
	
 and 
	
		
			

				𝜏
			

			

				∗
			

			
				(
				∨
			

			
				𝑖
				∈
				Γ
			

			
				)
				≤
				∨
			

			
				𝑖
				∈
				Γ
			

			

				𝜏
			

			

				∗
			

			
				(
				𝜆
			

			

				𝑖
			

			

				)
			

		
	
 for any 
	
		
			
				{
				𝜆
			

			

				𝑖
			

			

				}
			

			
				𝑖
				∈
				Γ
			

			
				⊂
				𝐼
			

			

				𝑋
			

		
	
.The triplet 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 is called a double fuzzy topological space (dfts, for short). 
	
		
			
				𝜏
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝜏
			

			

				∗
			

			
				(
				𝜆
				)
			

		
	
 may be interpreted as a gradation of openness and gradation of nonopenness for 
	
		
			

				𝜆
			

		
	
. A function 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is said to be a double fuzzy continuous (briefly, dfc) if 
	
		
			

				𝜏
			

			

				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				≥
				𝜏
			

			

				2
			

			
				(
				𝜇
				)
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				≤
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
			

		
	
 for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
.
Theorem 2 (see [12–14]).  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 be a dfts. Then, for each 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
, and 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, we define an operator 
	
		
			

				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				∶
				𝐼
			

			

				𝑋
			

			
				×
				𝐼
			

			

				0
			

			
				×
				𝐼
			

			

				1
			

			
				→
				𝐼
			

			

				𝑋
			

		
	
 as follows:
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				=
				
				
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				𝜇
				∈
				𝐼
			

			

				𝑋
			

			
				
				1
				∣
				𝜆
				≤
				𝜇
				,
				𝜏
			

			
				
			
			
				
				−
				𝜇
				≥
				𝑟
				,
				𝜏
			

			

				∗
			

			
				
				1
			

			
				
			
			
				
				
				.
				−
				𝜇
				≤
				𝑠
			

		
	

						For 
	
		
			
				𝜆
				,
				𝜇
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				,
				𝑟
			

			

				1
			

			
				,
				𝑟
			

			

				2
			

			
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				,
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				∈
				𝐼
			

			

				1
			

		
	
, the operator 
	
		
			

				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

		
	
 satisfies the following statements. (C1)
	
		
			

				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				0
			

			
				
			
			
				,
				𝑟
				,
				𝑠
				)
				=
				0
			

			
				
			
		
	
.(C2)
	
		
			
				𝜆
				≤
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
			

		
	
.(C3)
	
		
			

				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				∨
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				=
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				∨
				𝜇
				,
				𝑟
				,
				𝑠
				)
			

		
	
.(C4)
	
		
			

				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
			

			

				1
			

			
				,
				𝑠
			

			

				1
			

			
				)
				≤
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
			

			

				2
			

			
				,
				𝑠
			

			

				2
			

			

				)
			

		
	
 if 
	
		
			

				𝑟
			

			

				1
			

			
				≤
				𝑟
			

			

				2
			

		
	
 and 
	
		
			

				𝑠
			

			

				1
			

			
				≥
				𝑠
			

			

				2
			

		
	
.(C5)
	
		
			

				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				)
				=
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
			

		
	
.
Theorem 3 (see [12–14]).  Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 be a dfts. Then, for each 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
, and 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, we define an operator 
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				∶
				𝐼
			

			

				𝑋
			

			
				×
				𝐼
			

			

				1
			

			
				×
				𝐼
			

			

				0
			

			
				→
				𝐼
			

			

				𝑋
			

		
	
 as follows:
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				
				
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				=
				𝜇
				∈
				𝐼
			

			

				𝑋
			

			
				∣
				𝜇
				≤
				𝜆
				,
				𝜏
				(
				𝜇
				)
				≥
				𝑟
				,
				𝜏
			

			

				∗
			

			
				
				.
				(
				𝜇
				)
				≤
				𝑠
			

		
	

						For 
	
		
			
				𝜆
				,
				𝜇
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				,
				𝑟
			

			

				1
			

			
				,
				𝑟
			

			

				2
			

			
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				,
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				∈
				𝐼
			

			

				1
			

		
	
, the operator 
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

		
	
 satisfies the following statements. (I1)
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				1
			

			
				
			
			
				−
				𝜆
				,
				𝑟
				,
				𝑠
				)
				=
				1
			

			
				
			
			
				−
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
			

		
	
.(I2)
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				1
			

			
				
			
			
				,
				𝑟
				,
				𝑠
				)
				=
				1
			

			
				
			
		
	
.(I3)
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				≤
				𝜆
			

		
	
.(I4)
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				∧
				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				=
				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				∧
				𝜇
				,
				𝑟
				,
				𝑠
				)
			

		
	
.(I5)
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
			

			

				1
			

			
				,
				𝑠
			

			

				1
			

			
				)
				≥
				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
			

			

				2
			

			
				,
				𝑠
			

			

				2
			

			

				)
			

		
	
 if 
	
		
			

				𝑟
			

			

				1
			

			
				≤
				𝑟
			

			

				2
			

		
	
 and 
	
		
			

				𝑠
			

			

				1
			

			
				≥
				𝑠
			

			

				2
			

		
	
.(I6)
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				)
				=
				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
			

		
	
.(I7)If 
	
		
			

				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				)
				=
				𝜆
			

		
	
, then 
	
		
			

				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				1
			

			
				
			
			
				−
				𝜆
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				)
				=
				1
			

			
				
			
			
				−
				𝜆
			

		
	
.
Definition 4 (see [12, 15]). Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 be a dfts, 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. A fuzzy set 
	
		
			

				𝜆
			

		
	
 is called: (1)an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy semiopen (for short, 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso) if 
	
		
			
				𝜆
				≤
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
			

		
	
). A fuzzy set 
	
		
			

				𝜆
			

		
	
 is called 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy semiclosed (for short, 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc) if 
	
		
			

				1
			

			
				
			
			
				−
				𝜆
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy semiopen set,(2)an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy preopen (for short, 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fpo) if 
	
		
			
				𝜆
				≤
				𝐼
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
			

		
	
). A fuzzy set 
	
		
			

				𝜆
			

		
	
 is called 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy preclosed (for short, 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fpc) if 
	
		
			

				1
			

			
				
			
			
				−
				𝜆
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy preopen set.
Definition 5 (see [16]). Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 be a dfts, 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝑃
			

			

				𝑡
			

			
				(
				𝑋
				)
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. A fuzzy set 
	
		
			

				𝜆
			

		
	
 is called 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy 
	
		
			

				𝑄
			

		
	
-neighborhood of 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
, if 
	
		
			
				𝜏
				(
				𝜆
				)
				≥
				𝑟
			

		
	
, 
	
		
			

				𝜏
			

			

				∗
			

			
				(
				𝜆
				)
				≤
				𝑠
			

		
	
, and 
	
		
			

				𝑥
			

			

				𝑡
			

			
				𝑞
				𝜆
			

		
	
.
Definition 6. Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function between dfts’s 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
. Then 
	
		
			

				𝑓
			

		
	
 is called: (1)double fuzzy open [15], if 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝑓
				(
				𝜆
				)
				)
				≥
				𝜏
			

			

				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝑓
				(
				𝜆
				)
				)
				≤
				𝜏
			

			
				∗
				1
			

			
				(
				𝜆
				)
			

		
	
, for each 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
;(2)double fuzzy closed [6] if 
	
		
			

				𝜏
			

			

				2
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
				(
				𝜆
				)
				)
				≥
				𝜏
			

			

				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜆
				)
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
				(
				𝜆
				)
				)
				≤
				𝜏
			

			
				∗
				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜆
				)
			

		
	
, for each 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Definition 7 (see [15]). Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 be a dfts, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. The two fuzzy sets 
	
		
			

				𝜆
			

		
	
, 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑋
			

		
	
 are said to be 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy separated if and only if 
	
		
			

				𝜆
			

			
				
			
			
				𝑞
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
			

		
	
 and 
	
		
			

				𝜇
			

			
				
			
			
				𝑞
				𝐶
			

			
				𝜏
				,
				𝜏
			

			

				∗
			

			
				(
				𝜆
				,
				𝑟
				,
				𝑠
				)
			

		
	
. A fuzzy set which cannot be expressed as a union of any two 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy separated sets is said to be 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy connected.
3. Totally Continuous and Totally Semicontinuous Functions in Double Fuzzy Topological Spaces
In this section, some new classes of functions are introduced. Their characterizations and relationship with other functions are introduced.
Definition 8. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 be a dfts, 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. A fuzzy set 
	
		
			

				𝜆
			

		
	
 is called: (1)an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy semiclopen (for short, 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco) if 
	
		
			

				𝜆
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set and 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set;(2)an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fuzzy preclopen (for short, 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fpco) if 
	
		
			

				𝜆
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fpo set and 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fpc set.
Definition 9. Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function between dfts’s 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
. Then 
	
		
			

				𝑓
			

		
	
 is called: (1)double fuzzy totally continuous (briefly, dftc) if 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco, for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
,(2)double fuzzy totally semicontinuous (briefly, dftsc) if 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco, for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
,(3)double fuzzy totally precontinuous (briefly, dftpc) if 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fpco, for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
,(4)double fuzzy semicontinuous (briefly, dfsc) if 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso, for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
,(5)double fuzzy semiopen if 
	
		
			
				𝑓
				(
				𝜆
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fo set 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
,(6)double fuzzy semiclosed if 
	
		
			
				𝑓
				(
				𝜆
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc set 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Remark 10. A fuzzy set 
	
		
			

				𝜆
			

		
	
 in a dfts 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco if and only if it is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco and 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fpco set, where 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
 and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Theorem 11.  Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function. Then the following are equivalent: (1)
	
		
			

				𝑓
			

		
	
 is a dftc function,(2)
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
				≤
				𝑠
			

		
	
,(3)
	
		
			

				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
				)
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
				,
				𝑟
				,
				𝑠
				)
			

		
	
 for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
(4)
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
				,
				𝑟
				,
				𝑠
				)
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Proof. 
	
		
			
				(
				1
				)
				⇒
				(
				2
				)
			

		
	
: Let 
	
		
			

				𝜏
			

			

				2
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
				≤
				𝑠
			

		
	
. By using (1), 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Since
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝜏
			

			

				1
			

			
				
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				
				(
				𝜇
				)
				=
				𝜏
			

			

				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				𝜏
				−
				𝜇
				
				
				≥
				𝑟
				,
			

			
				∗
				1
			

			
				
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				
				(
				𝜇
				)
				=
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				𝜏
				−
				𝜇
				
				
				≤
				𝑠
				,
			

			

				1
			

			
				
				1
			

			
				
			
			
				−
				
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				
				
				=
				𝜏
			

			

				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				−
				
				1
			

			
				
			
			
				−
				𝜇
				
				
				
				=
				𝜏
			

			

				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝜏
				(
				𝜇
				)
				≥
				𝑟
				,
			

			
				∗
				1
			

			
				
				1
			

			
				
			
			
				−
				
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				
				
				=
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				−
				
				1
			

			
				
			
			
				−
				𝜇
				
				
				
				=
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				(
				𝜇
				)
				≤
				𝑠
				,
			

		
	

						thus 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
.
	
		
			
				(
				2
				)
				⇒
				(
				3
				)
			

		
	
: Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
. Then, 
	
		
			

				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
. By (2), 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Hence,
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
				≤
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				=
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				.
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
			

		
	

						Again by using 
	
		
			
				(
				2
				)
			

		
	
,
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				≤
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				=
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				.
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				
				
			

		
	

	
		
			
				(
				3
				)
				⇒
				(
				4
				)
			

		
	
: Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
. By using 
	
		
			
				(
				3
				)
			

		
	
, we have
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				1
			

			
				
			
			
				
				
				−
				𝜇
				,
				𝑟
				,
				𝑠
				≥
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				
				
				−
				𝜇
				,
				𝑟
				,
				𝑠
				=
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				
				.
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
			

		
	

						Hence, 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				=
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				−
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				1
			

			
				
			
			
				
				−
				𝜇
				,
				𝑟
				,
				𝑠
				
				
				=
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				1
			

			
				
			
			
				
				
				−
				𝜇
				,
				𝑟
				,
				𝑠
				≤
				1
			

			
				
			
			
				−
				
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				
				
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
				=
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				.
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
			

		
	

						By using (3), we have 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				1
			

			
				
			
			
				
				
				−
				𝜇
				,
				𝑟
				,
				𝑠
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				1
			

			
				
			
			
				
				
				
				−
				𝜇
				,
				𝑟
				,
				𝑠
				,
				𝑟
				,
				𝑠
				=
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				−
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				=
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				1
			

			
				
			
			
				−
				
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				.
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
			

		
	

						Hence, 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				
				−
				𝜇
				≥
				1
			

			
				
			
			
				−
				
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				
				=
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				
				.
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
			

		
	

	
		
			
				(
				4
				)
				⇒
				(
				1
				)
			

		
	
: Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
 such that 
	
		
			
				𝜇
				=
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
			

		
	
. By using (4), we have
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				.
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
			

		
	

						Hence, 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
				)
			

		
	
; that is, 
	
		
			

				𝜏
			

			

				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				≤
				𝑠
			

		
	
. By using (4), we have
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				≥
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				=
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				.
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
			

		
	

						Hence, 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				(
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
				)
				)
			

		
	
; that is, 
	
		
			

				𝜏
			

			

				1
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				1
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				≤
				𝑠
			

		
	
. Therefore 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Thus, 
	
		
			

				𝑓
			

		
	
 is dftc function.
Definition 12. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 be a dfts. Then, it is called: (1)double fuzzy semiregular (resp., double fuzzy clopen regular) if, for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc (resp., 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco) set 
	
		
			

				𝜈
			

		
	
 of 
	
		
			

				𝐼
			

			

				𝑥
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 and each fuzzy point 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∉
				𝜈
			

		
	
, there exist disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso (resp., 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fo) sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝜈
				≤
				𝜆
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝜇
			

		
	
,(2)double fuzzy s-regular (resp., double fuzzy ultraregular) if, for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc set 
	
		
			

				𝜈
			

		
	
 of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 and each 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∉
				𝜈
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
, there exist disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso (resp., 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco) sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝜈
				≤
				𝜆
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝜇
			

		
	
,(3)double fuzzy s-normal if, for each pair of nonzero disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc sets can be separated by disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
 and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
,(4)double fuzzy clopen normal if, for each pair of disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
, there exist two disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fo sets 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
 and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝜆
				≤
				𝛼
			

		
	
 and 
	
		
			
				𝜇
				≤
				𝛽
			

		
	
.
Theorem 13.  If 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is dftc injective semiopen function from a double fuzzy clopen regular space 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 onto a double fuzzy space 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
, then 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-regular.
Proof. Suppose 
	
		
			

				𝛽
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑦
				∉
				𝛽
			

		
	
, and 
	
		
			

				𝑓
			

		
	
 is dftc; 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝛽
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
, for each 
	
		
			
				𝛽
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝛽
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝛽
				)
				≤
				𝑠
			

		
	
. Put 
	
		
			
				𝑦
				=
				𝑓
				(
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
 and 
	
		
			
				𝛼
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝛽
				)
			

		
	
; then 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∉
				𝛼
			

		
	
. Since 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy clopen regular, then there exist disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fo sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝛼
				≤
				𝜆
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝜇
			

		
	
. This implies
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				
				𝑥
				𝛽
				=
				𝑓
				(
				𝛼
				)
				≤
				𝑓
				(
				𝜆
				)
				,
				𝑦
				=
				𝑓
			

			

				𝑡
			

			
				
				≤
				𝑓
				(
				𝜇
				)
				.
			

		
	

						But 
	
		
			

				𝑓
			

		
	
 is injective and double fuzzy semiopen, so
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				0
				𝑓
				(
				𝜆
				)
				∧
				𝑓
				(
				𝜇
				)
				=
				𝑓
				(
				𝜆
				∧
				𝜇
				)
				=
				𝑓
			

			
				
			
			
				
				=
				0
			

			
				
			
			

				,
			

		
	

						and 
	
		
			
				𝑓
				(
				𝜆
				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝜇
				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. Therefore 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-regular.
Theorem 14.  If 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is dftc injective semiopen function from a double fuzzy clopen normal space 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 onto a double fuzzy space 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
, then 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-normal.
Proof. Suppose 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
 are any two disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc sets in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is dftc, 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝛼
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝛽
				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco subsets of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
, for each 
	
		
			

				𝛼
			

		
	
 and 
	
		
			
				𝛽
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝛼
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝛼
				)
				≤
				𝑠
			

		
	
, 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝛽
				)
				≥
				𝑟
			

		
	
, and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝛽
				)
				≤
				𝑠
			

		
	
. Put 
	
		
			
				𝜆
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝛼
				)
			

		
	
 and 
	
		
			
				𝜇
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝛽
				)
			

		
	
 and 
	
		
			

				𝑓
			

		
	
 is injective, so
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝜆
				∧
				𝜇
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝛼
				)
				∧
				𝑓
			

			
				−
				1
			

			
				(
				𝛽
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝛼
				∧
				𝛽
				)
				=
				𝑓
			

			
				−
				1
			

			
				
				0
			

			
				
			
			
				
				=
				0
			

			
				
			
			

				.
			

		
	

						Now, 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy clopen normal; then there exist disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fo sets 
	
		
			

				𝛿
			

			

				1
			

		
	
 and 
	
		
			

				𝛿
			

			

				2
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
 and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝜆
				≤
				𝛿
			

			

				1
			

		
	
 and 
	
		
			
				𝜇
				≤
				𝛿
			

			

				2
			

		
	
 which implies 
	
		
			
				𝛼
				=
				𝑓
				(
				𝜆
				)
				≤
				𝑓
				(
				𝛿
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				𝛽
				=
				𝑓
				(
				𝜇
				)
				≤
				𝑓
				(
				𝛿
			

			

				2
			

			

				)
			

		
	
, also by the hypothesis of 
	
		
			

				𝑓
			

		
	
 being injective double fuzzy semiopen we have 
	
		
			
				𝑓
				(
				𝛿
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝛿
			

			

				2
			

			

				)
			

		
	
 which are disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets. Therefore 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-normal.
Theorem 15.  Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be dftc, closed injective function. If 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-regular, then 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultraregular.
Proof. Suppose 
	
		
			

				𝛽
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc set not containing 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 and 
	
		
			

				𝑓
			

		
	
 is double fuzzy closed function, so 
	
		
			

				𝜏
			

			

				2
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
				(
				𝛽
				)
				)
				≥
				𝜏
			

			

				1
			

			
				(
				1
			

			
				
			
			
				−
				𝛽
				)
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
				(
				𝛽
				)
				)
				≤
				𝜏
			

			
				∗
				1
			

			
				(
				1
			

			
				
			
			
				−
				𝛽
				)
			

		
	
, for each 
	
		
			
				𝛽
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝛽
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
 not containing 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
. But 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-regular; then there exist disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑡
			

			
				)
				≤
				𝜆
			

		
	
 and 
	
		
			
				𝑓
				(
				𝛽
				)
				≤
				𝜇
			

		
	
. This implies
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
				,
				𝛽
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				.
			

		
	

						But 
	
		
			

				𝑓
			

		
	
 is dftc, so 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco, for each 
	
		
			

				𝜆
			

		
	
 and 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜆
				)
				≥
				𝑟
			

		
	
, 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜆
				)
				≤
				𝑠
			

		
	
, 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
, and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
 such that 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco sets in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Also 
	
		
			

				𝑓
			

		
	
 is injective; then
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				0
				𝑓
				(
				𝜆
				)
				∧
				𝑓
				(
				𝜇
				)
				=
				𝑓
				(
				𝜆
				∧
				𝜇
				)
				=
				𝑓
			

			
				
			
			
				
				=
				0
			

			
				
			
			

				.
			

		
	

						Therefore, 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultraregular.
Theorem 16.  Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function. Then the following are equivalent: (1)
	
		
			

				𝑓
			

		
	
 is a dftsc function,(2)
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
				≤
				𝑠
			

		
	
,(3)
	
		
			

				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
				)
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
				,
				𝑟
				,
				𝑠
				)
			

		
	
 for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
(4)
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				,
				𝑟
				,
				𝑠
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				)
				,
				𝑟
				,
				𝑠
				)
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 for each 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Proof. This proof is similar to the proof of Theorem 11.
Theorem 17.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be dft’s. A function 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is dftc if and only if 
	
		
			

				𝑓
			

		
	
 is dftsc and dftpc.
Proof. Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
; then 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco set and 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fpco. From Remark 10, 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Therefore, 
	
		
			

				𝑓
			

		
	
 is dftc.The completion of the proof is straightforward.
Theorem 18.  Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function. Then one has the following: (1)if 
	
		
			

				𝑓
			

		
	
 is dftc function, then 
	
		
			

				𝑓
			

		
	
 is dftsc;(2)if 
	
		
			

				𝑓
			

		
	
 is dftsc function, then 
	
		
			

				𝑓
			

		
	
 is dfsc.
Proof. (1) Let 
	
		
			

				𝑓
			

		
	
 be a dftc function, 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				0
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
. By hypothesis, 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Therefore 
	
		
			

				𝑓
			

		
	
 is a dftsc function.(2) Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
. By the hypothesis, 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Hence 
	
		
			

				𝑓
			

		
	
 is a dfsc function.
The converse of the above theorem need not be true in general as shown by the following example.
Example 19. (1) Let 
	
		
			
				𝑋
				=
				{
				𝑎
				,
				𝑏
				,
				𝑐
				}
			

		
	
 and 
	
		
			
				𝑌
				=
				{
				𝑥
				,
				𝑦
				,
				𝑧
				}
			

		
	
. Define fuzzy sets 
	
		
			

				𝜆
			

			

				1
			

		
	
, 
	
		
			

				𝜆
			

			

				2
			

		
	
, and 
	
		
			

				𝜇
			

			

				1
			

		
	
 as follows:
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝜆
			

			

				1
			

			
				(
				𝑎
				)
				=
				0
				.
				4
				,
				𝜆
			

			

				1
			

			
				(
				𝑏
				)
				=
				0
				.
				3
				,
				𝜆
			

			

				1
			

			
				𝜆
				(
				𝑐
				)
				=
				0
				.
				2
				,
			

			

				2
			

			
				(
				𝑎
				)
				=
				𝜇
			

			

				1
			

			
				(
				𝑥
				)
				=
				0
				.
				6
				,
				𝜆
			

			

				2
			

			
				(
				𝑏
				)
				=
				𝜇
			

			

				1
			

			
				𝜆
				(
				𝑦
				)
				=
				0
				.
				7
				,
			

			

				2
			

			
				(
				𝑐
				)
				=
				𝜇
			

			

				1
			

			
				(
				𝑧
				)
				=
				0
				.
				8
				.
			

		
	
Let 
	
		
			
				(
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be defined as follows:
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝜏
			

			

				1
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝜆
				)
				=
				1
				,
				i
				f
				𝜆
				=
				0
			

			
				
			
			
				o
				r
				1
			

			
				
			
			
				;
				1
			

			
				
			
			
				2
				,
				i
				f
				𝜆
				=
				𝜆
			

			

				1
			

			
				;
				𝜏
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

			
				∗
				1
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝜆
				)
				=
				0
				,
				i
				f
				𝜆
				=
				0
			

			
				
			
			
				o
				r
				1
			

			
				
			
			
				;
				1
			

			
				
			
			
				2
				,
				i
				f
				𝜆
				=
				𝜆
			

			

				1
			

			
				;
				𝜏
				1
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

			

				2
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝜇
				)
				=
				1
				,
				i
				f
				𝜇
				=
				0
			

			
				
			
			
				o
				r
				1
			

			
				
			
			
				;
				1
			

			
				
			
			
				2
				,
				i
				f
				𝜇
				=
				𝜇
			

			

				1
			

			
				;
				𝜏
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

			
				∗
				2
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝜇
				)
				=
				0
				,
				i
				f
				𝜇
				=
				0
			

			
				
			
			
				o
				r
				1
			

			
				
			
			
				;
				1
			

			
				
			
			
				2
				,
				i
				f
				𝜇
				=
				𝜇
			

			

				1
			

			
				;
				1
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				.
			

		
	
Then the function 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is defined by
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑎
				)
				=
				𝑥
				,
				𝑓
				(
				𝑏
				)
				=
				𝑦
				,
				𝑓
				(
				𝑐
				)
				=
				𝑧
				.
			

		
	
Since 
	
		
			

				𝜇
			

			

				1
			

		
	
 is an 
	
		
			
				(
				1
				/
				2
				,
				1
				/
				2
				)
			

		
	
-fo set and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
			

			

				1
			

			
				)
				=
				𝜆
			

			

				2
			

		
	
 is an 
	
		
			
				(
				1
				/
				2
				,
				1
				/
				2
				)
			

		
	
-fsco set not 
	
		
			
				(
				1
				/
				2
				,
				1
				/
				2
				)
			

		
	
-fco set, then 
	
		
			

				𝑓
			

		
	
 is dftsc but not dftc.(2) in (1) define 
	
		
			

				𝜆
			

			

				1
			

		
	
 and 
	
		
			

				𝜇
			

			

				1
			

		
	
 as follows:
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝜆
			

			

				1
			

			
				(
				𝑎
				)
				=
				0
				.
				2
				,
				𝜆
			

			

				1
			

			
				(
				𝑏
				)
				=
				0
				.
				3
				,
				𝜆
			

			

				1
			

			
				𝜇
				(
				𝑐
				)
				=
				0
				.
				2
				,
			

			

				1
			

			
				(
				𝑥
				)
				=
				0
				.
				2
				,
				𝜇
			

			

				1
			

			
				(
				𝑦
				)
				=
				0
				.
				4
				,
				𝜇
			

			

				1
			

			
				(
				𝑧
				)
				=
				0
				.
				2
				.
			

		
	
So 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
			

			

				1
			

			
				)
				=
				𝜆
			

			

				1
			

		
	
 is 
	
		
			
				(
				1
				/
				2
				,
				1
				/
				2
				)
			

		
	
-fso set in 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and not 
	
		
			
				(
				1
				/
				2
				,
				1
				/
				2
				)
			

		
	
-fsco set; that is, 
	
		
			

				𝑓
			

		
	
 is not dftsc.
Definition 20. Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function between dfts’s 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
. Then 
	
		
			

				𝑓
			

		
	
 is called: (1)double fuzzy irresolute (dfir, for short) if 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set, for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.(2)double fuzzy semi-irresolute (dfsir, for short) if 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco, for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco set 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Theorem 21.  If a function 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is a dfsir function and 
	
		
			
				𝑔
				∶
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				)
				→
				(
				𝑍
				,
				𝜏
			

			

				3
			

			
				,
				𝜏
			

			
				∗
				3
			

			

				)
			

		
	
 is dftc (dftsc) function, then 
	
		
			
				𝑔
				∘
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑍
				,
				𝜏
			

			

				3
			

			
				,
				𝜏
			

			
				∗
				3
			

			

				)
			

		
	
 is dftsc function.
Proof. Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑍
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				3
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				3
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
. Since 
	
		
			

				𝑔
			

		
	
 is a dftc (dftsc, resp.) function, 
	
		
			

				𝑔
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco (
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco, resp.) set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
. Also, since 
	
		
			

				𝑓
			

		
	
 is a dfsir function, 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝑔
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Since 
	
		
			
				(
				𝑔
				∘
				𝑓
				)
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝑔
			

			
				−
				1
			

			
				)
				(
				𝜇
				)
			

		
	
, 
	
		
			
				(
				𝑔
				∘
				𝑓
				)
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Therefore, 
	
		
			
				𝑔
				∘
				𝑓
			

		
	
 is a dftsc function.
4. Semitotally Continuous Functions in Double Fuzzy Topological Spaces
Now, we introduce the concept of semitotally continuous function which is stronger than totally continuous function in double fuzzy topological spaces, and then we investigate some characteristic properties.
Definition 22. Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function between dfts’s 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
; then 
	
		
			

				𝑓
			

		
	
 is called double fuzzy semitotally continuous function (briefly, dfstc) if 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco, for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Theorem 23.  Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function between dfts’s 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
. Then the following are equivalent: (1)
	
		
			

				𝑓
			

		
	
 is a dfstc function,(2)for each 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝐼
			

			

				𝑋
			

		
	
 and each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
, and 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑡
			

			
				)
				≤
				𝜇
			

		
	
, there exists an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑋
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝜆
			

		
	
 and 
	
		
			
				𝑓
				(
				𝜆
				)
				≤
				𝜇
			

		
	
.
Proof. 
	
		
			
				(
				1
				)
				⇒
				(
				2
				)
			

		
	
: Suppose 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is dfstc and 
	
		
			

				𝜇
			

		
	
 is any 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
 containing 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 so that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
. Take 
	
		
			
				𝜆
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
; then 
	
		
			

				𝜆
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝜆
			

		
	
, since 
	
		
			

				𝑓
			

		
	
 is dfstc and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Also
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				𝑓
				𝑓
				(
				𝜆
				)
				=
				𝑓
			

			
				−
				1
			

			
				
				(
				𝜇
				)
				≤
				𝜇
				.
			

		
	

						This implies 
	
		
			
				𝑓
				(
				𝜆
				)
				≤
				𝜇
			

		
	
.
	
		
			
				(
				2
				)
				⇒
				(
				1
				)
			

		
	
: Suppose 
	
		
			

				𝜇
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 and let 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 be any fuzzy point; then 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑡
			

			
				)
				≤
				𝜇
			

		
	
. Therefore, by hypothesis, there is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set 
	
		
			
				𝑓
				(
				𝜆
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
 containing 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑡
			

			
				)
				≤
				𝜇
			

		
	
, so
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝜆
				𝑥
			

			

				𝑡
			

			
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	

						which implies that 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco of 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
 and 
	
		
			
				𝜏
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			

				∗
			

			
				(
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				≤
				𝑠
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑡
			

			
				𝑞
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
. Hence it is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Therefore, 
	
		
			

				𝑓
			

		
	
 is dfstc function.
Theorem 24.  Let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function. Then the following are equivalent: (1)
	
		
			

				𝑓
			

		
	
 is a dfstc function,(2)
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
,(3)
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				,
				𝑟
				,
				𝑠
				≤
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				,
				𝑓
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
			

			
				−
				1
			

			
				(
				𝜇
				)
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				,
				𝑟
				,
				𝑠
			

		
	

									for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
,(4)
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				,
				𝐶
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				,
				𝑟
				,
				𝑠
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				,
				𝑟
				,
				𝑠
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	

									for each 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Proof. 
	
		
			
				(
				1
				)
				⇒
				(
				2
				)
			

		
	
: Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
 be 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. Then 
	
		
			

				1
			

			
				
			
			
				−
				𝜇
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set. By definition, 
	
		
			

				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. This implies that 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set.
	
		
			
				(
				2
				)
				⇒
				(
				3
				)
			

		
	
: Let 
	
		
			
				𝜆
				∈
				𝐼
			

			

				𝑌
			

		
	
 be an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
; then 
	
		
			

				1
			

			
				
			
			
				−
				𝜆
				≤
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝜆
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				)
			

		
	
. Since 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 hence 
	
		
			

				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set. Take 
	
		
			

				1
			

			
				
			
			
				−
				𝜆
				=
				𝜇
			

		
	
; then by using (3),
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				≤
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				≤
				𝐼
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				.
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				,
				𝑟
				,
				𝑠
			

		
	

	
		
			
				(
				3
				)
				⇒
				(
				4
				)
			

		
	
: Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
 be an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
; then 
	
		
			

				1
			

			
				
			
			
				−
				𝜇
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso and
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				
				−
				𝜇
				≤
				𝑓
			

			
				−
				1
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				1
			

			
				
			
			
				
				;
				−
				𝜇
				,
				𝑟
				,
				𝑠
				,
				𝑟
				,
				𝑠
				
				
			

		
	

						that is,
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				≥
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				.
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
			

		
	

						But 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set; then
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				≥
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				.
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				,
				𝑟
				,
				𝑠
			

		
	

	
		
			
				(
				4
				)
				⇒
				(
				1
				)
			

		
	
: Let 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
 be an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
; then
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				≥
				𝐶
			

			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				
				𝑓
			

			
				−
				1
			

			
				
				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				
				.
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				,
				𝑟
				,
				𝑠
				
				
				,
				𝑟
				,
				𝑠
			

		
	

						But 
	
		
			

				𝐶
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				,
				𝑟
				,
				𝑠
				)
				=
				1
			

			
				
			
			
				−
				𝐼
			

			

				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				,
				𝑟
				,
				𝑠
				)
			

		
	
, and 
	
		
			

				1
			

			
				
			
			
				−
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set. Thus, inverse image of every 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Therefore, 
	
		
			

				𝑓
			

		
	
 is dfstc function.
Theorem 25.  Every dfstc function is a dftc function.
Proof. Suppose 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is a dfstc function and 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
. Since 
	
		
			

				𝜇
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
 and 
	
		
			

				𝑓
			

		
	
 is dfstc function, it follows that 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Thus inverse image of every 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Therefore 
	
		
			

				𝑓
			

		
	
 is dftc function.
The converse of the theorem need not be true in general as shown by the following example.
Example 26. See Example 19 (1) with 
	
		
			

				𝜇
			

			

				1
			

		
	
 and take 
	
		
			

				𝜆
			

			

				1
			

			
				(
				𝑎
				)
				=
				𝜆
			

			

				1
			

			
				(
				𝑏
				)
				=
				𝜆
			

			

				1
			

			
				(
				𝑐
				)
				=
				0
				.
				5
			

		
	
. Clearly 
	
		
			

				𝑓
			

		
	
 is dftc, but not dfstc.
Theorem 27.  Every dfstc function is a dftsc function.
Proof. Suppose 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is a dfstc function, 
	
		
			
				𝜇
				∈
				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			

				𝜏
			

			

				2
			

			
				(
				𝜇
				)
				≥
				𝑟
			

		
	
 and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				𝜇
				)
				≤
				𝑠
			

		
	
.  Since 
	
		
			

				𝜇
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			

				𝑓
			

		
	
 is dfstc function. It follows that 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set and hence 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsco in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Thus 
	
		
			

				𝑓
			

		
	
 is dftsc. 
The converse of the above need not be true as shown by the following example.
Example 28. Let 
	
		
			
				𝑋
				=
				{
				𝑎
				,
				𝑏
				,
				𝑐
				}
			

		
	
 and 
	
		
			
				𝑌
				=
				{
				𝑥
				,
				𝑦
				,
				𝑧
				}
			

		
	
 define 
	
		
			

				𝜆
			

			

				1
			

		
	
 and 
	
		
			

				𝜇
			

			

				1
			

		
	
 as follows:
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝜆
			

			

				1
			

			
				(
				𝑎
				)
				=
				0
				.
				4
				,
				𝜆
			

			

				1
			

			
				(
				𝑏
				)
				=
				0
				.
				3
				,
				𝜆
			

			

				1
			

			
				𝜇
				(
				𝑐
				)
				=
				0
				.
				2
				,
			

			

				1
			

			
				(
				𝑥
				)
				=
				0
				.
				3
				,
				𝜇
			

			

				1
			

			
				(
				𝑦
				)
				=
				0
				.
				4
				,
				𝜇
			

			

				1
			

			
				(
				𝑧
				)
				=
				0
				.
				5
				.
			

		
	

						Define 
	
		
			
				(
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 on 
	
		
			

				𝑋
			

		
	
 as follows:
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝜏
			

			

				1
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝜆
				)
				=
				1
				,
				i
				f
				𝜆
				=
				0
			

			
				
			
			
				o
				r
				1
			

			
				
			
			
				;
				1
			

			
				
			
			
				2
				,
				i
				f
				𝜆
				=
				𝜆
			

			

				1
			

			
				;
				𝜏
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

			
				∗
				1
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝜆
				)
				=
				0
				,
				i
				f
				𝜆
				=
				0
			

			
				
			
			
				o
				r
				1
			

			
				
			
			
				;
				1
			

			
				
			
			
				2
				,
				i
				f
				𝜆
				=
				𝜆
			

			

				1
			

			
				;
				𝜏
				1
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

			

				2
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝜇
				)
				=
				1
				,
				i
				f
				𝜇
				=
				0
			

			
				
			
			
				o
				r
				1
			

			
				
			
			
				;
				1
			

			
				
			
			
				2
				,
				i
				f
				𝜇
				=
				𝜇
			

			

				1
			

			
				;
				𝜏
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

			
				∗
				2
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝜇
				)
				=
				0
				,
				i
				f
				𝜇
				=
				0
			

			
				
			
			
				o
				r
				1
			

			
				
			
			
				;
				1
			

			
				
			
			
				2
				,
				i
				f
				𝜇
				=
				𝜇
			

			

				1
			

			
				;
				1
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				.
			

		
	

						We defined the function 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 by
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑎
				)
				=
				𝑥
				,
				𝑓
				(
				𝑏
				)
				=
				𝑦
				,
				𝑓
				(
				𝑐
				)
				=
				𝑧
				.
			

		
	

						So 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
			

			

				1
			

			

				)
			

		
	
 is 
	
		
			
				(
				1
				/
				2
				,
				1
				/
				2
				)
			

		
	
-fsco set but not 
	
		
			
				(
				1
				/
				2
				,
				1
				/
				2
				)
			

		
	
-fco set; that is, 
	
		
			

				𝑓
			

		
	
 is not dfstc function.
Theorem 29.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
, 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝑧
				,
				𝜏
			

			

				3
			

			
				,
				𝜏
			

			
				∗
				3
			

			

				)
			

		
	
 be dfts’s, and let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
, 
	
		
			
				𝑔
				∶
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			
				)
				→
				(
				𝑍
				,
				𝜏
			

			

				3
			

			
				,
				𝜏
			

			
				∗
				3
			

			

				)
			

		
	
, and 
	
		
			
				𝑔
				∘
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑍
				,
				𝜏
			

			

				3
			

			
				,
				𝜏
			

			
				∗
				3
			

			

				)
			

		
	
 be functions. Then one has the following: (1)if 
	
		
			

				𝑓
			

		
	
 is dfstc and 
	
		
			

				𝑔
			

		
	
 is dfstc, then 
	
		
			
				𝑔
				∘
				𝑓
			

		
	
 is dfstc;(2)if 
	
		
			

				𝑓
			

		
	
 is dfstc and 
	
		
			

				𝑔
			

		
	
 is dfir, then 
	
		
			
				𝑔
				∘
				𝑓
			

		
	
 is dfstc;(3)if 
	
		
			

				𝑓
			

		
	
 is dfstc and 
	
		
			

				𝑔
			

		
	
 is dfsc, then 
	
		
			
				𝑔
				∘
				𝑓
			

		
	
 is dftc;(4)if 
	
		
			

				𝑓
			

		
	
 is dfstc and 
	
		
			

				𝑔
			

		
	
 is any function, then 
	
		
			
				𝑔
				∘
				𝑓
			

		
	
 is dfstc if and only if 
	
		
			

				𝑔
			

		
	
 is dfir.
Proof. 
	
		
			
				(
				1
				)
			

		
	
 It is clear.
	
		
			
				(
				2
				)
			

		
	
 Let 
	
		
			

				𝜇
			

		
	
 be an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set in 
	
		
			

				𝐼
			

			

				𝑍
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 is dfir, so 
	
		
			

				𝑔
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
. Also since 
	
		
			

				𝑓
			

		
	
 is dfstc function, then 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝑔
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
				=
				(
				𝑔
				∘
				𝑓
				)
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Hence 
	
		
			
				𝑔
				∘
				𝑓
			

		
	
 is dfstc function.
	
		
			
				(
				3
				)
			

		
	
 It is similar to the proof of 
	
		
			
				(
				2
				)
			

		
	
.
	
		
			
				(
				4
				)
			

		
	
 The proof follows from 
	
		
			
				(
				2
				)
			

		
	
.Conversely, let 
	
		
			
				𝑔
				∘
				𝑓
			

		
	
 be dfstc and let 
	
		
			

				𝜇
			

		
	
 be an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set in 
	
		
			

				𝐼
			

			

				𝑍
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. Now, by hypothesis 
	
		
			
				𝑔
				∘
				𝑓
			

		
	
 is dfstc; 
	
		
			
				(
				𝑔
				∘
				𝑓
				)
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝑔
			

			
				−
				1
			

			
				(
				𝜇
				)
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. But 
	
		
			

				𝑓
			

		
	
 is dfstc; then 
	
		
			

				𝑔
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
. Hence 
	
		
			

				𝑔
			

		
	
 is dfir.
Definition 30. Let 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 be a dfts. Then it is called: (1)double fuzzy semi-
	
		
			

				𝑇
			

			

				0
			

		
	
, if, for each pair of distinct fuzzy points in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
, there exists an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set containing one fuzzy point but not the other, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
 and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.(2)double fuzzy semi-
	
		
			

				𝑇
			

			

				1
			

		
	
 (resp., double fuzzy clopen 
	
		
			

				𝑇
			

			

				1
			

			

				)
			

		
	
 if, for each pair of distinct fuzzy points 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑚
			

		
	
 of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
, there exist 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso (resp., 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco) sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 containing 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑚
			

		
	
, respectively, such that 
	
		
			

				𝑥
			

			

				𝑛
			

			
				∈
				𝜆
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑚
			

			
				∉
				𝜆
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑛
			

			
				∉
				𝜇
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑚
			

			
				∈
				𝜇
			

		
	
.(3)double fuzzy semi-
	
		
			

				𝑇
			

			

				2
			

		
	
 (resp., double fuzzy ultra-
	
		
			

				𝑇
			

			

				2
			

		
	
) if, for each disjoint points 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑚
			

		
	
 of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 can be separated by disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso (resp., 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco) sets, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
 and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.(4)double fuzzy ultranormal if, for each pair of nonzero disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc sets can be separated by disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco sets, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
 and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.(5)double fuzzy seminormal if, for each pair of disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
, there exist two disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
 and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝜆
				≤
				𝛼
			

		
	
 and 
	
		
			
				𝜇
				≤
				𝛽
			

		
	
.(6)double fuzzy s-connected if 
	
		
			
				(
				𝑋
				,
				𝜏
				,
				𝜏
			

			

				∗
			

			

				)
			

		
	
 is not the union of two disjoint nonzero 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso subsets of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
.
Theorem 31.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be dfts’s and 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function. Then one has the following. (1)If 
	
		
			

				𝑓
			

		
	
 is dfstc injection and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semi-
	
		
			

				𝑇
			

			

				1
			

		
	
, then 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy clopen-
	
		
			

				𝑇
			

			

				1
			

		
	
.(2)If 
	
		
			

				𝑓
			

		
	
 is dfstc injection and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semi-
	
		
			

				𝑇
			

			

				0
			

		
	
, then 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultra-
	
		
			

				𝑇
			

			

				2
			

		
	
.(3)If 
	
		
			

				𝑓
			

		
	
 is dfstc injection and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semi-
	
		
			

				𝑇
			

			

				2
			

		
	
, then 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultra-
	
		
			

				𝑇
			

			

				2
			

		
	
.(4)If 
	
		
			

				𝑓
			

		
	
 is dfstc injective double fuzzy semiopen function from a double fuzzy clopen regular space 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 onto 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
, then 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semiregular.(5)If 
	
		
			

				𝑓
			

		
	
 is dfstc injective double fuzzy semiopen function from a double fuzzy clopen normal space 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 onto 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
, then 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy seminormal.
Proof. (1) Suppose fuzzy points 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑚
			

		
	
 are in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑛
			

			
				≠
				𝑦
			

			

				𝑚
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is injective, then 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑛
			

			
				)
				≠
				𝑓
				(
				𝑦
			

			

				𝑚
			

			

				)
			

		
	
 in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
. Also 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semi-
	
		
			

				𝑇
			

			

				1
			

		
	
 so, there exist 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 which are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑛
			

			
				)
				≤
				𝜆
			

		
	
, 
	
		
			
				𝑓
				(
				𝑦
			

			

				𝑚
			

			
				)
				≰
				𝜆
			

		
	
, 
	
		
			
				𝑓
				(
				𝑦
			

			

				𝑚
			

			
				)
				≤
				𝜇
			

		
	
, and 
	
		
			
				𝑓
				(
				𝑦
			

			

				𝑚
			

			
				)
				≰
				𝜆
			

		
	
; that is, 
	
		
			

				𝑥
			

			

				𝑛
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑚
			

			
				∉
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑚
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
, and 
	
		
			

				𝑥
			

			

				𝑛
			

			
				∉
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is dfstc, then 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco subsets of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. That is, 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy clopen 
	
		
			

				𝑇
			

			

				1
			

		
	
.(2) Suppose fuzzy points 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑚
			

			
				∈
				𝐼
			

			

				𝑋
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑛
			

			
				≠
				𝑦
			

			

				𝑚
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is injective, then 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑛
			

			
				)
				≠
				𝑓
				(
				𝑦
			

			

				𝑚
			

			

				)
			

		
	
 in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
. Also 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semi-
	
		
			

				𝑇
			

			

				0
			

		
	
 so there exists an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso set 
	
		
			

				𝜆
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑛
			

			
				)
				≤
				𝜆
			

		
	
 but 
	
		
			
				𝑓
				(
				𝑦
			

			

				𝑚
			

			
				)
				≰
				𝜆
			

		
	
; that is, 
	
		
			

				𝑥
			

			

				𝑛
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
, 
	
		
			

				𝑦
			

			

				𝑚
			

			
				∉
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
. But 
	
		
			

				𝑓
			

		
	
 is dfstc; 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 is 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. This implies that every pair of distinct points of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 can be separated by disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco sets in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. Therefore 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultra-
	
		
			

				𝑇
			

			

				2
			

		
	
.(3) Suppose fuzzy points 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑚
			

			
				∈
				𝐼
			

			

				𝑋
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑛
			

			
				≠
				𝑦
			

			

				𝑚
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is injective, then 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑛
			

			
				)
				≠
				𝑓
				(
				𝑦
			

			

				𝑚
			

			

				)
			

		
	
 in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
. But 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semi-
	
		
			

				𝑇
			

			

				2
			

		
	
 so there exist 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 which are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑛
			

			
				)
				≤
				𝜆
			

		
	
, 
	
		
			
				𝑓
				(
				𝑦
			

			

				𝑚
			

			
				)
				≤
				𝜇
			

		
	
, and 
	
		
			
				𝜆
				∧
				𝜇
				=
				0
			

			
				
			
		
	
; that is, 
	
		
			

				𝑥
			

			

				𝑛
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑚
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
. But 
	
		
			

				𝑓
			

		
	
 is dfstc; 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco sets in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 such that 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
				∧
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				∧
				𝜇
				)
				=
				0
			

			
				
			
		
	
. Therefore 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultra-
	
		
			

				𝑇
			

			

				2
			

		
	
.(4) Suppose 
	
		
			

				𝛽
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑛
			

			
				∉
				𝛽
			

		
	
. Assume 
	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝑓
				(
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
 and 
	
		
			
				𝛼
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝛽
				)
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is dftsc function, then 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝛽
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco set in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∉
				𝛼
			

		
	
. But 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy clopen regular; then there exist disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fo sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝛼
				≤
				𝜆
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝜇
			

		
	
, which implies
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑦
				𝛽
				=
				𝑓
				(
				𝛼
				)
				≤
				𝑓
				(
				𝜆
				)
				,
			

			

				𝑛
			

			
				
				𝑥
				=
				𝑓
			

			

				𝑡
			

			
				
				≤
				𝑓
				(
				𝜇
				)
				.
			

		
	

						Also, by hypothesis 
	
		
			

				𝑓
			

		
	
 is injective double fuzzy semiopen; then 
	
		
			
				𝑓
				(
				𝜆
				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝜇
				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets such that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				0
				𝑓
				(
				𝜆
				)
				∧
				𝑓
				(
				𝜇
				)
				=
				𝑓
				(
				𝜆
				∧
				𝜇
				)
				=
				𝑓
			

			
				
			
			
				
				=
				0
			

			
				
			
			

				.
			

		
	

						Therefore 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semiregular.(5) Assume that 
	
		
			

				𝛽
			

			

				1
			

		
	
 and 
	
		
			

				𝛽
			

			

				2
			

		
	
 are any two disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc sets in 
	
		
			
				(
				𝐼
			

			

				𝑌
			

			

				)
			

		
	
. Take 
	
		
			
				𝜆
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝛽
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				𝜇
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝛽
			

			

				2
			

			

				)
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is dfstc injective, then 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝛽
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝛽
			

			

				2
			

			

				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco subsets of 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝜆
				∧
				𝜇
				=
				𝑓
			

			
				−
				1
			

			
				
				𝛽
			

			

				1
			

			
				
				∧
				𝑓
			

			
				−
				1
			

			
				
				𝛽
			

			

				2
			

			
				
				=
				𝑓
			

			
				−
				1
			

			
				
				𝛽
			

			

				1
			

			
				∧
				𝛽
			

			

				2
			

			
				
				=
				𝑓
			

			
				−
				1
			

			
				
				0
			

			
				
			
			
				
				=
				0
			

			
				
			
			

				.
			

		
	

						But 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy clopen normal; then there exist disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fo sets 
	
		
			

				𝛿
			

			

				1
			

		
	
 and 
	
		
			

				𝛿
			

			

				2
			

		
	
 such that 
	
		
			
				𝜆
				≤
				𝛿
			

			

				1
			

		
	
 and 
	
		
			
				𝜇
				≤
				𝛿
			

			

				2
			

		
	
 which implies
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝛽
			

			

				1
			

			
				
				𝛿
				=
				𝑓
				(
				𝜆
				)
				≤
				𝑓
			

			

				1
			

			
				
				,
				𝛽
			

			

				2
			

			
				
				𝛿
				=
				𝑓
				(
				𝜇
				)
				≤
				𝑓
			

			

				2
			

			
				
				.
			

		
	

						Also, since 
	
		
			

				𝑓
			

		
	
 is injective double fuzzy semiopen, 
	
		
			
				𝑓
				(
				𝛿
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝛿
			

			

				2
			

			

				)
			

		
	
 are disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets. Therefore 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy seminormal.
Theorem 32.  Let 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be dfts’s and let 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 be a function. Then one has the following. (1)If 
	
		
			

				𝑓
			

		
	
 is dfstc, double fuzzy closed injection and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-normal, then 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultranormal.(2)If 
	
		
			

				𝑓
			

		
	
 is dfstc, double fuzzy semiclosed injection and 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-regular, then 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultraregular.
Proof. (1) Suppose 
	
		
			

				𝜇
			

			

				1
			

		
	
, 
	
		
			

				𝜇
			

			

				2
			

		
	
 are disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc subsets in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is double fuzzy closed and injective, then 
	
		
			

				𝜏
			

			

				2
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
				(
				𝜇
			

			

				1
			

			
				)
				)
				≥
				𝜏
			

			

				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
			

			

				1
			

			

				)
			

		
	
, 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
				(
				𝜇
			

			

				1
			

			
				)
				)
				≤
				𝜏
			

			
				∗
				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
			

			

				1
			

			

				)
			

		
	
, 
	
		
			

				𝜏
			

			

				2
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
				(
				𝜇
			

			

				2
			

			
				)
				)
				≥
				𝜏
			

			

				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			

				𝜏
			

			
				∗
				2
			

			
				(
				1
			

			
				
			
			
				−
				𝑓
				(
				𝜇
			

			

				2
			

			
				)
				)
				≤
				𝜏
			

			
				∗
				1
			

			
				(
				1
			

			
				
			
			
				−
				𝜇
			

			

				2
			

			

				)
			

		
	
, for each 
	
		
			

				𝜇
			

			

				1
			

		
	
, 
	
		
			

				𝜇
			

			

				2
			

			
				∈
				𝐼
			

			

				𝑋
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝜇
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝜇
			

			

				2
			

			

				)
			

		
	
 are disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc subsets in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, so 
	
		
			
				𝑓
				(
				𝜇
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝜇
			

			

				2
			

			

				)
			

		
	
 are separated by disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets 
	
		
			

				𝜆
			

			

				1
			

		
	
, 
	
		
			

				𝜆
			

			

				2
			

		
	
, respectively, because 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-normal space; then 
	
		
			

				𝜇
			

			

				1
			

			
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			

				𝜇
			

			

				2
			

			
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
			

			

				2
			

			

				)
			

		
	
. Also 
	
		
			

				𝑓
			

		
	
 is dfstc, and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
			

			

				2
			

			

				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco sets in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				
				𝜆
			

			

				1
			

			
				
				∧
				𝑓
			

			
				−
				1
			

			
				
				𝜆
			

			

				2
			

			
				
				=
				𝑓
			

			
				−
				1
			

			
				
				𝜆
			

			

				1
			

			
				∧
				𝜆
			

			

				2
			

			
				
				=
				0
			

			
				
			
			

				.
			

		
	

						Therefore 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultranormal.(2) Assume that an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fc set 
	
		
			

				𝛼
			

		
	
 does not contain fuzzy point 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
 and let 
	
		
			

				𝑓
			

		
	
 be a double fuzzy semiclosed function; then 
	
		
			
				𝑓
				(
				𝛼
				)
			

		
	
 is an 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fsc set in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝛼
				)
			

		
	
 does not contain 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑡
			

			

				)
			

		
	
. Since 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy semiregular, then there exist disjoint 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑥
			

			

				𝑡
			

			
				)
				≤
				𝜆
			

		
	
 and 
	
		
			
				𝑓
				(
				𝛼
				)
				≤
				𝜇
			

		
	
; that is 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			
				𝛼
				≤
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
. Since 
	
		
			

				𝑓
			

		
	
 is dfstc function, then 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco sets in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
. But 
	
		
			

				𝑓
			

		
	
 is injective; then
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
				∧
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				∧
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				
				0
			

			
				
			
			
				
				=
				0
			

			
				
			
			

				.
			

		
	

						Therefore, 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy ultraregular.
Theorem 33.  If 
	
		
			
				𝑓
				∶
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			
				)
				→
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is dfstc surjection and 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is double fuzzy connected, then 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-connected.
Proof. Assume 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is not double fuzzy s-connected and 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 are 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fso sets in 
	
		
			

				𝐼
			

			

				𝑌
			

		
	
, 
	
		
			
				𝑟
				∈
				𝐼
			

			

				0
			

		
	
, and 
	
		
			
				𝑠
				∈
				𝐼
			

			

				1
			

		
	
 such that 
	
		
			
				𝜆
				∧
				𝜇
				=
				1
			

			
				
			
		
	
 and 
	
		
			
				𝜆
				∧
				𝜇
				=
				0
			

			
				
			
		
	
. Since 
	
		
			

				𝑓
			

		
	
 is dfstc, 
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				∧
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
				∧
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				
				1
			

			
				
			
			
				
				=
				1
			

			
				
			
			

				.
			

		
	

						Also 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
			

		
	
 and 
	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
			

		
	
 are nonzero 
	
		
			
				(
				𝑟
				,
				𝑠
				)
			

		
	
-fco sets in 
	
		
			

				𝐼
			

			

				𝑋
			

		
	
 such that
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				)
				∧
				𝑓
			

			
				−
				1
			

			
				(
				𝜇
				)
				=
				𝑓
			

			
				−
				1
			

			
				(
				𝜆
				∧
				𝜇
				)
				=
				0
			

			
				
			
			

				.
			

		
	

						Then 
	
		
			
				(
				𝑋
				,
				𝜏
			

			

				1
			

			
				,
				𝜏
			

			
				∗
				1
			

			

				)
			

		
	
 is not double fuzzy connected, so it is a contradiction. Hence 
	
		
			
				(
				𝑌
				,
				𝜏
			

			

				2
			

			
				,
				𝜏
			

			
				∗
				2
			

			

				)
			

		
	
 is double fuzzy s-connected.
5. Conclusion
In this paper, we introduced and characterized the notions of totally continuous functions, totally semicontinuous functions, and semitotally continuous functions in double fuzzy topological spaces. The relationship with other kinds of functions is studied. We could know that double fuzzy topological spaces are a generalization of some other kinds of topological spaces; therefore, our results can be considered as a generalization of the same results in other kinds of topological spaces. Also, it is possible to study this topic for a completely distributive DeMorgan algebra.
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