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We present a brain-computer interface (BCI) version of the famous “Connect Four”. Target selection is based on brain event-related
responses measured with nine EEG sensors. Two players compete against each other using their brain activity only. Importantly,
we turned the general difficulty of producing a reliable BCI command into an advantage, by extending the game play and rules, in
a way that adds fun to the game and might well prove to trigger up motivation in future studies. The principle of this new BCI is
directly inspired from our own implementation of the classical P300 Speller (Maby et al. 2010, Perrin et al. 2011). We here establish
a proof of principle that the same electrophysiological markers can be used to design an efficient two-player game. Experimental
evaluation on two competing healthy subjects yielded an average accuracy of 82%, which is in line with our previous results on
many participants and demonstrates that the BCI “Connect Four” can effectively be controlled. Interestingly, the duration of the
game is not significantly affected by the usual slowness of BCI commands. This suggests that this kind of BCI games could be of

interest to healthy players as well as to disabled people who cannot play with classical games.

1. Introduction

Driven by the needs of people with physical disabilities,
researchers have begun to work on direct brain-computer
interfaces (BCIs), in the aim of enabling them to communi-
cate and move without resorting to the usual peripheral
nervous and muscular pathways. In BCIs, users have to mani-
pulate their brain activity to produce signals that control
computers or machines directly. This is challenging for both
users and researchers. The users often need to learn how to
control the device, which is cumbersome if not impossible,
while researchers have to deal with the difficulty of pro-
cessing highly variable and noisy signals online. However,
this research could have a profound impact in various
pathologies, including those for which patients suffer from
cognitive impairments and could possibly benefit from brain
or neurofeedback training. Indeed, the latter also rests upon
our ability to extract online the neurophysiological markers
that should be fed back to the patients, so that they could
learn how to control it and yield a cognitive or behavioral
improvement [1].

The most practical and widely applicable BCI solutions
are based on noninvasive electrophysiological recordings,
namely, electroencephalography (EEG). As command sig-
nals, those BCI use event-related potentials (ERPs) like the
P300 [2] or self-regulatory activities such as changes in
cortical rhythms [3, 4].

Beyond medical applications [5-7], BCI has also a great
potential for gaming, a domain where users are open to nov-
elty and eager to face new challenges [8]. Besides, developing
video games based on BCI could prove useful in some
patients, by yielding a better efficiency and wider acceptance
of BCI-based therapies. Indeed, since the number of training
sessions required by neurological rehabilitation and training
protocols is usually much larger than the one in BCI control
applications, a motivational (more realistic and interactive)
environment as encountered in computer games could be
of great interest in that context [9, 10]. In particular, it has
been argued that BCI games could well boost motivation and
neurofeedback training performance [11]. Possible future
investments of the gaming industry in BCI software and
technologies might also stimulate the field and produce



new devices, with engaging environments for future clinical
applications like BCI-based stroke rehabilitation and neuro-
feedback therapies [12].

There are several examples of games that have been
paired up with BCI systems yet, either by using imaginary
movement-related markers [13], P300 responses [14, 15], or
steady-state visual potentials [16]. However, only a few have
been designed for multiple players, despite the fact that com-
petition and socializing are among the strongest motivational
factors reported by users of multiplayer games online [17].

A crucial limitation to the use of BCI in gaming is the
highly unreliable nature of brain signals. The ensuing BCI
commands are difficult to interpret and provide low degrees
of freedom. In most applications, a reliable command can
only be achieved by accumulating data over long time
windows, at the expense of the primary interest of the game.
Another drawback is the obvious one of having to put
an EEG cap on, although the field has made tremendous
progress in that respect in the last few years [18]. For all
those reasons today, BCI hardly compete with traditional
game effectors such as joysticks, mice, and keyboards, at
least in healthy subjects. However, unreliable input control
could be used to extend current video games and to create a
motivating challenge for the users [19].

In this paper, we briefly report the online proof of con-
cept of a new BCI game, based on the old and well-known
“Connect Four”. It is a very popular and easy game to play,
which makes it attractive for a broad audience. The proposed
BCI version has several advantages and our first online trial
suggests it could overcome some of the current limitations of
BCI applications to gaming. Interestingly,

(i) only brain signals are required to play the game;
(ii) two subjects play against each other;

(iii) the EEG setup has been limited to nine sensors per
participant (compared to 32 in our previous experi-
mental settings);

(iv) it exploits a well-established protocol and robust
electrophysiological marker: the N1 (indeed, it has
already been shown that the early visual evoked
response plays a significant role in achieving higher
accuracies in the classical P300 Speller paradigm.
This strongly suggests that such BCIs thus highly rely
on eye gaze or overt attention [20].) and P300 evoked
response [21];

(v) it makes use of the unreliability of BCI commands
in an elegant fashion, which extends the possibilities
offered by the initial game;

(vi) its duration is comparable to the one of the tradi-
tional game play;

(vii) it holds promises for applications in patients, not
only as an entertainment but possibly as an efficient
tool for the training attention-related brain signals.

In the following, we introduce the traditional game
“Connect Four” and its adaptation to a BCI version. We
then describe our BCI implementation within the OpenViBE
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Figure 1: Traditional “Connect Four”. Here, Red wins with four
coins aligned diagonally (transparency has been added here to
highlight the last command and winning command).

software environment. Finally, we report the results of a
first online evaluation in two healthy subjects as a proof of
concept to show that a BCI “Connect Four” can effectively
be controlled.

» o«

1.1. Traditional “Connect Four”. “Connect Four” is a two-
player strategy game in which players interact through a
vertical rectangular board made of 6 x 7 holes (6 rows and 7
columns). Each player starts with 21 coins, either all yellow or
all red. Participants play in turn and place one coin at a time.
They pick up a column and drop a coin which will fall down
the board to the lowest available hole. The game ends when
one participant first connects four coins, either horizontally,
vertically, or diagonally. This participant is the winner of the
game (see Figure 1).

1.2. BCI “Connect Four”. In the BCI version of “Connect
Four,” we simply replace the manual drop of the coin by
a P300-based selection of the target column. The column
selection process follows the same principle as the item
selection in the well-established P300 Speller paradigm. In
the latter, a 6 X 6 matrix of symbols is usually displayed on
a computer screen for spelling. The subject has to actively
attend to the target symbol while rows and columns are
being flashed alternatively, in a random fashion. Since the
target events are rare and unpredictable, they elicit a typical
EEG evoked response, the P300 whose detection allows us to
identify the target symbol. In the “Connect Four” scenario,
only columns matter and need to be proposed. This yields a
simpler detection task and higher information transfer rate.

The P300 wave is a positive EEG deflection that occurs
approximately 300 ms after stimulus onset (flash onset). It
is typically recorded from central and parietal sensors. This
response is evoked by paying attention to rare stimuli in a
random sequence of irrelevant stimuli or distracters (the so-
called oddball paradigm) [22]. Farwell and Donchin [23]
were the first to show that the P300 component could be used
to select items displayed on a computer screen [24]. From
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FIGURE 2: P300-based BCI “Connect Four”. Black disks represent
the empty places. Yellow and red disks correspond to player P1
and player P2 pieces, respectively. The column made of white disks
represents a flashed column.
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a cognitive perspective, the P300 can be seen as a measure of
alertness and attention orientation, thus reflecting a subject’s
general level of arousal [25].

Importantly, we build on an existing BCI system that
we extensively evaluated in previous studies [26, 27]. In
particular, we showed that a similar setup could be reliably
controlled by naive BCI subjects (N = 42), with very high
spelling accuracy (85% correct letter selection on average, for
3 flashing sequences).

2. Material and Methods

2.1. Game Rules

2.1.1. Classic Mode. In turn, players choose an empty loca-
tion based on their own strategy and aim at placing a coin
in the corresponding column. To drop a coin in the right
column, the player focuses her attention on that particular
column (Figure 2) and is advised to count the number of
times it is flashed, while avoiding to be distracted by the
flashes occurring next to it. After all columns have been
flashed (possibly several times), the most probable target
according to real-time signal processing is selected. The
player receives immediate feedback on her action. The game
ends whenever one player has been successful in connecting
four coins. Of course, each player should prevent the other
player to complete a four-coin long connection. In the classic
mode, this can only be done in turn.

2.1.2. Contest Mode. The principle is the same as for the
classic mode, except that players can interfere with the
outcome of the action of the other player. Players still act in
turn. However, when player 1 is aiming at dropping a coin,
player 2 has the possibility to modify the target column for
this coin, and vice versa. To do so, she has to enter a kind

of mind competition and her choice will eventually prevail,
provided that she could better focus her attention onto
her preferred target column. The quantitative comparison
between the attentional resources, respectively, allocated by
the two players is based on the entropy of the posterior
distribution of the target column for each player (see
Section 2.3, paragraph Classification). In short, the winner is
the one who produces the most accurate or less uncertain
command. This mode allows for simultaneous competition
between the two players and makes the interaction more
challenging.

2.2. Experimental Setup. Two players, one female (P1) and
one male (P2), aged 23 and 30 respectively, participated in
this study. All subjects had normal or corrected to normal
vision.

Players were seated 70 cm from the same 17" computer
screen. EEG was recorded from the two players using a single
32-channel ActiCap system with Ag/AgCl electrodes (Brain
Products, Germany). Only nine sensors were used for each
participant. The particular (centroparietal and occipital)
electrode locations were chosen in order to optimize the
signal to signal-plus-noise ratio (SSNR), according to one of
our previous P300 Speller experiment [28]. We used the fol-
lowing sites from the extended 10-10 system: P7, P3, Pz, P4,
P8, P09, O1, O2, and PO10. All electrodes were referenced
to an electrode placed on the nose and impedances were kept
below 5 k(2 for all sensors. Analog signals were amplified with
BrainAmp amplifier (powered with a rechargeable battery,
PowerPack) and digitized at a rate of 1000 Hz using the Brain
Vision Recorder software (Brain Products, Germany).

To achieve good selection of one target column among
seven, the two players were instructed not to move during
stimulations, to stare at the targeted location, and to count
how many times it was flashed.

Visual stimulations were handled by a C++/SDL software
on a dedicated computer and sent to a CRT screen in random
order. A trigger (labeled from 1 to 7, one per column) was
also sent to the EEG amplifier via parallel port (jitter <
0.1 ms). The flash duration was set to 90 ms and the time
between two flash onsets to 200 ms. We used two repetitions
per shot, meaning that each column was highlighted twice
per selection process.

Since the two players had never used such a P300-based
BCI before, we had to start with a short and simultaneous
session to calibrate the system. Subjects were given a
sequence of 63 predetermined target columns to attend to. In
practice, after each sequence of flashes for one target, the new
target was indicated by a green frame. As in the forthcoming
game, columns were flashed twice per trial during 90 ms,
with a stimulus-onset asynchrony interval (SOA) of 200 ms.
Based on those data, the feature selection and classification
algorithms were trained for each subject, respectively.

After calibration, the two subjects performed three games
in classic mode, followed by two games in contest mode. In
each game, players had 10s to choose a target before the
columns started flashing. Finally and for each shot, each
player was requested to write down her/his actual target
number for future (offline) evaluation.
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F1GURE 3: OpenViBE scenario of the BCI “Connect Four”.

2.3. Online Processing. We implemented this BCI game sce-
nario in OpenViBE (OV). OV is an open source platform
to design, implement, and run BCI applications [29]. The
dedicated online data processing stream consisted in a
classical BCI pipeline made of successive modules in the
following order: data acquisition, feature selection, feature
classification, decision, and feedback (see Figure 3). Those
modules operate as follows.

Acquisition. New chunks of raw EEG data are transmitted via
TCP/IP every 20 ms. The data stream includes event markers.
The Acquisition Server application converts those streams
into OV format.

Downsampling. Data are sampled down to 100Hz after
being passed through an antialiasing filter.

Temporal Filtering. For each channel independently, down-
sampled data are then bandpass filtered between 1 and 20 Hz
using a second-order Butterworth filter to remove very low
frequencies and the higher frequency content of EMG.

Channel Selection. The channel selector limits the 32-chan-
nel data stream to two 9-channel data streams, one for each

player.

Spatial Filtering. To extract the most relevant signal com-
ponents and to increase the signal-to-noise ratio (SNR),
we used the xXDAWN algorithm which has been specifically
developed for the P300 Speller [30]. Precisely, it optimizes
orthogonal spatial filters (linear combinations of sensors) so
as to maximize the signal to signal-plus-noise ratio. We used
the first five filters (or virtual sensors) obtained from the
calibration phase, for each subject.

Epoching. Epochs are generated upon reception of a given
event marker. Seven stimulation-based epoching are per-
formed in parallel, per player branch, each epoch type being
associated with a different column. We considered 600 ms
long epochs starting at flash onset.
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Classification. The temporally and spatially filtered epoched
data enter as features for subsequent classification. The aim
of classification is to disentangle between target and non-
target events. Therefore, we adapted the Bayesian approach
we used in a previous P300 Speller experiment [26].
The Bayesian procedure rests on computing the posterior
probability p(C | Y) that a given response Y pertains to the
“target” or “nontarget” class type of event C. This conditional
density is inferred from combining two antecedents: the
prior probability p(C) and the likelihood function p(Y | C)
which embeds a probabilistic model of the data to be
observed. In the current scenario, we used a two-Gaussian
mixture likelihood function. In a previous P300 Speller
study, in twenty subjects, we had shown that this classifier
was equivalent or even better than a classical LDA [26].
Moreover, it allows for the optimal and online updating
of the posterior density, after each single new observation.
Hence starting with a uniform prior over columns (each
column is a possible target, with equal prior probability), the
posterior density is computed based on the data likelihood
and the given prior. If more data pertaining to the same shot
are provided, the current posterior is taken as the new prior,
in a Markovian fashion. In practice, online, this is performed
in two OV steps as follows.

(i) Likelihood compute: this box computes the likelihood
function for each class and each stimulus type. It
provides the results in matrix form.

(ii) Matlab Box: it communicates with the Matlab Engine
to perform matrix processing. In this scenario, it is
used to combine the likelihood values and current
priors to compute posteriors. It also makes the final
decision by indicating the most probable target a
posteriori, for each player Pi:

TCp; = argmax(p(k = target | Ypix)), (1)
k

where Y); indicates the observed features for player
Pi.

Importantly, this Matlab Box provides a second measure
which is the Shannon entropy of the posterior distribution
for each player:

Hp; = —ZPPi,k . log(PPi,k)> (2)
k

where pp; is a short for p(k = target | Ypi).

Shannon entropy is used in contest mode only, as a mea-
sure of confidence in the machine’s decision. We consider
it as a proxy to the attentional resources devoted by the
subject for a particular shot. Indeed, Shannon entropy can
be compared between subjects. It is negative and bounded.
The more informed the decision, the sharper the posterior
probability distribution and the closer to zero the entropy.
To summarize, the output of the Matlab Box depends on the
game mode. In classic mode, the single output corresponds
to the estimated target for the current player. In contest
mode, the output is twofold and indicates both the winner
of the contest and the target she or he most likely selected.
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F1GURE 4: Visual feedback in classic (a) and contest modes (b).

VRPN Server. The final decision (the selected column) is
sent via a VRPN (Virtual-Reality Peripheral Network) analog
server to a VRPN client application host by the stimulator
[31]. This information is used to provide the two players with
visual feedback.

Feedback. In classic mode, a rectangle of the color of the
current player is displayed to indicate the selected column
(Figure 4(a)). In contest mode, a first feedback (red or yellow
smiley) appears at the center of the screen to reveal the
identity of the winner of the contest (left part of Figure 4(b)).
A second feedback, similar to the one in classic mode,
is finally provided and the coin is placed (right part of
Figure 4(b)).

3. Results

3.1. Classic Mode. Player P2 (Red) won twice and P1 (Yellow)
once. The average game duration was 4 min and 6, corre-
sponding to an average of 7 shots per player. Figure 5 shows
an outline of the third game.

In that game, players made almost no error (Figures 5(a)
and 5(b)). In turn 7, Red made an error; he wanted to select
the third column in order to thwart the other’s player plan to
connect four yellow coins (Figure 5(c)). Yellow won.

The average accuracy over all three games was 81.7%,
which is way above chance level (14.3% for 7 classes) and
corresponds to an information transfer rate of 35.3 bits/min.
However, P2 (Red) reached a considerably higher accuracy
than P1 (95.2% and 68.2%, resp., or 51.8bits/min and
23.2 bits/min, resp.).

Table 1 shows the detailed results, separately for the two
players and the three games in classic mode. This highlights
the coherence between individual performance, in terms of
accuracy, entropy, and the ensuing winner in each game.

3.2. Contest Mode. Each player won one game. The average
game duration was 3min and 37s, corresponding to an
average of 6 shots per player. Figure 6 shows an outline of
the second game.

In this mode, both players compete to impose their own
choice, whatever the color of the coin to be placed. An
example is given in Figure 6. It was Yellow’s turn (Figures
6(al) and 6(a2)) but the Red player won the contest
(Figure 6(al)) and enforced the yellow coin to be placed in
the second column instead of the fourth one, which keeps the
opportunity for the Red player to win the game in the next
turn (Figure 6(a2)). However, Yellow won the next contest
(Figure 6(b1)) and prevented Red’s victory by selecting the
first column (Figure 6(b2)). In what follows, Yellow won
again and placed the red coin in the first column, hence
leaving the hole in the fourth column free (Figures 6(c1)
and 6(c2)). Finally, Yellow won the last contest and hence the
game by placing the coin in the fourth column (Figures 6(d1)
and 6(d2)).

Over all games in contest mode, Player P1 won 48%
of the contests. This indicates that both players were fully
engaged in the game and close to each other in terms of
devoted attentional resources.

Table 2 shows the detailed results, separately for the two
players and the two games in contest mode. Interestingly, in
contest mode, the player with the highest averaged accuracy
is not necessarily the end winner of the game. Neither is
the one who won most of the contests, since victory is the
result of the complex interplay between accuracy, focus of
attention, and strategy.

The average accuracy over all two games and players was
83.3%, or 37.0 bits/min. Precisely, P1 managed to increase
accuracy by 18.8% compared to classic mode, reaching an
average of 87.0% in contest mode, which corresponds to a
bit-rate increase of 17.8 bits/min. To qualitatively evaluate
this improvement, we compared the averaged features for
“target” and “nontarget” stimuli, in both modes. We com-
puted the Global Field Power (GFP) [32] over the five virtual
Sensors:

5
GEP(t) = > (Yi(1))?, (3)
i=1
where Y;(t) is the value at the ith virtual channel, at time ¢.

Note, in Figure 7, that GFP increased around 200 ms and

500 ms peristimulus time, for target stimuli, in the contest
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Figure 5: Third game in classic mode. Yellow won by connecting four coins horizontally. For the purpose of illustration, the red rectangle
was made partially transparent to make all coins visible.
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FIGURE 6: Second game in contest mode. Yellow won by connecting four coins horizontally. For the purpose of illustration, yellow and red
rectangles are made partially transparent to make all coins visible.



Advances in Human-Computer Interaction 7
TaBLE 1: Detailed results for the three games in classic mode.
1 1 0,
Run Duration Winner Classification accuracy (%) Entropy
Player 1 Player 2 Player 1 Player 2
510" Player 2 55,6% 100,0% 7,65E — 02 8,08E — 07
307" Player 2 60,0% 100,0% 1,45E — 06 1,02E - 21
3 401" Player 1 87,5% 85,7% 8,73E — 05 4,03E - 02
TABLE 2: Detailed results for the two games in contest mode.
- o : o
Run Duration Winner Classification accuracy (%) Entropy Contest winner %
Player 1 Player 2 Player 1 Player 2 Player 1 Player 2
307" Player 2 100,0% 90,0% 4,98E — 07 1,01E - 03 50,0 50,0
2 407" Player 1 76,9% 73,3% 1,29E — 02 9,09E — 03 46,7 53,3

0 100 200 300 400 500 600
(ms)
Classic mode Contest mode
— Target —— Target
--- No target --- No target

FiGure 7: Global Field Power computed over five virtual channels
for “target” and “nontarget” stimuli, in classic and contest modes
(Player 1).

versus classic mode, although there is no specific difference
in between the “nontarget” responses in the two modes. This
might reflect the actual increase in classification accuracy and
could well be a consequence of an enhanced motivation in
contest mode because motivation was found to be positively
correlated with the P300 amplitude in healthy subjects [33].

4. Discussion

BCIs were originally developed in the context of clinical
research. In this study, we developed a P300-based BCI for
gaming. Moreover, beyond most existing gaming applica-
tions of BCI, we instantiated a true online interaction, involv-
ing brain commands only, from two competing subjects, in
an existing but extended gameplay (“Connect Four”). We
showed that it is possible to take advantage of the variable
nature of brain signals and of the cognitive challenge it
takes to control their stability. This could make existing
games more attractive and motivating, for both healthy
players and patients. Through online evaluation, we observed
that a simple setup, using nine EEG sensors, was sufficient
to provide high performance comparable to our previous
studies [26, 27], suggesting that BCI “Connect Four” can
effectively be controlled, at a pace that compares to the one

of the traditional (manual) version of the game. Indeed,
although motor execution remains faster than the 2.8 s that
are needed in the present BCI implementation to select a
command, the subjective perception of this additional cost
might prove insignificant compared to the time allocated to
the planning of the next move (of the order of 10s). More-
over, following the hypothesis that the electrophysiological
marker manipulated here, the P300, is known to reflect the
orientation of attention, this BCI game or similar ones could
prove useful in the near future, as part of a motivating system
to train attention. This encouraging proof of concept calls
for carefully designed experiments, involving a large number
of subjects or patients, to study social interactions or effects
on motivation of such an original and well-controlled BCI
environment.
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