Research Article
X(1870) and η_2(1870): Which Can Be Assigned as a Hybrid State?

Bing Chen,¹ Ke-Wei Wei,¹ and Ailin Zhang²

¹ School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China
² Department of Physics, Shanghai University, Shanghai 200444, China

Correspondence should be addressed to Bing Chen; chenbing@shu.edu.cn

Received 11 July 2013; Revised 15 September 2013; Accepted 23 September 2013

Copyright © 2013 Bing Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The mass spectrum and strong decays of the X(1870) and η_2(1870) are analyzed. Our results indicate that X(1870) and η_2(1870) are the two different resonances. The narrower X(1870) seems likely a good hybrid candidate. We support the η_2(1870) as the η_2(2D_2) quarkonium. We suggest to search the isospin partner of X(1870) in the channels of J/ψ → ωX(1870) → ωηπ⁺π⁻ and J/ψ → ρb(1235)π in the future. The latter channel is very important for testing the hybrid scenario.

1. Introduction

An isoscalar resonant structure of X(1870) was observed by the BESIII Collaboration with a statistical significance of 7.2σ in the processes J/ψ → ωX(1870) → ωηπ⁺π⁻ recently [1]. Its mass and width were given as

\[M = 1877.3 \pm 6.3^{+13.4}_{-7.4} \text{ MeV}, \quad \Gamma = 57 \pm 12^{+19}_{-4} \text{ MeV}. \] \hspace{1cm} (1)

Here the first errors are statistical and the second ones are systematic. The product branching fraction of \(\mathcal{B}(J/\psi \to \omega X(1870)) \cdot \mathcal{B}(X(1870) \to a_0^\prime(980)\pi^0) \cdot \mathcal{B}(a_0^\prime(980) \to \eta \pi^0) = [1.5 \pm 0.26(\text{stat})^{+0.72}_{-0.32(\text{syst})}] \times 10^{-4} \) was also presented [1]. But the quantum numbers of X(1870) are still unknown, then the partial wave analysis is required in future.

The mass of X(1870) is consistent with the η_2(1870), but the width is much narrower than the η_2(1870). In the tables of the Particle Data Group (PDG) [2], the available mass and width of η_2(1870) are

\[M = 1842 \pm 8 \text{ MeV}, \quad \Gamma = 225 \pm 14 \text{ MeV}. \] \hspace{1cm} (2)

The η_2(1870) has been observed in γγ reactions [3, 4], pPb annihilation [5–8], and radiative J/ψ decays [9]. It should be stressed that radiative J/ψ decay channels (Figure I(a)) and pPb annihilation processes are the ideal glueball hunting grounds. But the glueball production is suppressed in γγ reaction. By contrast, the hadronic J/ψ decay are considered “hybrid rich” (Figure I(b)).

Furthermore, the branching ratio \(\mathcal{B}_1 = \Gamma(\eta_2(1870) \to a_0^\prime(1320)\pi) / \Gamma(\eta_2(1870) \to a_0^\prime(980)\pi) = 32.6 \pm 12.6 \) reported by the WA102 Collaboration indicates that the decay channel of \(a_0^\prime(980)\pi \) is tiny for η_2(1870) [7]. This has been confirmed by an extensive reanalysis of the Crystal Barrel data [10]. Differently, the analysis of BESIII Collaboration indicates that the X(1870) primarily decays via the \(a_0^\prime(980)\pi \) channel [1]. Then the present measurements of the decay widths, productions, and decay properties suggest that η_2(1870) and X(1870) are two different isoscalar mesons.

If the production process J/ψ → ωX(1870) is mainly hadronic, the quantum numbers of X(1870) should be 0^+0^+, 0^+1^{++}, or 0^+2^{++}. One notices that the predicted masses for the light 0^+0^+, 0^+1^{++} and 0^+2^{++} hybrids overlap 1.8 GeV in the Bag model [11, 12], the flux tube model [13, 14], and the constituent gluon model [15]. In addition, the decay width of isoscalar 2^{++} hybrid is expected to be narrow [16]. Therefore, X(1870) becomes a possible 2^{++} hybrid candidate.

In addition, the predicted masses of 0^+0^+ and 2^{++} glueball are much higher than 1.8 GeV by lattice gauge theory [17–19]. Therefore, X(1870) is not likely to be a glueball state. Moreover, the molecule and four-quark states are not expected in this region [16]. Then the unclear structure X(1870) looks more like a good hybrid candidate. But the actual situation
is much complicated because the nature of \(\eta_2(1870) \) is still ambiguous.

(i) Since no lines of evidence have been found in the decay mode of \(K \bar{K}\pi \), the \(\eta_2(1870) \) disfavors the \(1^D_{2S} \) \(ss \) quarkonium assignment. The mass of \(\eta_2(1870) \) seems much smaller for the \(2^3D_2n\bar{m} \) (\(n\bar{m} \equiv (u\bar{u} + d\bar{d})/\sqrt{2} \)) state in the Godfrey-Isgur (GI) quark model [20]. Therefore the \(\eta_2(1870) \) has been assigned as the \(2^+ \) hybrid state [10, 21–23].

(ii) However, Li and Wang pointed out that the mass, production, total decay width, and decay pattern of the \(\eta_2(1870) \) do not appear to contradict with the picture of it as being the conventional \(2^1D_2n\bar{m} \) state [24].

Therefore, systematical study of the mass spectrum and strong decay properties is urgently required for \(X(1870) \) and \(\eta_2(1870) \). Some valuable suggestions for the experiments in future are also needed.

The paper is organized as follows. In Section 2, the masses of \(X(1870) \) and \(\eta_2(1870) \) will be explored in the GI relativized quark model and the Regge trajectories (RTs) framework. In Section 3, the decay processes that an isoscalar meson decays into light scalar (below 1 GeV) and pseudoscalar mesons will be discussed. The two-body strong decays of \(X(1870) \) and \(\eta_2(1870) \) will be calculated within the \(1^3P_0 \) model and the flux-tube model. Finally, our discussions and conclusions will be presented in Section 4.

2. Mass Spectrum

In the Godfrey-Isgur relativized potential model [20], the Hamiltonian \(H \) consists of a central potential and the kinetic term in a “relativized” form

\[
H = \sqrt{\frac{p_1^2}{m_1^2} + m_1^2} + \sqrt{\frac{p_2^2}{m_2^2} + m_2^2} + V_{q\bar{q}}(r). \tag{3}
\]

The funnel-shaped potentials which include a color coulomb term at short distances and a linear scalar confining term at large distances are usually incorporated as the zeroth-order potential. The typical funnel-shaped potential was proposed by the Cornell group (Cornell potential) with the form [29]

\[
V_{q\bar{q}}(r) = -\frac{4}{3} \frac{\alpha_s}{r} + \sigma r + C. \tag{4}
\]

The strong coupling constant \(\alpha_s \), the string tension \(\sigma \), and the constant \(C \) are the model parameters which can be fixed by the well-established experimental states. The remaining spin-dependent terms for mass shifts are usually treated as the leading-order perturbations which include the spin-spin contact hyperfine interaction, spin-orbit and tensor interactions, and a longer-ranged inverted spin-orbit term. They arise from one gluon exchange (OGE) forces and the assumed Lorentz scalar confinement. The expressions for these terms may be found in [20].

It should be pointed out that the nonperturbative contribution may dominate for the hyperfine splitting of light mesons, which is not like the heavy quarkonium [30]. For example, the hyperfine shift of the \(h_1(1P) \) meson with respect to the center gravity of the \(\chi_c(1P) \) mesons is much small: \(M_{\chi_c(1P)} - M(h_1) = -0.02 \pm 0.19 \pm 0.13 \) MeV [31]. However, for the light isovector mesons \(a_0(1450) \), \(a_1(1260) \), \(a_2(1320) \), and \(b_1(1235) \), the hyperfine shift is 76.7 \pm 44.4 MeV. Here the masses of \(a_0 \), \(a_1 \), \(a_2 \), and \(b_1 \) are taken from PDG [2]. For the complexities of nonperturbative interactions, we are not going to calculate the hyperfine splitting.

Now, the spin-averaged mass, \(M_{n\ell} \), of \(n\ell \) multiplet can be obtained by solving the spinless Salpeter equation:

\[
\left[\sqrt{\frac{p^2}{m^2} + m^2} + \sqrt{\frac{\beta^2}{m^2} + m^2} + V_{q\bar{q}}(r) \right] \psi(r) = E \psi(r). \tag{5}
\]

Here we employ a variational approach described in [32] to solve (5). This variational approach has been applied well in solving the Salpeter equation for \(c\bar{s} \) [33], \(c\bar{c} \) and \(b\bar{b} \) [34] mass spectrum.

In the calculations, the basic simple harmonic oscillator (SHO) functions are taken as the trial wave functions. It is given by

\[
\psi_{n\ell}(r, \beta) = \beta^{3/2} \frac{2 (2n - 1)!}{\Gamma(n + l + 1/2)} \left(\frac{\beta r}{\ell + 1/2} \right)^{l+1/2} e^{-\beta r^2/\ell} r^{n-1} \left(\beta^2 r^2 \right)^{l+1/2}. \tag{6}
\]
in the position space. Here the SHO function scale β is the variational parameter.

By the Fourier transform, the SHO radial wave function in the momentum is

$$\psi_{nl}(p, \beta) = \frac{(-1)^n}{\beta^{3/2}} \left(\frac{2}{\Gamma(n + l + (1/2))} \right)^{1/2} \left(\frac{p^2}{\beta^2} \right)^{l+1/2} e^{-p^2/2\beta^2} L_{n-1/2}^{l+1/2} \left(\frac{p^2}{\beta^2} \right).$$

(7)

The wave functions of $\psi_{nl}(r, \beta)$ and $\psi_{nl}(p, \beta)$ meet the normalization conditions:

$$\int_0^\infty \psi_{nl}^2 (r, \beta) r^2 dr = 1, \quad \int_0^\infty \psi_{nl}^2 (p, \beta) p^2 dp = 1.$$ (8)

In the variational approach, the corresponding \bar{M}_{nl} are given by minimizing the expectation value of H

$$\frac{d}{d\beta} E_{nl} (\beta) = 0,$$

(9)

where

$$E_{nl} (\beta) \equiv \langle H \rangle_{nl} = \langle \psi_{nl} | H | \psi_{nl} \rangle.$$ (10)

When all the parameters of the potential model are known, the values of the harmonic oscillator parameter β can be fixed directly. With the values of β, all the spin-averaged masses \bar{M}_{nl} will be obtained easily. \bar{M}_{nl} obtained in this way tend to be better for the higher-excited states [35].

It is unreasonable to treat the spin-spin contact hyperfine interaction as a perturbation for the ground states, because the mass splitting between pseudoscalar mesons and vector mesons are much large. Then we consider the contributions of $V_{c3}(r)$ for the 1S mesons. The following Gaussian-smeared contact hyperfine interaction [36] is taken for convenience:

$$V_{c3}(r) = \frac{32 \pi \alpha_s}{9 m_n^2} (\frac{\kappa}{\sqrt{\pi}})^3 e^{-\kappa r^2} \tilde{s}_q \cdot \tilde{s}_{\bar{q}}.$$ (11)

In this work, we choose the model parameters as follows: $m_u = m_d = 0.220$ GeV, $m_s = 0.428$ GeV, $\alpha_s = 0.6$, $\sigma = 0.143$ GeV2, $\kappa = 0.37$ GeV, and $C = -0.37$ GeV. We take the smaller value of σ here rather than the value in [20]. The smaller σ was obtained by the relation between the slope of the Regge trajectory for the Salpeter equation α' and the slope α'_s in the string picture [30]. The Gaussian smearing parameter κ seems a little smaller than that in [20]. However, the κ is usually fitted by the hyperfine splitting of low-excited nS states in the works of literature with a certain arbitrariness.

The values of \bar{M}_{nl} and β for the states 2S, 3S, 4S, 1P, 2P, 3P, 1D, 2D, 3D, 1F, 2F, 1G, and 1H are listed in Table 1. The experimental masses for the relative mesons are taken from PDG [2].

<table>
<thead>
<tr>
<th>States</th>
<th>$\bar{M}_{nl}(n\bar{n})$</th>
<th>β</th>
<th>Expt. [2]</th>
<th>$\bar{M}_{nl}(n\bar{s})$</th>
<th>β</th>
<th>Expt. [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S</td>
<td>1.252</td>
<td>0.310</td>
<td>1.257</td>
<td>1.460</td>
<td>0.340</td>
<td>1.478</td>
</tr>
<tr>
<td>2S</td>
<td>1.711</td>
<td>0.294</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3S</td>
<td>2.110</td>
<td>0.290</td>
<td>2.308</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1P</td>
<td>1.661</td>
<td>0.280</td>
<td>1.672</td>
<td>1.883</td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>2P</td>
<td>2.067</td>
<td>0.276</td>
<td>2.272</td>
<td>0.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3P</td>
<td>2.417</td>
<td>0.275</td>
<td>2.609</td>
<td>0.288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F</td>
<td>1.924</td>
<td>0.277</td>
<td>2.128</td>
<td>0.295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F</td>
<td>2.287</td>
<td>0.275</td>
<td>2.478</td>
<td>0.290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1G</td>
<td>2.161</td>
<td>0.275</td>
<td>2.350</td>
<td>0.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1H</td>
<td>2.377</td>
<td>0.273</td>
<td>2.554</td>
<td>0.287</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: The spin-averaged mass (unit: GeV) and the harmonic oscillator parameter β (unit: GeV$^{-1}$) of the states 2S, 3S, 4S, 1P, 2P, 3P, 1D, 2D, 3D, 1F, 2F, 1G, and 1H.

here are also reasonable, for example, $a_0(2040)$ and $f_4(2050)$ are very possible the F-wave $n\bar{n}$ isovector and isoscalar mesons with the masses of 1996^{+10}_{-9} MeV and 2018 ± 11 MeV, respectively [2]. The predicted spin-averaged mass of $1F$ is not incompatible with experiments. Our results are also overall in good agreement with the expectations from [37]. The trend that a higher excited state corresponds to a smaller β coincides with [38–40]. For considering the spin-spin contact hyperfine interaction, there are two $\bar{\beta}$s for the 1S mesons. The larger one corresponds to the 1^1S_0 state and the smaller one to the 1^3S_1 state.

As shown in [37, 41], the confinement potential $V_{con}(r)$ is determinant for the properties of higher excited states. In [37], the masses for higher excited states with $\sigma = 0.143$ GeV2 and $\alpha_s = 0.0$ are closer to experimental data than the results given in [20]. Then we ignored the Coulomb interaction for $1D, 2D, 1F, 1G,$ and $1H$ states. In this way, \bar{M}_{nl} for these states increase about 100 MeV.

The masses of $\eta(3^1S_0)$, $f_0'(2^3P_1)$, $\eta'_s(1^1D_2)$, and $\eta_s(2^1D_2)$ are usually within $1.8\sim2.1$ GeV in various quark potential models [20, 25–27] (see in Table 2). The predicted spin-averaged masses of $3S(\bar{s}\bar{s})$, $2P(\bar{s}\bar{s})$, $1D(\bar{s}\bar{s})$, and $2D(\bar{n}\bar{n})$ are also within our mass regions (bold ones in Table 1). Due to the uncertainty of the potential models, absolute deviation from experimental data are usually about 100–150 MeV for the higher excited states. Compared with these predicted masses, $X(1870)$ disfavors the $\eta(3^1S_0)$ assignment for its low mass. But the possibilities of $f_0'(2^3P_1)$, $\eta'_s(1^1D_2)$, and $\eta_s(2^1D_2)$ still exist. Here we do not consider the possibility of $X(1870)$ as the $\eta(3^1S_0)$ state because $\eta(1760)$ looks more like a good $\eta(3^1S_0)$ candidate [42–44].

Regge trajectories (RTs) are another useful tool for studying the mass spectrum of the light flavor mesons. In [45], the
Table 2: The masses predicted for $3^3S_0(\eta')$, $2^3P_J(\eta')$, $1^1D_J(\eta')$, and $2^1D_J(\eta')$ in [20, 25–27]. The value denoted by "$^+$" was predicted for the mass of isovector 2^1D_J state in [20].

<table>
<thead>
<tr>
<th>States</th>
<th>$\eta'(3^3S_0)$</th>
<th>$f_J(2^3P_J)$</th>
<th>$\eta'_J(1^1D_J)$</th>
<th>$\eta_J(2^1D_J)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>—</td>
<td>2030</td>
<td>1890</td>
<td>2130</td>
</tr>
<tr>
<td>[26]</td>
<td>2099</td>
<td>1988</td>
<td>1851</td>
<td>—</td>
</tr>
<tr>
<td>[27]</td>
<td>—</td>
<td>—</td>
<td>1853</td>
<td>1863</td>
</tr>
</tbody>
</table>

Table 3: $X(1870)$ calculated in RTs for different states. The masses of $\eta'(1415)$, $f_J(1420)$, $h_J(1380)$, and $\eta_J(1645)$ are taken from PDG [2].

<table>
<thead>
<tr>
<th>Four possible states for $X(1870)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta'(3^3S_0)$</td>
</tr>
<tr>
<td>$\eta'(1475)$</td>
</tr>
<tr>
<td>$\mu^2 = 1.34_{-0.03}^{+0.04}$</td>
</tr>
</tbody>
</table>

The authors fitted the RTs for all light-quark meson states listed in the PDG tables. A global description was constructed as

$$M^2 = 1.38(4) n + 1.12(4) J - 1.25(4).$$

Here, n and J mean the radial and angular-momentum quantum number. Recently, the authors of [45] repeated their fits with the subset mesons of the paper [46]. They found a little smaller averaged slopes of $\mu^2 = 1.28(5)$ GeV2 and $\beta^2 = 1.09(6)$ GeV2 to be compared with $\mu^2 = 1.38(4)$ GeV2 and $\beta^2 = 1.12(4)$ GeV2 in (12). Here the μ^2 and β^2 are the weighted averaged slopes for radial and angular-momentum RTs [45, 47].

Now $h_J(1380)$, $f_J(1420)$, and $\eta'(1475)$ have been established as the 1^1P_J, 1^3P_J, and 2^3S_0 states in PDG [2]. With the differences between the mass squared of $X(1870)$ and these states (Table 3), $X(1870)$ could be assigned for the $\eta'(3^3S_0)$ and $f_J(2^3P_J)$ state. The mass of $X(1870)$ is too large for the $\eta'_J(1^1D_J)$ state in the RTs. $\eta_J(1645)$ has been assigned as the 1^1D_J resonance [2]. Since $M^2(X(1870)) - M^2(h_J(1170)) = 2.16_{-0.05}^{+0.06}$ GeV2 matches the slopes 2.37(11) GeV2 well. Then the RTs can not exclude the possibility of $X(1870)$ as the 2^1D_J state.

As mentioned in Section 1, $X(1870)$ is also a good hybrid candidate since its mass overlaps the predictions given by different models. The predicted masses for 0^+0^+, 0^+1^+, and 0^+2^+ $\eta \eta \eta$ states by these models are collected in Table 4.

Table 4: The masses predicted for $\eta_{I1}(0^{++})$, $f_{I1}(0^{++})$, and $\eta_{I2}(0^{2++})$ hybrid states in [11–15].

<table>
<thead>
<tr>
<th>States</th>
<th>$\eta_{I1}(0^{++})$</th>
<th>$f_{I1}(0^{++})$</th>
<th>$\eta_{I2}(0^{2++})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag</td>
<td>1.3</td>
<td>Heavier</td>
<td>1.9</td>
</tr>
<tr>
<td>Flux tube</td>
<td>1.7–1.9</td>
<td>1.7–1.9</td>
<td>1.7–1.9</td>
</tr>
<tr>
<td>Constituent gluon</td>
<td>1.8–2.2</td>
<td>1.3–1.8</td>
<td>1.8–2.2</td>
</tr>
</tbody>
</table>

Figure 2: The "δ" nonet below 1 GeV shown in Y-I_J plane.

3. The Strong Decay

3.1. The Final Mesons Include the Scalar Mesons below 1 GeV.

Despite many theoretical efforts, the scalar nonet of $q \bar{q}$ mesons has never established well. The lowest-lying scalar mesons including $\sigma(500)$ (or $f_0(500)$), $\kappa(800)$, $a_0(980)$, and $f_0(980)$ are difficult to be described as $q \bar{q}$ states; for example, $a_0(980)$ is associated with nonstrange quarks in the $q \bar{q}$ scheme. If this is true, its high mass and decay properties are difficult to be understood simultaneously. So interpretations as exotic states were triggered. For examples, two clusters of two quarks and two antiquarks [48], particular quasi-molecular states [49–51], and uncorrelated four-quark states $qq \bar{q} \bar{q}$ [52–54] have been proposed.

Though the structures of these scalar mesons below 1 GeV are still in dispute, the viewpoint that these scalar mesons can constitute a complete nonet states has been reached in most works of the literature (as illustrated in Figure 2). In the following, we will denote this nonet as "δ" multiplet for convenience.

Due to the unclear nature of the δ mesons, it seems much difficult to study the decay processes when the final mesons include a δ member. As an approximation, $a_0(980)$, $\sigma(500)$, and $f_0(980)$ were treated as $1^3P_0 q \bar{q}$ mesons in [44, 55]. In
In order to determine the relations between these coupling constants, we will assume the process that the $q\bar{q}$ or $q\bar{q}g$ meson decays into a δ and another $q\bar{q}$ mesons obey the OZI (Okubo-Zweig-Iizuka) rule; that is, the two quarks in the mother meson go into two daughter mesons, respectively. Therefore, there are four forbidden processes: $X((1/\sqrt{2})(u\bar{u}-d\bar{d})) \rightarrow a_0 + s\bar{s}$, $X((1/\sqrt{2})(u\bar{u} + d\bar{d})) \rightarrow a_0 + s\bar{s}$, $X(s\bar{g}) \rightarrow f_0 + (1/\sqrt{5})(u\bar{u} + d\bar{d})$, and $X(s\bar{g}) \rightarrow a_0 + s\bar{s}$. With the help of the SU(3) Clebsch-Gordan coefficients [59], the ratios between the five coupling constants are extracted as

$$g_{A81}: g_{A18}: g_{B88}: g_{B11}: g_{AB8} = \frac{\sqrt{2}}{\sqrt{5}} : -\frac{2}{\sqrt{5}} : (\sqrt{5} + 1) : 1 \approx 1.41 : -2.05 : -2.89 : -2.05 : 1.00.$$ \hfill (17)

It is well known that the physical states, $\eta(548)$ and $\eta'(958)$, are the mixture of the SU(3) flavor octet and singlet. They can be written in terms of a mixing angle, θ, as follows:

$$\left(\eta(548)\right) = \left(\cos \theta \sin \theta \right) \left|8\right\rangle_{I=0} + \left(-\sin \theta \cos \theta \right) \left|1\right\rangle_{I=0},$$

$$\left(\eta'(958)\right) = \left(\sin \theta \cos \theta \right) \left|8\right\rangle_{I=0} + \left(-\cos \theta \sin \theta \right) \left|1\right\rangle_{I=0}. \hfill (18)$$

The mixing angle θ has been measured by various means. However, there is still uncertainty for θ. An excellent fit to the tensor meson decay widths was performed under the SU(3) symmetry, and $\theta = 17^\circ$ was obtained [23]. In our calculation, θ was taken as 17°. The excited mixtures of $n\bar{n}$ and $\bar{s}s$ are denoted as

$$\left(\xi \eta'\right) = \left(\cos \theta \sin \theta \right) \left|8\right\rangle_{I=0} + \left(-\sin \theta \cos \theta \right) \left|1\right\rangle_{I=0}. \hfill (19)$$

In this scheme, the ideal mixing occurs with the choice of $\theta = 35.3^\circ$. When ξ and ξ' decay into a δ and pseudoscalar mesons, the relations of decay amplitudes are governed by the coefficients ξ^2 which are model-independent in the limitation of SU(3)$_f$ symmetry. With the coupling constants in hand, the coefficients ξ^2 of ξ and ξ' versus the mixing angle θ are shown in the Figures 3 and 4. When ξ and ξ' occur in the ideal mixing, the values of ξ^2 are presented in Table 5. In the factorization framework, the decay difference of a hybrid and excited $q\bar{q}g$ mesons comes from the spatial contraction [60]. Then the coefficients ξ^2 for hybrid states are the same as these of $q\bar{q}$ quarkonia.

Here the mixing of $\eta(548)$ and $\eta'(958)$ has been considered. It is sure that the ξ^2 are zero for the processes $\xi^2 \rightarrow q_1\bar{q}_1$, $\xi' \rightarrow \sigma_n$ and $\xi' \rightarrow \sigma_n'$, since they are OZI-forbidden. ξ^2 of $\xi' \rightarrow f_0\eta$ has not been considered in Table 5 since $X(1870)$ lies below the threshold of $f_0\eta$. As illustrated in Figures 3 and 4, the primary decay channels of a $s\bar{s}$ or $s\bar{s}g$ predominant excitation are $f_0\eta$ and κK. If the deviation of θ from the ideal mixing angle is not large, $X(1870)$ should be a $n\bar{n}$ or $n\bar{n}g$ predominant state.
Advances in High Energy Physics

3.2. The Strong Decays of $\eta_2(1870)$ and $X(1870)$. In [24], the 3P_0 model [61–63] and the flux-tube model [64] were employed to study the two-body strong decays of $\eta_2(1870)$. There, the pair production (creation) strength γ and the simple harmonic oscillator (SHO) wave function scale parameter, β_3, were taken as constants.

However, a series of studies indicate that the strength γ may depend on both the flavor and the relative momentum of the produced quarks [28, 65]. γ may also depend on the reduced mass of quark-antiquark pair of the decaying meson [66]. Firstly, the relations of the 3P_0 model to “microscopic” QCD decay mechanisms have been studied in [65]. There, the authors found that the constant γ corresponds approximately to the dimensionless combination, $\sigma/m_{\eta}\beta$, where m_{η} is the mass of produced quark, β means the meson wave function scale, and σ is the string tension. Secondly, the momentum dependent manner of γ has been studied in [28]. It was found that γ is dependent on the relative momentum of the created $q\bar{q}$ pair, and the form of $\gamma(k) = A + B \exp(-Ck^2)$ with $k = |k_{\bar{q}} - k_q|$ was suggested. Thirdly, Segovia et al. proposed that γ is a function of the reduced mass of quark-antiquark pair of the decaying meson [66]. Based on the first and third points above, γ will depend on the flavors of both the decaying meson and produced pairs. In our calculations, we will treat the γ as a free parameter and fix it by the well-measured partial decay widths.

In addition, the amplitudes given by the 3P_0 model and the flux-tube model often contain the nodal-type Gaussian form factors which can lead to a dynamic suppression for some channels. Then the values of β are important to extract the decay width for the higher excited mesons in these two strong decay models.

In the following, the two-body strong decay of $X(1870)$ will be investigated in the 3P_0 model where the strength γ will be extracted by fitting the experimental data. The SHO wave function scale parameter, β_3, will be borrowed from Table 1 which are extracted by the GI relativized potential model. We will also check the possibility of $X(1870)$ as a possible hybrid state by the flux-tube model.

In the nonrelativistic limit, the transition operator \vec{T} of the 3P_0 model is depicted as

$$\vec{T} = -3\gamma \sum_m \langle 1, m; 1, -m | 0, 0 \rangle \times \int d^3k_3 d^3k_4 \delta^3(\vec{k}_3 + \vec{k}_4) \times \mathcal{Y}_1 \left(\frac{\vec{k}_3 - \vec{k}_4}{2} \right) \omega_0^{(3,4)} \phi_0^{(3,4)} \lambda_{1,-m}^{(3,4)} n_{\bar{q}q} (\vec{k}_3) d^4_{\bar{q}q} (\vec{k}_4),$$

(20)

where the $\omega_0^{(3,4)}$ and $\phi_0^{(3,4)}$ are the color and flavor wave functions of the $q\bar{q}$ pair created from vacuum. Thus, $\omega_0^{(3,4)} = (R\bar{R} + G\bar{G} + B\bar{B})/\sqrt{3}, \phi_0^{(3,4)} = (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$ are color and flavor singlets. The pair is also assumed to carry the quantum numbers of 0^{++}, suggesting that they are in a 3P_0 state. Then $\lambda_{1,-m}^{(3,4)}$ represents the pair production in a spin triplet state.

Table 5: The coefficients ζ^2 of ξ and ξ' in the ideal mixing.

<table>
<thead>
<tr>
<th>Decay channels</th>
<th>$a_\eta\pi$</th>
<th>$a_\sigma\eta$</th>
<th>κK</th>
<th>$f_\eta\eta$</th>
<th>$\sigma\eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\zeta^2 \left[n\pi (g) \right]$</td>
<td>2.17</td>
<td>3.56</td>
<td>0.47</td>
<td>1.07</td>
<td>0.44</td>
</tr>
<tr>
<td>$\zeta^2 \left[\sigma (g) \right]$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.72</td>
<td>1.08</td>
<td>0.00</td>
</tr>
</tbody>
</table>

since $X(1870)$ primarily decays via the $a_\eta(980)\pi$ channel. At present, only the ground 0^{-+} and the 0^{++} isoscalar mesons deviate from the ideal mixing distinctly. In addition, if the $X(1870)$ is produced via a diagram of Figure 1(b), it should also be $n\pi$ or $n\pi g$ predominant state.

Of course, the SU(3)$_f$ symmetry breaking will affect the ratios of these channels listed in Table 5, because the three-momentum of the these products are different. However, the coefficients ζ^2 have presented the valuable information for these specific decay channels. When $\eta_2(1870)$ occupies the $2^1D_2,n\pi$ state, $X(1870)$ becomes a good $n\pi g$ candidate. In the following subsection, we will explore the two-body strong decays of $X(1870)$ within the 3P_0 model and the flux-tube model. Of course, the analysis of $X(1870)$ also suits $\eta_2(1870)$ for their nearly equal masses.
The solid harmonic polynomial \(\mathcal{Y}^m_1(\hat{k}) \equiv |\hat{k}| \mathcal{Y}^m_1(\theta_k, \phi_k) \) reflects the momentum-space distribution of the quark pairs. The helicity amplitude \(\mathcal{M}^{|l_A, l_B, M_{lc}}(p) \) of \(A \rightarrow B + C \) is given by

\[
\langle BC | \mathcal{F} | A \rangle = \delta^3(\vec{P}_A - \vec{P}_B - \vec{P}_C) \mathcal{M}^{|l_A, l_B, M_{lc}}(p),
\]

where \(p \) represents the momentum of the outgoing meson in the rest frame of the meson \(A \). When the mock state [67] is adopted to describe the spatial wave function of a meson, the helicity amplitude \(\mathcal{M}^{|l_A, l_B, M_{lc}}(p) \) can be constructed in the \(L-S \) basis easily [62, 63]. The mock state for \(A \) meson is

\[
A \equiv \left(n_A \overset{29,1}{L_A} M_{ls}, (\vec{P}_A) \right) \\
= \sqrt{2} E_A \sum_{l_m = 1}^{M_{ls}} \left< L_A M_{ls}, S_A | J_A M_{1A} \right> \left< \Phi^I_A \Phi^J \Phi^K \right> \\
\times \int d\vec{P}_A \Psi^{L_A}_{n_A} \left(\vec{k}_1, \vec{k}_2 \right) q_1(\vec{k}_1) q_2(\vec{k}_2).
\]

To obtain the analytical amplitudes, the SHO wave functions are usually employed for \(\Psi^{L_A}_{n_A} \). For comparison with experiments, one obtains the partial decay width \(\mathcal{W}^I(p) \) via the Jacob-Wick formula [68]:

\[
\mathcal{W}_{L_S}^I(p) = \frac{\sqrt{2L+1}}{2J_A + 1} \sum_{M_{ls} = 1}^{M_{ls}} \left< L_0 J_A M_{ls} | J_A M_{1A} \right> \\
\times \left< J_{B}, M_{ls} | C, M_{lc} | J_{A} M_{1A} \right> \mathcal{M}^{|l_A, l_B, M_{lc}}(p).
\]

Finally, the decay width \(\Gamma(A \rightarrow BC) \) is derived analytically in terms of the partial wave amplitudes

\[
\Gamma(A \rightarrow BC) = 2\pi \frac{E_{BC} E_{A}}{M_{A}} P_{L_S} \left| \mathcal{W}_{L_S}^I(q) \right|^2.
\]

For example, values of \(a_2 \) fixed by \(a_2 \rightarrow K\bar{K} \) and \(f_2^I \rightarrow K\bar{K} \) are roughly equal.

In the following calculations, we assume that the values of \(\gamma \) corresponding to the processes of \(s \rightarrow n \) are determined by one function. Similarly, we take the function, \(\gamma(p) = A + B \exp(-Cp^2) \), for the creation vertex. The function of the creation vertex here is different from the one used in [28]. With the four decay channels listed in the fifth column of Table 6, we fix the function as \(\gamma(p) = 1.8 + 4 \exp(-10p^2) \). For the processes of \(n\bar{n} \rightarrow n\bar{n} + n\bar{n} \), the first column of Table 6, we fix the creation vertex function as \(\gamma(p) = 3.0 + 25 \exp(-4p^2) \). The dependence of \(\gamma \) on the momentum \(p \) is plotted in Figure 5. Obviously the functions can describe the dependence of \(\gamma \) and \(p \) well. The functions of creation vertex given here need further test.

Since we neglected the mass splitting within the isospin multiplet, the partial width into the specific charge channel should be multiplied by the flavor multiplicity factor \(\mathcal{F} \) (Table 7). This \(\mathcal{F} \) factor also incorporates the statistical factor 1/2 if the final state mesons B and C are identical (as illustrated in Figure 6). More details of \(\mathcal{F} \) can be found in the Appendix A of [71].

The partial decay widths of \(X(1870) \) are shown in Table 8 except the channels of \(\delta + P \) mesons. \(a_2(1320)\eta_{c} \) and \(f_2(1275)\eta_{c} \) are large channels for the \(\eta_{c}(2525) \) state in our work and...
Table 7: The second and third columns for the flavor weight factors corresponding to two topological diagrams shown in Figure 6. The last column for the flavor multiplicity factor \mathcal{F}. Here, $|\eta\rangle = (|n\rangle - |s\rangle)/\sqrt{2}$ and $|\eta'\rangle = (|n\rangle + |s\rangle)/\sqrt{2}$ have been taken for simplicity.

<table>
<thead>
<tr>
<th>Decay channels</th>
<th>$\mathcal{F}_{\text{wave}}(d1)$</th>
<th>$\mathcal{F}_{\text{wave}}(d1)$</th>
<th>\mathcal{F}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho \to \pi\pi$</td>
<td>$+1/\sqrt{2}$</td>
<td>$-1/\sqrt{2}$</td>
<td>1</td>
</tr>
<tr>
<td>$f'_2 \to \pi\pi$</td>
<td>$-1/\sqrt{2}$</td>
<td>$-1/\sqrt{2}$</td>
<td>3/2</td>
</tr>
<tr>
<td>$f'_2 \to KK$</td>
<td>0</td>
<td>$-1/\sqrt{2}$</td>
<td>2</td>
</tr>
<tr>
<td>$f'_2 \to K^* K$</td>
<td>$+1$</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>$f'_2 \to KK$</td>
<td>$+1$</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$a_2 \to KK$</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$a_2 \to \eta\pi$</td>
<td>$+1/2$</td>
<td>$+1/2$</td>
<td>1</td>
</tr>
<tr>
<td>$\eta_2 \to \omega \omega$</td>
<td>$-1/\sqrt{2}$</td>
<td>$-1/\sqrt{2}$</td>
<td>1/2</td>
</tr>
<tr>
<td>$\eta_2 \to a_2\pi$</td>
<td>$-1/\sqrt{2}$</td>
<td>$-1/\sqrt{2}$</td>
<td>3</td>
</tr>
<tr>
<td>$\eta_2 \to f\eta$</td>
<td>$+1/2$</td>
<td>$+1/2$</td>
<td>1</td>
</tr>
</tbody>
</table>

[24], which are consistent with the experimental observations of the $\eta_2(1870)$. The partial widths of $K^* K$, $\rho\rho$, and $\omega\omega$ are narrower in our work than the expectations from [24]. $\eta_2(1870)$ has been observed by the BES Collaboration in the radiative decay channel of $J/\psi \to \gamma\eta\pi\pi$ [24]. However, no apparent $\eta_2(1870)$ signals were detected in the channels of $J/\psi \to \gamma\rho\rho$ [72] and $J/\psi \to \gamma\omega\omega$ [73, 74]. Therefore, improved experimental measurements of the radiative J/ψ decay channels are needed for the $\eta_2(1870)$ in future.

Next, we will evaluate the partial widths of “$\delta + P$” channels which have not been listed in Table 8. The scheme is proposed as follows. As illustrated in Figure 7, we assume that $X(1870)$ decays into $a_0(980)\pi\pi$ via a virtual intermediate $1^3 P_0 q\bar{q}$ meson. We notice that the $\eta(1295)$ also dominantly decays into the $\eta\pi\pi$ [1]. Its three-body decay can occur via three intermediate processes: $\eta(1295) \to \eta\pi\pi(a_0(980)\pi\pi)$ via a virtual intermediate $1^3 P_0 q\bar{q}$ meson. We notice that the $\eta(1295)$ also dominantly decays into the $\eta\pi\pi$ [2]. With the ratio $\Gamma(a_0(980)\pi\pi)/\Gamma(\eta\pi\pi) = 0.65 \pm 0.10$ and $\Gamma(\eta(1295)) = 55 \pm 5$ MeV, the partial width of $\eta(1295)$ decaying into $a_0(980)\pi\pi$ is estimated no more than 45 MeV. By the $1^3 P_0$ model, the ratio of $(\Gamma(X(1870) \to a_0(1^3 P_0)\pi))/\Gamma(\eta(1295)) \approx a_0(980)$ can be reached easily. If the uncertainty of the coupling vertex of $\epsilon(1^3 P_0 q\bar{q}) \to a_0(980)$ (see in Figure 7) is assumed to be canceled in the ratio of $(\Gamma(X(1870) \to a_0(1^3 P_0)\pi) \cdot \epsilon(1^3 P_0 q\bar{q}) \to a_0(980))/\Gamma(\eta(1295)) \to a_0(1^3 P_0)\pi) \cdot \epsilon(1^3 P_0 q\bar{q}) \to a_0(980))$, the value of $(\Gamma(X(1870) \to a_0(980)\pi\pi))/\Gamma(\eta(1295)) \to a_0(980)$ can be extracted roughly. Although the assumption above seems a little rough, we just need to evaluate magnitudes of these decay channels.

$\eta(1295)$ is proposed to be the first radial excited state of $\eta(550)$. Then the total decay widths of $\Gamma(X(1870) \to \delta + P)$ are evaluated no more than 12.6 MeV and $\Gamma(X(1870) \to a_0(980)\pi\pi) \leq 3.8$ MeV. The BESIII Collaboration claimed that $X(1870)$ primarily decays via $a_0(980)\pi\pi$ [1]. The small partial width of $\Gamma(X(1870) \to a_0(980)\pi\pi)$ also indicates that the $X(1870)$ can not be interpreted as the $2^1 D_2 q\bar{q}$ state.

In addition, our results do not support $X(1870)$ as the $\eta_2(2^1 D_2)\pi\pi$ state since its observed decay width is much smaller than the theoretical estimate. The $a_0(1320)\pi$ is the largest decay channel in our numerical results and in [24] for the $\eta_2(2^1 D_2)\pi\pi$ state (Table 8). If the partial width of $a_0(1320)\pi$ channel is as large as $a_0(1320)\pi$, the predicted width of $X(1870)$ will be much larger than the observed value.

We adopt the flux tube model to check the possibility of $X(1870)$ as a hybrid meson. The partial widths are also listed in Table 8 for the comparison. Details of the flux model are collected in Appendix B.

Two groups of the partial widths predicted in [16] are quoted in the Table 8. The left column was given by the flux tube decay model of Isgur, Kokoski, and Paton (IKP) with
the “standard parameters” [75]. The right column was by the
developed flux tube decay model of Swanson-Szczepaniak
(SS). In [16], the masses are taken as 1.8 GeV for the 0−, 1++,
and 2+ hybrid states.

For a hybrid meson, X(1870) seems most possible to be
the ηℓ2(0−0−) state because the total widths which exclude
the channels of ε + P are much narrow in our work and in
[16]. It is consistent with the narrow width of X(1870).

As shown in Table 8, X(1870) is impossible to be the
ηℓ1(0−0+) hybrid state. The predicted width in both our work
and in [16] is broader. In addition, ηπ is a visible channel
for both a0(1450). A week signal was found in the region
1200–1400 MeV in the analysis of ηππ+ (Figure 2(b) of
[1]), which contradicts the large a0(1450)π channel of the
ηℓ1(0−0+) state. We can exclude the possibility of X(1870)
as the ηℓ2(0−0+) hybrid state preliminarily.

The assignment for X(1870) as the fℓ1(0−1++) hybrid seems impossible since the theoretical width of a1(1260)π is
rather broad in our results and in the IKP model. If the partial
width of a0(980)π channel is as large as a1(1260)π, the total
widths of X(1870) will be much broader than the experimental
value. But the width given by the SS flux tube decay model
for the fℓ1(0−1++) is only about 50 MeV. So the possibility
of X(1870) as a fℓ1(0−1++) hybrid state can not be excluded.
We suggest to detect the decay channel of a1(1260)π because this
channel is forbidden for the ηℓ1(0−2−) state in the IKP flux
tube decay model and very small in the SS flux tube decay
model (Table 8). Then the channel of a1(1260)π can discrimi-
nate the states fℓ1(0−1++) and ηℓ2(0−2+) for X(1870).

Finally, if ηℓ2(12 D2) is the ηℓ2(12 D2) state, its decay width
is predicted about 100 MeV which is much smaller than the
experiments. However, the difference can be explained by
the remedy of mixing effect. If X(1870) and ηℓ2(12 D2) have
the same quantum numbers, 0−2+, they should mix with
each other with a visible mixing angle. Then the interference
enhancement will enlarge the width of ηℓ2(12 D2). The broad
decay width of ηℓ2(12 D2) could be explained naturally. On
the other hand, ηℓ2(1870) has been observed in the channel
of a0(980)π. However, this channel seems much smaller if
ηℓ2(1870) is a pure 21 D2 n̄n̄ meson. The mixing effect will also
enlarge this partial width. Here, we do not plan to discuss
the mixing of X(1870) and ηℓ2(1870) further for the complex
mechanism.

4. Discussions and Conclusions

A isoscalar resonant structure of X(1870) was observed by
BESIII in the channels f/η → ωX(1870) → ωπππ−π−
recently. Although the mass of X(1870) is consistent with the
ηℓ2(1870), the production, decay width, and decay properties
are much different. In this paper, the mass spectrum and
strong decays of the X(1870) and ηℓ2(1870) are analyzed.

Firstly, the mass spectrum is studied in the GI potential
model and the RTs framework. In the GI potential model,
both X(1870) and ηℓ2(1870) could be the ηℓ2(11 D2), fℓ1(21 P1),
and ηℓ2(21 D2) states. In RTs, the possible assignments are the
ηℓ2(3 S0), fℓ1(23 P1) and ηℓ2(21 D2) states. For the mass spectrum,
they are also good hybrid candidates since the masses overlap
the predictions given by different models (see Table 4).

Secondly, the processes of a n̄n̄ quarkonium or a n̄b̄ quark
hybrid meson decaying into the “δ + P” mesons are studied
under the SU(3) scheme and the diquark-antidiquark descrip-
tion of the δ mesons. We assumed that the processes obey
the OZI rule. We find that the channels of a0π, ση, and
fℓ1η are the dominant when a n̄n̄ quarkonium or a n̄b̄ quark
hybrid meson decays primarily through this kind of processes.
This result can explain why X(1870) has been first observed in
the ηπππ channel.

Thirdly, the two-body strong decay of X(1870) is com-
puted in the 3 P0 model. As the ηℓ2(21 D2) quarkonium,
the predicted width of X(1870) looks much larger than the
observations. The broad resonance, ηℓ2(1870), can be a natural
candidate for the 21 D2 n̄n̄ meson. There, we fix the creation
strength, γ, in two kinds of processes: (1) n̄n̄ → n̄n̄ + n̄n̄;
(2) n̄n̄ → n̄S̄ + n̄S̄ and S̄ → n̄S̄ + n̄S̄. The functions of creation

Table 8: The partial widths of X(1870) and compared with results from [16, 24].

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K+K</td>
<td>0.5</td>
<td>17.7</td>
<td>19.3</td>
<td>12.6</td>
</tr>
<tr>
<td>ρρ</td>
<td>12.9</td>
<td>52.2</td>
<td>56.8</td>
<td>×</td>
</tr>
<tr>
<td>ωω</td>
<td>4.2</td>
<td>16.9</td>
<td>18.4</td>
<td>×</td>
</tr>
<tr>
<td>K+K</td>
<td>0.2</td>
<td>2.1</td>
<td>2.3</td>
<td>×</td>
</tr>
<tr>
<td>a0(1450)π</td>
<td>16.0</td>
<td>2.4</td>
<td>2.6</td>
<td>56.3</td>
</tr>
<tr>
<td>a1(1260)π</td>
<td>0.0</td>
<td>15.2</td>
<td>16.6</td>
<td>×</td>
</tr>
<tr>
<td>f2(1280)η</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>×</td>
</tr>
<tr>
<td>a0(1320)π</td>
<td>54.2</td>
<td>102.5</td>
<td>111.6</td>
<td>8.8</td>
</tr>
<tr>
<td>f2(1275)η</td>
<td>15.1</td>
<td>17.5</td>
<td>19.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ΣΓi</td>
<td>103.3</td>
<td>26.5</td>
<td>246.7</td>
<td>77.7</td>
</tr>
</tbody>
</table>

The symbol “×” indicates that the decay modes are forbidden and 0 denotes that the decay channels can be ignored. Here, we collected the results given by the P0 model from [24] in the left column and the right column by the flux-tube model in [16], the masses are taken as 1.8 GeV for the 0−, 1++, and 2+ hybrid states.
vertex are determined as \(\gamma(p) = 3.0 + 25 \exp(-4p^2) \) and \(\gamma(p) = 1.8 + 4 \exp(-10p^2) \), respectively. Meanwhile, the SHO wave function scale, \(\beta_S \), is obtained by the GI potential model.

We have evaluated the magnitude of the partial widths of \(\sigma + P^\prime \) channels by the ratio, \((\Gamma(X(1870) \to a_0(980)\pi)) / (\Gamma(\eta(1295) \to a_0(980)\pi))\), under a rather crude assumption that \(\eta(1295)/X(1870) \to a_0(980)\pi \) through a virtual intermediate \(1^3P_0q\bar{q} \) meson (see Figure 7). Then the uncertainties of the coupling vertex for \(1^3P_0q\bar{q} \to a_0(980) \) are assumed to be canceled in the ratio. The total widths of \(\sigma + P^\prime \) are evaluated no more than 12.6 MeV and \(\Gamma(X(1870) \to a_0(980)\pi) \leq 3.8 \) MeV. Since \(X(1870) \) primarily decays via \(a_0(980)\pi \), it also indicated that the \(X(1870) \) cannot be interpreted as the \(2^1D_2q\bar{q} \) state.

We also study the \(X(1870) \) as a hybrid state in the flux tube model. Our results agree well with most of predictions given by [16]. \(X(1870) \) looks most like the \(\eta_{21}(0^+2^-) \) state for the narrow predicted width, which is consistent with the experiments. But we cannot exclude the possibility of \(0^+1^+ \). A precise measurement of \(a_1(1260)\pi \) is suggested to pin down this uncertainty.

Finally, some important arguments and useful suggestions are given as follows. (1) If \(\eta_{21}(1870) \) is the \(\eta_{21}(2^1D_2) \) state, the broad \(\pi_2(1880) \) should be isovector partner of \(\eta_{11}(1870) \). \(\pi_2(1880) \) has been interpreted as the conventional \(2^1D_2 \) \(q\bar{q} \) meson in [76]. Indeed, the decay channel of \(\omega \) is large enough for \(\pi_2(1880) \) [77]. This observation disfavors the \(\pi_2(1880) \) as a \(2^+ \) hybrid candidate for the selection rule that a hybrid meson decaying into two \(S \)-wave mesons is strongly suppressed [78]. (2) If \(X(1870) \) is a hybrid meson, we suggest to search its isospin partner in the decay channels of \(J/\psi \to p\bar{f}_0(980)\pi \) and \(J/\psi \to p\bar{b}(1235)\pi \), which are accessible at BESIII, Belle, and BABAR Collaborations. The decay channel of \(b_1(1235)\pi \) is forbidden for the \(\pi_2(2^1D_2) \) quarkonium due to the “spin selection rule” [60, 79]. We also suggest to search the \(\eta_{11}(1870) \) in the decay channels of \(J/\psi \to \eta\rho \) and \(J/\psi \to \eta\omega \) since these channels are forbidden for the hybrid production.

Appendices

A. The Expressions of Amplitudes

We have omitted an exponential factor in the following decay amplitudes \(\mathcal{M}_{13} \) for compactness:

\[
\exp\left(\frac{-2\lambda \mu - \nu^2}{4\mu - p^2}\right),
\]

where we defined

\[
\mu = \frac{1}{2}\left(\frac{1}{\beta_A^2} + \frac{1}{\beta_B^2} + \frac{1}{\beta_C^2}\right),
\]

\[
\nu = \frac{1 + m_1}{m_1} \beta_B^2 + \frac{1 + m_2}{m_2} \beta_C^2,
\]

\[
\lambda = \frac{m_1^2}{(m_1 + m_2)^2 \beta_B^2} + \frac{m_2^2}{(m_1 + m_2)^2 \beta_C^2},
\]

\[
\eta = \frac{m_1}{m_1 + m_2}.
\]

\(\mathcal{M}_{10} = \frac{2\mu - \nu}{8\sqrt{3\pi}^{5/4} \mu^{5/2} (\beta_A \beta_B \beta_C)^{3/2}} p. \)

\(\mathcal{M}_{20} = \frac{2\mu \beta_B^{3/2} - (p^2 + 2\mu (1 - p^2)) \beta_C^{3/2}}{8\sqrt{15}\pi^{5/4} \mu^{7/2} \beta_A \beta_B^{1/2} \beta_C^{3/2}}. \)

For \(1^3S_1 \to 1^1S_0 + 1^1S_0 \),

\[
\mathcal{M}_{11} = \frac{2\mu - \nu}{8\sqrt{3\pi}^{5/4} \mu^{5/2} (\beta_A \beta_B \beta_C)^{3/2}} p.
\]

For \(2^1S_1 \to 1^1S_0 + 1^1S_0 \),

\[
\mathcal{M}_{31} = \frac{2\mu \beta_B^{3/2} - (p^2 + 2\mu (1 - p^2)) \beta_C^{3/2}}{8\sqrt{15}\pi^{5/4} \mu^{7/2} \beta_A \beta_B^{1/2} \beta_C^{3/2}}. \)

For \(1^3D_2 \to 1^3S_1 + 1^3S_1 \),

\[
\mathcal{M}_{11} = \left(\frac{2\mu \beta_B^{3/2} - (p^2 + 2\mu (1 - p^2)) \beta_C^{3/2}}{8\sqrt{15}\pi^{5/4} \mu^{7/2} \beta_A \beta_B^{1/2} \beta_C^{3/2}}\right)^{-1} \nu p.
\]

\[
\mathcal{M}_{31} = \left(\frac{2\mu \beta_B^{3/2} - (p^2 + 2\mu (1 - p^2)) \beta_C^{3/2}}{8\sqrt{15}\pi^{5/4} \mu^{7/2} \beta_A \beta_B^{1/2} \beta_C^{3/2}}\right)^{-1} \nu^2 p^3.
\]

For \(2^3S_1 \to 1^3S_1 + 1^3S_0 \),

\[
\mathcal{M}_{11} = \left(\frac{2\mu \beta_B^{3/2} - (p^2 + 2\mu (1 - p^2)) \beta_C^{3/2}}{8\sqrt{15}\pi^{5/4} \mu^{7/2} \beta_A \beta_B^{1/2} \beta_C^{3/2}}\right)^{-1} \nu p.
\]

\[
\mathcal{M}_{31} = \left(\frac{2\mu \beta_B^{3/2} - (p^2 + 2\mu (1 - p^2)) \beta_C^{3/2}}{8\sqrt{15}\pi^{5/4} \mu^{7/2} \beta_A \beta_B^{1/2} \beta_C^{3/2}}\right)^{-1} \nu^2 p^3.
\]

For \(2^1P_0 \to 1^3S_1 + 1^3S_0 \), \(\mathcal{M}_{11} = \sqrt{2} \mathcal{M}_{11} \) and \(\mathcal{M}_{31} = \sqrt{2} \mathcal{M}_{31} \).
For $2^1D_2 \rightarrow 1^3P_0 + 1^1S_0$

\[
\mathcal{M}_{20} = -\frac{1}{192\sqrt{3\pi}5^{1/4}\mu^{15/2}\beta_{A}^{11/2}\beta_{B}^{5/2}\beta_{C}^{5/2}} \times \left(p^4\nu^5 - 2p^2\nu^3 (-18 + p^2 + (1 + \eta)\nu) \right.
\]
\[
+ 4\mu^2\nu (63 - 11p^2 + (1 + \eta)\nu + p^4\eta\nu^2)
\]
\[
+ 56\mu^3 (-2 + (1 + \rho^2)\nu) \right)
\]
\[
- 14\mu^2 (p^2\nu^3 - 2\mu\nu (-7 + p^2 + (1 + \eta)\nu)
\]
\[
+ 4\mu^2 (-2 + (1 + \rho^2)\nu)) \beta_{A}^{5/2} \nu p^2. \tag{A.9}
\]

For $2^1D_2 \rightarrow 1^3P_1 + 1^1S_0$,

\[
\mathcal{M}_{21} = -\frac{\rho^2\nu^2 - 14\mu\beta_{A}^{3} + 14\mu
}{16\sqrt{35\pi}\mu^{1/4}\beta_{A}^{11/2}\beta_{B}^{5/2}\beta_{C}^{5/2}} \times (\eta - 1)\nu p^2.
\tag{A.10}
\]

For $2^1D_2 \rightarrow 1^3P_2 + 1^1S_0$,

\[
\mathcal{M}_{30} = \frac{1}{480\sqrt{3\pi}5^{1/4}\mu^{15/2}\beta_{A}^{11/2}\beta_{B}^{5/2}\beta_{C}^{5/2}} \times \left(p^6\mu^6 - 2p^4\mu^4\nu^2 (p^2 + (1 + \eta)\nu - 21) \right.
\]
\[
+ 4p^2\mu^2\nu^2 (105 - 14p^2 + (1 + \eta)\nu + p^4\eta\nu^2)
\]
\[
+ 56\mu^3 (15 - 5p^2 + (1 + \eta)\nu + p^4\eta\nu^2)
\]
\[
- 14\mu^2 (p^4\nu^3 - 2p^2\nu^2 (-10 + p^2 + (1 + \eta)\nu)
\]
\[
+ 4\mu^2 (15 - 5p^2 + (1 + \eta)\nu + p^4\eta\nu^2)) \beta_{A}^{3} \right), \tag{A.11}
\]

\[
\mathcal{M}_{22} = -\frac{1}{672\sqrt{5\pi}5^{1/4}\mu^{15/2}\beta_{A}^{11/2}\beta_{B}^{5/2}\beta_{C}^{5/2}} \times \left(p^4\nu^5 - 2p^2\mu^2\nu^2 (-18 + p^2 + (1 + \eta)\nu) \right.
\]
\[
+ 2\mu^2\nu (126 - 25p^2 + (1 + \eta)\nu + 2p^4\eta\nu^2)
\]
\[
+ 28\mu^3 (-7 + (1 + \rho^2)\nu) \right)
\]
\[
- 14\mu^2 (p^2\nu^3 - 2\mu\nu (-7 + p^2 + (1 + \eta)\nu)
\]
\[
+ 2\mu^2 (-7 + (1 + \rho^2)\nu)) \beta_{A}^{5/2} \nu p^2, \tag{A.12}
\]

\[
\mathcal{M}_{42} = -\frac{1}{1120\pi\mu^{15/2}\beta_{A}^{11/2}\beta_{B}^{5/2}\beta_{C}^{5/2}} \times \left(p^2\nu^3 - 2p^2\nu^2 + 2\mu\nu (11 - p^2\nu) \right)
\]
\[
+ 2\mu\nu (28\mu^2 - p^2\nu^2 + 2p^2\nu - 9) \right)
\]
\[
- 14\mu^2 (2\mu - \nu) (2\eta\mu - \nu) \beta_{A}^{3} \nu^2 p^4. \tag{A.11}
\]

m_1 and m_2 are the masses of quarks in the decaying meson A. m is the mass of the created quark from the vacuum. For calculating the decay widths, the masses of quarks are taken as $m_a = m_d = 0.220$ GeV, $m_s = 0.428$ GeV, which are the same as those in Section 2. The above amplitudes, \mathcal{M}_{LS}, can be reduced further in the approximation of $m_1 = m_2 = \mu$ and $\beta_A = \beta_B = \beta_C = \beta$. The reduced \mathcal{M}_{LS} are consistent with those given by [71] except for an unimportant factor, $-2^{9/2}$, since this factor can be absorbed into the coefficient γ.

B. Hybrid Decay in the Flux Tube Model

The flux tube model was motivated by the strong coupling expansion of the lattice QCD. In this model, decay occurs when the flux-tube breaks at any point along its length, with a $q\bar{q}$ pair production in a relative $I^{PC} = 0^{+}$ state. It is similar to the $3P_0$ decay model but with an essential difference. The flux tube model extends the nonrelativistic constituent quark model to include gluonic degrees of freedom in a very simple and intuitive way, where the gluonic field is regarded as tubes of color flux. Then it can be extended to the hybrid research. When the hybrid mesons are assumed to be narrow, and the threshold effects are not taken into account, the partial decay width $\Gamma_{LS}(H \rightarrow BC)$ is given by the flux model as [79]

\[
\Gamma_{LS}(H \rightarrow BC) = \frac{p}{(2J_A + 1)\pi\bar{M}_A\bar{M}_C} |\mathcal{M}_{LS}(H \rightarrow BC)|^2, \tag{B.1}
\]

where $\bar{M}_A, \bar{M}_B, \bar{M}_C$ are the “mock-meson” masses of A, B, C [64]. When a hybrid meson decays into P-wave and
Table 9: Partial wave amplitudes $\mathcal{M}_L(H \rightarrow BC)$ for an initial hybrid H decaying into a P-wave and pseudoscalar mesons.

<table>
<thead>
<tr>
<th>B</th>
<th>$H(0^+)$</th>
<th>$H(0^+)$</th>
<th>$H(0^+)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+</td>
<td>$+\sqrt{2}\mathcal{M}_L/\sqrt{3}$</td>
<td>$-\sqrt{2}\mathcal{M}_P/\sqrt{3}$</td>
<td>$\mathcal{M}_L/\sqrt{3}$</td>
</tr>
<tr>
<td>1^+</td>
<td>$-\mathcal{M}_P/\sqrt{3}$</td>
<td>$-\sqrt{2}\mathcal{M}_L/\sqrt{18}$</td>
<td>$\mathcal{M}_P/\sqrt{3}$</td>
</tr>
<tr>
<td>2^+</td>
<td>$-\mathcal{M}_L/\sqrt{3}$</td>
<td>$-\sqrt{5}\mathcal{M}_L/\sqrt{18}$</td>
<td>$\mathcal{M}_L/\sqrt{3}$</td>
</tr>
</tbody>
</table>

The partial wave amplitude $\mathcal{M}_L(H \rightarrow BC)$ for an initial hybrid H decaying into a P-wave and pseudoscalar mesons, the partial wave amplitude $\mathcal{M}_L(H \rightarrow BC)$ with $S = S_B$ is given as the following form:

$$
\mathcal{M}_L = \left\{ \begin{array}{ll}
\langle \phi_B \phi_C | \phi_A \phi_0 \rangle & \left| \frac{a c}{9 \sqrt{3}} \frac{1}{2} A_0^0 \right| f b \frac{\kappa \sqrt{b}}{\pi} \\
\times \left(1 + \frac{f b}{(2 \beta^2)}\right)^2 \right.
\end{array} \right.
$$

(B.2)

The matrix element $\langle \phi_B \phi_C | \phi_A \phi_0 \rangle$ has been discussed before. $\mathcal{M}_L(H \rightarrow BC)$ are listed in Table 9 for the states of $\eta_H(0^0), f_{11}(0^+)$, and $\eta_H(0^0)$. Here the M_S, M_L, M_P, M_F are defined as $M_S = -(3\mathcal{M}_L - \mathcal{M}_P + 4\mathcal{M}_F), M_L = (\mathcal{M}_L + 5\mathcal{M}_P), M_P = -\mathcal{M}_L(3\mathcal{M}_P - \mathcal{M}_F), M_F = -\mathcal{M}_L(\mathcal{M}_P + 3\mathcal{M}_L - \mathcal{M}_F)$. The analytical expressions of \mathcal{M}_L are given as

$$
\mathcal{M}_L = \left\{ \begin{array}{ll}
\bar{\eta}_n = 2^{3+\delta} \frac{M^n m^{|n|+1} (2\beta^2 + \beta^2)^{-|n+\delta+3|/2}}{1! (\frac{n + \delta + 3}{2})_1} \\
\times F_1 \left[\frac{n + \delta + 3}{2}, n + 1, -\left(\frac{M}{M + m} \right)^2 \right] \\
\times \frac{p^2}{2\beta^2 + \beta^2} \right) P^{n+1},
\end{array} \right.
$$

where $F_1[-]$ are the confluent hypergeometric functions.

Acknowledgments

Bing Chen thanks Jun-Long Tian and D. V. Bugg for very helpful discussions. This work is supported by the Key Program of the He’nan Educational Committee of China (nos. 13A140014 and 12B140001), the National Natural Science Foundation of China under Grant no. 11305003, 11075102, 11005003, and U1204115, the Innovation Program of Shanghai Municipal Education Commission under Grant no. 13ZZ006, and the Program of He’nan Technology Department (no. 11147201).

References

[1] M. Ablikim, M. N. Achasov, D. Alberto et al., “$\eta\pi\pi$ Resonant Structure around 1.8 GeV/c^2 and $\eta(1405)$ in $J/\psi \rightarrow \omega\pi\pi\pi^\pm\pi^\mp$,” Physical Review Letters, vol. 107, no. 18, Article ID 182001, 2011.

[10] A. V. Anisovich, C. J. Battty, D. V. Bugg et al., “A fresh look at $\eta(1645), \eta_2(1870)$, $\eta_1(2000)$ and $f_2(1910)$ in $pp \rightarrow \eta^0\pi^0\pi^0\pi^\pm$,” The European Physical Journal C, vol. 71, Article ID 1511, 2011.

A. M. Badalian and B. L. G. Bakker, “Nonperturbative hyperfine contribution to the \(b \) and \(\bar{b} \) meson masses,” *Physical Review D*, vol. 64, no. 11, Article ID 114010, 2001.

74] M. Ablikim, J. Z. Bai, Y. Ban et al., “Pseudoscalar production at threshold in $J/\psi \rightarrow \gamma\omega\omega$,” *Physical Review D*, vol. 73, no. 11, Article ID 112007, 2006.