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Abstract. 
We introduce the Aumann fuzzy improper integral to define the convolution product of a fuzzy mapping and a crisp function in this paper. The Laplace convolution formula is proved in this case and used to solve fuzzy integro-differential equations with kernel of convolution type. Then, we report and correct an error in the article by Salahshour et al. dealing with the same topic.



1. Introduction
Integrals of set-valued functions have been studied in connection with statistical problems and have arisen in connection with economic problems. The basic theory of such integrals was developed by Aumann [1]. Ralescu and Adams defined in [2] the fuzzy integral of a positive, measurable function, with respect to a fuzzy measure, and studied some properties of this integral. Dubois and Prade [3] generalized the Riemann integral over a closed interval to fuzzy mappings. Their approach was more directly related to the works by Aumann [1] and Debreu [4] on multifunctions integration.
Puri and Ralescu [5] generalized the integral of a set-valued function to define the concepts of fuzzy random variable and its expectation. Wu proposed in [6] two types of the fuzzy Riemann integral; the first one was based on the crisp compact interval and the second one was considered on the fuzzy interval, provided a numerical method to approximate this integral by invoking the Simpson’s rule, and transformed its membership function into nonlinear programming problem.
In [7], Allahviranloo et al. proposed an integral method for solving fuzzy linear differential equations, under the assumption of strongly generalized differentiability, but they omitted the proofs of their main results. Extending their method, we developed in [8] a more general integral operator method for solving some first-order fuzzy linear differential equations with variable coefficients, and we gave the general formula’s solution with necessary proofs.
The notions of the fuzzy improper Riemann integral, the fuzzy random variable, and its expectation were also investigated and studied by Wu in [9] using a different approach.
This concept of improper fuzzy Riemann integral was later exploited by Allahviranloo and Ahmadi in [10] to introduce the fuzzy Laplace transform, which they used to solve some first-order fuzzy differential equations (FDEs). Salahshour and Allahviranloo gave in [11] some applications of fuzzy Laplace transform and studied sufficient conditions ensuring its existence. Recently in [12], we extended and used the fuzzy Laplace transform method to solve second-order fuzzy linear differential equations under strongly generalized Hukuhara differentiability. Then we established in [13] some important results about continuity and strongly generalized Hukuhara differentiability of functions defined via improper fuzzy Riemann integrals, and we proved some properties of fuzzy Laplace transforms for two variables functions, which we applied to solve fuzzy linear partial differential equations of first order.
In the same context, Salahshour et al. developed in [14] the fuzzy Laplace transform method to solve fuzzy convolution Volterra integral equation (FCVIE) of the second kind.
But the proof proposed for their main result, Theorem  was invalid and the arguments presented in this demonstration were incorrect. One can remark that it was literally identical to the corresponding proof in the classical case, without taking into consideration the fuzzy nature of the data.
First let us recall and enounce Theorem  4.1 in [14]; then we will show the invalid arguments presented by the authors, to prove the fuzzy convolution formula.
Theorem 1 (convolution theorem: see Theorem  4.1 in [14]).  If  and  are piecewise continuous fuzzy-valued functions on  and of exponential order , then 
First notice that  and  are fuzzy-valued functions, so both of the improper integrals  and  are fuzzy numbers. Then, we cannot justify the following passage by a simple integral linearity argument:  without proving that for each fuzzy number .
Moreover, the authors claimed that due to the hypothesis on  and , the fuzzy Laplace integrals of  and  converge absolutely and hence  converges.
It was the most important key of their proof as in the crisp case, since it allows us to reverse the order of the double integrals, but unfortunately it is also incorrect, because the notion of the absolute value of a fuzzy number is not defined at least in [14]. Furthermore, the concept of the absolute convergence of a fuzzy improper integral does not make sense in the fuzzy literature.
To overcome all of these obstacles, we propose in the actual paper the convolution product of a crisp mapping and a fuzzy function in Section 4, and we intend to investigate rigorously the case of two fuzzy functions in a future work.
The theory of fuzzy integro-differential equations has many applications and have been studied extensively in the fuzzy literature; for the reader, we refer to [15–17] and the references therein. Concerning the classical integro-differential equations, one can consult [18–20].
The aim of this work is to define the convolution product and to prove a fuzzy Laplace convolution formula, in the purpose of solving the following fuzzy integro-differential equations (FIDEs) with kernel of convolution type: provided that ,  are continuous fuzzy-valued functions and  is a crisp continuous function verifying some assumptions to be mentioned later.
Then we give some examples to illustrate the efficiency of our method for solving FIDEs.
To achieve this goal, we first introduce the Aumann fuzzy improper integral concept, which we utilize instead of the Riemann fuzzy improper integral used in [10, 12–14].
This new definition of fuzzy generalized (improper) integral is essentially based on the notion of fuzzy integral and the expectation of a fuzzy random variable, introduced by Puri and Ralescu in [5].
The remainder of this paper is organized as follows.
Section 2 is reserved for some preliminaries. And Section 3 is devoted to the definition of the Aumann fuzzy improper integral. In Section 4, fuzzy Laplace transform is introduced, its basic properties are studied, and a particular case of Laplace convolution is investigated. Then in Section 5, the main result about Laplace convolution is enounced and proved. The procedure for solving fuzzy integro-differential equations by fuzzy Laplace transform is proposed and some numerical examples are given in Section 6. In the last section, we present conclusion and a further research topic.
2. Preliminaries
Denote by  the family of all nonempty compact convex subsets of  and define the addition and scalar multiplication in  as usual. The distance between two nonempty bounded subsets  and  of  is defined by the Hausdorff metric  Define where(i) is normal, that is,  for which ,(ii) is fuzzy convex,(iii) is upper semicontinuous,(iv) is the support of , and its closure  () is compact.
 For , the -cut (or level) of  is denoted  Then, from (i) to (iv), it follows that the -level set  for all . It is well known that  Let  be a function which is defined by the equation where  is the Hausdorff metric defined in . Then, the following properties hold true (see [5, 21]): (1) is a complete metric space.(2) for .(3) for all  and .(4) for all .
Definition 2.  A fuzzy number  in parametric form is a pair  of functions , , , which satisfy the following requirements: (1) is a bounded nondecreasing left continuous function in  and right continuous at 0.(2) is a bounded nonincreasing left continuous function in  and right continuous at 0.(3) for all .
A crisp number  is simply represented by , .
The following general definition and properties were developed by Puri and Ralescu in [5], for the fuzzy Aumann integral theory in . Here, we restrict their theory to  instead of .
Let  be a probability space where the probability measure  is assumed to be nonatomic.
Definition 3 (Puri and Ralescu [5]).  A mapping  is strongly measurable if for all  the set-valued function  defined by  is Lebesgue measurable.
A mapping  is called integrably bounded if there exists an integrable function  such that  for all .
Definition 4 (Puri and Ralescu [5]).  Let  be a probability space where the probability measure  is assumed to be nonatomic. A set-valued function is a function  such that  for every . By  we denote the space of -integrable functions . We denote by  the set of all  selections of ; that is,The Aumann integral of , denoted by  or  for short, is defined by
Definition 5.  A strongly measurable and integrably bounded mapping  is said to be integrable over  if .
Lemma 6 (Puri and Ralescu [5]).  If  is measurable and integrably bounded, then  is integrable over .
Theorem 7 (Puri and Ralescu [5]).  If  are measurable and if there exists  such that  for every  and if  (in the sense of Kuratowski), then .
Remark 8 (Puri and Ralescu [5]).  It is important to observe that Theorem 7 can be stated in a different form by replacing convergence in the sense of Kuratowski by convergence in the Hausdorff metric. The statement of the theorem remains unchanged provided that we assume that all functions take values in , the set of all nonempty, compact subsets of .
Now, we define the Hukuhara difference and the strongly generalized differentiability.
For , if there exists  such that , then  is the Hukuhara difference of  and  denoted by .
Definition 9.  We say that a fuzzy mapping  is strongly generalized differentiable at , if there exists an element  such that (i)for all  sufficiently small, there exist ;  and or(ii)for all  sufficiently small, there exist ;  and or(iii)for all  sufficiently small, there exist ;  and  or(iv)for all  sufficiently small, there exist ;  and All the limits are taken in the metric space . At the end points of , we consider only one-sided derivatives.
The following theorem (see [22]) allows us to consider case (i) or (ii) of the previous definition almost everywhere in the domain of the functions under discussion.
Theorem 10.  Let  be strongly generalized differentiable on each point  in the sense of Definition 9, (iii) or (iv). Then  for all .
Theorem 11 (see, e.g., [23]).  Let  be a function and denote , for each . (1)If  is (i)-differentiable, then  and  are differentiable functions and .(2)If  is (ii)-differentiable, then  and  are differentiable functions and .
3. Aumann Fuzzy Improper Integral
Considering the positive measure related to the exponential law on the positive real line , defined by , where  refers to the Lebesgue measure.
We define the Aumann fuzzy improper integral  of a fuzzy function , by its -levels as follows: ; that is, 
Definition 12.  A strongly measurable and integrably bounded mapping  is said to be integrable over  if .
Using Lemma 6, we deduce that if  is measurable and integrably bounded, then it is integrable over  and  is a real interval, since it is a nonempty, convex, and compact subset of ; that is, In the parametric form, the fuzzy improper integral  can be written Taking  in Theorem 7 and Remark 8 implies the following result.
Theorem 13.  If  is measurable and integrably bounded, then for all 
Since the Aumann integral over  is linear (see [24]), then from Theorem 13, we deduce the linearity of the Aumann improper fuzzy integral over .
Lemma 14.  If  are (fuzzy) integrable over , then for all real  the mappings  and  are integrable over  and we have
Remark 15.  Analogously, we define the integrability and the Aumann fuzzy improper integral  of a fuzzy function .
Then, we said that a fuzzy mapping  is integrable over , if it is integrable over  and over , for each real . In this case, we define For more details concerning Aumann fuzzy improper integral, one can see [5].
Remark 16.  The concepts of the fuzzy improper integral, the fuzzy random variable, and its expectation were defined and studied in a different way by Wu in [9]. His proposal of the improper fuzzy Riemann integral was an appropriate attempt for finding the expectations of fuzzy random variables numerically.
He stated that the developments in [5] were in measure-theoretic sense; thus, it was difficult to provide a numerical method in applications.
However, this statement seems to be false because of the approach developed in our present article and precisely by the identities (16) and (17); the Aumann fuzzy improper integral (and the integral over a compact subset of ) has the same properties and qualities as well as the improper fuzzy Riemann integral.
4. Fuzzy Laplace Convolution
Definition 17 (see [10]).  Let  be continuous fuzzy-valued function. Suppose that  is integrable on , for some , then for all  the improper integral , which is well defined, is called fuzzy Laplace transform of  and is denoted as 
If  denotes the classical Laplace transform of a crisp function , then sincewe have 
Theorem 18.  Let  be a differentiable fuzzy-valued function such that  and  are integrable on .(a)If  is (i)-differentiable, then(b)If  is (ii)-differentiable, then
Proof.  To prove Theorem 18, one can adopt the proof in [10] using Aumann fuzzy improper integral instead of Riemann fuzzy improper integral.
Theorem 19.  Let  be continuous fuzzy-valued functions such that  and  are integrable on  and ,  two real constants; then 
Theorem 19 is an obvious consequence of linearity of the Aumann fuzzy improper integral.
Definition 20.  Let  be a crisp continuous function and  a fuzzy-valued continuous mapping. We define the convolution product of  and  on  as follows: 
Remark 21.  Suppose that  and  are integrable on . We examine the two following alternatives:(a)If the function  is nonnegative on , then  Therefore, If  and  are two crisp functions defined from  into , then, we recall the well-known classical convolution Laplace formula: Then using (29)-(30) and the fact that , we get (b)If the function  is nonpositive on , then Therefore, Then from (30)-(33) and since , we deduce In both cases, we have
Remark 22.  Now let us recall the error in [25] Example  1. The authors studied the following fuzzy integro-differential equation using fuzzy differential transform method (DTM):But  is not a fuzzy number in the parametric form, since the function  is not decreasing.
Note that the second initial data  can be obviously deduced by taking  in the equation.
Example 23.  We correct the previous fuzzy Volterra integro-differential equation as follows:where  and  is nonnegative.
Case  1. If  is (i)-differentiable, then from (35) we have By the inverse Laplace transform, we get the lower and upper functions of solution of (37) for In this case, since  is (i)-differentiable, the solution is valid.
Case  2. If  is (ii)-differentiable, then from (35) we obtain Then by the inverse Laplace transform the lower and upper functions of solution of (37) are given for  as follows: In this case,  is (ii)-differentiable only for  and the solution is acceptable only over this interval.
Example 24.  We consider the following fuzzy Volterra integro-differential equation:where  and  is nonpositive.
Case  1. If  is (i)-differentiable, then from (35) we have By the inverse Laplace transform we get the lower and upper functions of solution of (42) for In this case, the solution is acceptable since  is (i)-differentiable.
Case  2. If  is (ii)-differentiable, then from (35) we get Using the inverse Laplace transform, we obtain the solution of (42) for : In this case,  is (ii)-differentiable only for , so the solution is valid only over this interval.
5. Main Result
To overcome all the obstacles and to avoid the error in [14], we propose in this paper the convolution product of crisp and fuzzy functions, and we intend to investigate rigorously the case of two fuzzy functions in a future work. Now, we enounce our main result giving the convolution Laplace formula generalizing the result in Section 4.
Theorem 25.  Let  be a fuzzy-valued continuous mapping and let  be a crisp continuous function. Assume that the mappings , , and  are integrable over  for all ; then 
Proof.  Let  and . It is obvious that .
Step  1. We claim that Let . So, there exists a measurable selection  of  such that . It is clear that the function  defined byis a measurable selection of  verifying .
Hence, , which implies that .
Let  be a measurable selection of . It is clear that  is a measurable selection of  and because Therefore, (48) is proved.
Step  2. Now we show thatIf we denote  and , then using (48) we can write Since  is a real number, then from (30) it follows that 
6. Fuzzy Laplace Transform Algorithm for Solving Fuzzy Integro-Differential Equations
Our aim now is to solve the following fuzzy integro-differential equation using fuzzy Laplace transform method under strongly generalized differentiability:where the unknown function  is a fuzzy function of , provided that  is a continuous fuzzy-valued function and  is a crisp continuous function.
Please notice that Theorem 10 allows us to use only (i) or (ii) type of strongly generalized differentiability.
Assume in a first time that .
By using the fuzzy Laplace transform and Theorem 25, we haveThen, we have the following alternatives for solving (56).
Case  1. If  is (i)-differentiable, then 
Then from (56), it follows that
Using , we deduce 
Therefore, 
By using the inverse Laplace transform, we get 
Case  2. If  is (ii)-differentiable, then 
Then from (56), it follows that
Using , we deduce
That is,where  and .
Then by solving the linear system (65), we have 
By using the inverse Laplace transform, we get 
Remark 26.  Similarly, if we assume that , we obtain the following results. (1)If  is (i)-differentiable, then  where  and . By using the inverse Laplace transform, we get (2)If  is (ii)-differentiable, then  By using the inverse Laplace transform, we obtain 
Example 27.  We consider the following fuzzy integro-differential equation:Case  1. If  is (i)-differentiable, then from Theorems 18 and 25 we have By the inverse Laplace transform we get the lower and upper functions of solution of (72) for In this case, the solution is invalid over , since  is not (i)-differentiable.
Case  2. If  is (ii)-differentiable, then Theorems 18 and 25 yieldBy solving the linear system (75) and using the inverse Laplace transform, we get One can verify that in this case the solution is acceptable over a closed interval  such that .
Remark 28.  Analogously, we can solve the following generalized fuzzy integro-differential equation, with kernel of convolution type via Laplace transform method:provided that  is a continuous fuzzy-valued function, which is linear with respect to its second argument, and  is a crisp continuous function over .
Example 29.  We consider the following known fuzzy integro-differential equation: Its corresponding crisp problem, studied in [20], is as follows:Case  1. If  is (i)-differentiable, then from Theorems 18 and 25 we have By the inverse Laplace transform we get the lower and upper functions of solution of (78) for In this case, the solution is valid over , since  is (i)-differentiable.
Case  2. If  is (ii)-differentiable, then Theorems 18 and 25 yield By solving the linear system (82) and using the inverse Laplace transform, we get the lower and upper functions of solution of (78) for  as follows: Notice that the length of is a nonnegative increasing function over ; then  is (ii)-differentiable. So, in this case the solution is acceptable for all .
Taking  in formulas (81) and (83) yields the crisp solution,
, of the classic problem (79) (see [20] page 8 Example  1.2.1).
7. Conclusion
In this paper, we have introduced the Aumann fuzzy improper integral, and also we have applied Laplace transform method for solving FIDEs, with kernel of convolution type, under the assumption of strongly generalized differentiability. Clearly, the suggested formula allows us to solve more difficult FIDEs by Laplace method compared to the previously reported works.
Indeed, in the most fuzzy examples studied before, the considered kernels  were real and nonnegative constants.
But in this paper, we treated various cases for this kernel : positive or negative in the first and second examples, respectively;  and  were nonconstant functions of  in the third and fourth ones.
For future research, we will apply Laplace transform method to solve FIDEs with a fuzzy kernel.
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