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We review a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC) facility at CERN.
Excellent consistency is observed across all the experiments at the LHC (at center of mass energy √𝑠NN = 2.76TeV) for the
measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor
of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC) at lower energy
(√𝑠NN = 200GeV) suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer
time.These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the
RHIC and LHC.

1. Introduction

The main goal of the high energy heavy-ion collisions is to
study the phase structure of the quantum chromodynamic
(QCD) phase diagram [1–3]. One of the most interesting
aspects of these collisions is the possibility of forming a phase
of deconfined quarks and gluons, a system that is believed
to have existed in a few microseconds-old universe. First
principle QCD calculations suggest that it is possible to have
such a state of matter if the temperatures attained can be of
the order of the QCD scale (∼200MeV) [4–6]. In laboratory,
such temperatures could be attained by colliding heavy ions
at relativistic energies. Furthermore, in very high energy
collisions of heavy ions at the LHC and RHIC, the lifetime
of the deconfined phase may be long enough to allow for the
detailed study of the fundamental constituents (quarks and
gluons) of the visible matter.

The results fromheavy-ion collisions at RHIChave clearly
demonstrated the formation of a deconfined system of quarks
and gluons in Au + Au collisions at √𝑠NN = 200GeV
[7–11]. The produced system exhibits copious production
of strange hadrons, shows substantial collectivity developed
in the partonic phase, and exhibits suppression in high

transverse momentum (𝑝
𝑇
) hadron production relative to

𝑝 + 𝑝 collisions and small fluidity as reflected by a small
value of viscosity to entropy density ratio (𝜂/𝑠). A factor of 14
increase in√𝑠NN for Pb + Pb collisions at LHC is expected to
unravel the temperature dependence of various observables
and to extend the kinematic reach in rapidity and 𝑝

𝑇
of

previous measurements at RHIC. On the other hand, the
beam energy scan program at RHIC is expected to provide
additional details of the QCD phase diagram not accessible
at the LHC [12].

In this review paper, we discuss a subset of results that
have come out from LHC Pb + Pb collisions at √𝑠NN = 2.76
TeV. We have divided the discussion into three sections. In
the second section, we discuss the consistency of various
measurements among the three LHC experiments that have
heavy-ion programs: ALICE, ATLAS, and CMS. Section 2.1
discusses the results on the charged particle multiplicity.
Section 2.2 discusses the results on azimuthal anisotropy, and
Section 2.3 discusses the results on the nuclear modification
factor.

In the third section, we make a comparative study
between similar observables measured at lower energy col-
lisions at RHIC and those from LHC. In doing this, we



2 Advances in High Energy Physics

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

⟨Npart ⟩

(d
N

ch
/d
𝜂

)/
(⟨
N

pa
rt
⟩/
2)

ALICE 2.76TeV
ATLAS 2.76TeV
CMS 2.76TeV

Figure 1: (Color online) Average charged particle multiplicity per
unit pseudorapidity (𝑑𝑁ch/𝑑𝜂) at midrapidity per participating
nucleon (⟨𝑁part⟩) pair plotted as a function of ⟨𝑁part⟩ for Pb + Pb
collisions at √𝑠NN = 2.76 TeV. The measurements are shown from
ALICE [14], CMS [15], and ATLAS [16] experiments.

highlight the additional information that heavy-ion collisions
at LHC bring compared to RHIC. In Section 3.1, we discuss
the bulk properties at freeze-out that include results on
multiplicity, average transverse mass and Bjorken energy
density, volume and decoupling time, kinetic freeze-out
temperature and average flow velocity, and fluctuations.
Section 3.2 is devoted on the results to azimuthal anisotropy,
where we discuss the energy dependence of 𝑝

𝑇
integrated V

2
,

dependence of various azimuthal anisotropy coefficients on
𝑝
𝑇
, and flow fluctuations. In Section 3.3, we discuss results

for nuclear modification factor.
In the fourth section, we present a comparison of various

model calculations to the corresponding measurements at
LHC. We concentrate mainly on the results for charged
particle multiplicity density and 𝐾/𝜋 ratio in Section 4.1,
azimuthal anisotropy in Section 4.2, and nuclear modifica-
tion factor in Section 4.3.

Finally, we summarize our observations in the last section
of the paper.

2. Consistency of Results among
LHC Experiments

2.1. Charged Particle Multiplicity. One of the first measure-
ments to come out of the heavy-ion collision program at LHC
is the charged particle multiplicity per unit pseudorapidity
in Pb + Pb collisions at √𝑠NN = 2.76TeV. Figure 1 shows
the centrality (reflected by the number of participating
nucleons, 𝑁part, obtained from a Glauber model calculation
[13]) dependence of 𝑑𝑁ch/𝑑𝜂 at midrapidity for Pb + Pb
collisions at √𝑠NN = 2.76TeV from ALICE [14], CMS [15],

and ATLAS [16] experiments.The error bars reflect statistical
uncertainties. The ATLAS measurements of 𝑑𝑁ch/𝑑𝜂|𝜂=0 are
obtained over |𝜂| < 0.5 using a minimum bias trigger with
a central solenoid magnet off data set. The charged particles
are reconstructed using two different algorithms using the
information from pixel detectors covering |𝜂| < 2.0.The𝑁part
values are obtained by comparing the summed transverse
energy in the forward calorimeter over a pseudorapidity
range 3.2 < |𝜂| < 4.9 to a Glauber model simulation. The
CMS results for 𝑑𝑁ch/𝑑𝜂|𝜂=0 are from the barrel section of
the pixel tracker covering |𝜂| < 2.5. The minimum bias
trigger data set was in the magnetic field off configuration
so as to improve the acceptance of low 𝑝

𝑇
particles. The

centrality determinations as in the case of ATLAS experiment
are done using information fromhadron forward calorimeter
(2.9 < |𝜂| < 5.2) and Glauber model simulations. The ALICE
measurement uses a minimum bias data set from the silicon
pixel detector (|𝜂| < 2.0). The centrality selection is carried
out using signals from VZERO detectors (2 arrays of 32
scintillator tiles) covering the regions 2.8<𝜂<5.1 and −3.7<
𝜂 < −1.7, along with the corresponding Glauber modeling of
the data.

In spite of the difference in operating conditions and
measurement techniques, the 𝑑𝑁ch/𝑑𝜂 versus 𝑁part results
for Pb + Pb collisions at √𝑠NN = 2.76 TeV show a remarkable
consistency across the three experiments. The results show
that the charged particle multiplicity per unit pseudorapidity
per nucleon pair increases from peripheral to central col-
lisions. This gradual increase in 𝑑𝑁ch/𝑑𝜂 per participating
nucleon pair indicates that in central head-on collisions,
where the number of participating nucleons is more, the
charged particle production is different compared to that in
peripheral collisions.

2.2. Azimuthal Anisotropy. Azimuthal anisotropy has been
studied in great detail in heavy-ion collision experiments.
It can provide information about initial stages of heavy-
ion collisions. Figure 2 (top panels) shows the azimuthal
anisotropy of produced charged particles (V

𝑛
= ⟨cos(𝑛(𝜙 −

Ψ
𝑛
))⟩) as a function of 𝑝

𝑇
for 30–40% Pb + Pb collisions

at √𝑠NN = 2.76TeV from the three different experiments:
ATLAS, ALICE, and CMS. Here, 𝜙 is the azimuthal angle
of the produced particles, and Ψ

𝑛
is the 𝑛th order reaction

plane angle measured in the experiments. The left panel in
the figure corresponds to V

2
, the middle panel corresponds

to V
3
, and the right panel corresponds to V

4
, respectively.

Bottom panels show the ratio of the experimental data to a
polynomial fit to the ALICE data.

In the CMS experiment [17–20], the V
2
measurements

use the information from the silicon tracker in the region
|𝜂| < 2.5 with a track momentum resolution of 1% at 𝑝

𝑇
=

100GeV/c kept within a magnetic field of 3.8 Tesla. The
event plane angle (Ψ

2
) is obtained using the information on

the energy deposited in the hadron forward calorimeter. A
minimum 𝜂 gap of 3 units is kept between the particles used
for obtaining Ψ

2
and V
2
. This ensures suppression of nonflow

correlations which could arise, for example, from dijets.
The event plane resolution obtained using three subevents
technique varies from0.55 to 0.84, depending on the collision
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Figure 2: (Color online) V
𝑛
versus 𝑝

𝑇
at midrapidity for 30–40% Pb + Pb collisions at√𝑠NN = 2.76TeV.The results are shown from different

LHC experiments: CMS [17–20], ATLAS [21–24], and ALICE [25].The bottom panels show the ratio of the experimental data to a polynomial
fit to the ALICE data.
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Figure 3: (Color online)Nuclearmodification factor𝑅AA of charged
hadrons measured by ALICE [26] and CMS [27] experiments at
midrapidity for 0–5% most central Pb-Pb collisions at √𝑠NN =
2.76 TeV. The boxes around the data denote 𝑝

𝑇
-dependent system-

atic uncertainties.The systematic uncertainties on the normalization
are shown as boxes at 𝑅AA = 1.

centrality.TheATLAS experiment [21–24]measured V
𝑛
using

the inner detectors in the |𝜂| < 2.5, kept inside a 2
Tesla field of superconducting solenoid magnet. The event
planes are obtained using forward calorimeter information,

with a resolution varying from 0.2 to 0.85, depending on
collision centrality. The ALICE experiment [25] measured V

𝑛

using charged tracks reconstructed from the Time Projection
Chamber (|𝜂| < 0.8); the event plane was obtained using
information from VZERO detectors kept at a large rapidity
gap from the TPC.Themomentum resolution of the tracks is
better than 5%.

A very nice agreement for V
2
, V
3
, and V

4
versus𝑝

𝑇
is found

between all the experiments to a level of within 10% for most
of the 𝑝

𝑇
ranges presented.The results show an increase of V

2
,

V
3
, and V

4
values with 𝑝

𝑇
for the low 𝑝

𝑇
and a decrease for 𝑝

𝑇

above∼3GeV/c.The hydrodynamical evolution of the system
affects most of the low 𝑝

𝑇
particles and hence the increasing

V
𝑛
at low 𝑝

𝑇
.

2.3. Nuclear Modification Factor. One of the established
signatures of the QGP at top RHIC energy is the suppression
of high transverse momentum (𝑝

𝑇
) particles in heavy-ion

collisions compared to corresponding data from the binary
collisions scaled 𝑝 + 𝑝 collisions. It has been interpreted in
terms of energy loss of partons in QGP. This phenomenon
is referred to as the jet quenching in a dense partonic
matter.The corresponding measurement is called the nuclear
modification factor (𝑅AA).

Figure 3 shows the nuclear modification factor for inclu-
sive charged hadrons measured at midrapidity in LHC
experiments for Pb + Pb collisions at √𝑠NN = 2.76 TeV.
The nuclear modification factor is defined as 𝑅AA =
(𝑑𝑁AA/ 𝑑𝜂𝑑

2𝑝
𝑇
)/(𝑇AB𝑑𝜎NN/𝑑𝜂𝑑

2𝑝
𝑇
). Here, the overlap inte-

gral 𝑇AB = 𝑁binary/𝜎
𝑝𝑝

inelastic with 𝑁binary being the number of
binary collisions commonly estimated from Glauber model
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calculation and 𝑑𝜎NN/𝑑𝜂𝑑
2𝑝
𝑇
is the cross section of charged

hadron production in 𝑝 + 𝑝 collisions at√𝑠 = 2.76 TeV.
The ALICE experiment [26] uses the inner tracking

system (ITS) and the time projection chamber (TPC) for
vertex finding and tracking in a minimum bias data set.
The CMS experiment [27] reconstructs charged particles
based on hits in the silicon pixel and strip detectors. In
order to extend the statistical reach of the 𝑝

𝑇
spectra in the

highly prescaled minimum bias data recorded in 2011, it uses
unprescaled single-jet triggers. Both experiments take the
value of𝜎𝑝𝑝inelastic = 64±5mb.The result shows that the charged
particle production at high𝑝

𝑇
in LHC is suppressed in heavy-

ion collisions relative to nucleon-nucleon collisions. The
suppression value reaches to aminimum at 𝑝

𝑇
6-7GeV/c and

then gradually increases to attain an almost constant value
at ∼40GeV/c. This can be understood in terms of energy
loss mechanism differences in intermediate and higher 𝑝

𝑇

regions. The rise in the 𝑅AA above 𝑝
𝑇
6-7GeV/c may imply

the dominance of the constant fractional energy loss which
is the consequence of flattening of the unquenched nucleon-
nucleon spectrum. An excellent agreement for 𝑅AA versus 𝑝

𝑇

for charged hadrons in 0–5% central Pb + Pb collisions at
√𝑠NN = 2.76TeV is observed between the two experiments.

Having discussed the consistency of these first measure-
ments in Pb+ Pb collisions among different experiments, the
major detectors used, acceptances, and ways to determine
centrality and event plane, we now discuss the comparison
between measurements at RHIC and LHC heavy-ion colli-
sions.

3. Comparison of LHC and RHIC Results

In the first subsection, we discuss the energy dependence
of basic measurements made in heavy-ion collisions. These
include 𝑑𝑁ch/𝑑𝜂, ⟨𝑚𝑇⟩ (𝑚𝑇 = √𝑝2𝑇 + 𝑚2; here,𝑚 represents
mass of hadron), Bjorken energy density (𝜖Bj), life time of
the hadronic phase (𝜏

𝑓
), system volume at the freeze-out,

kinetic and chemical freeze-out conditions, and finally, the
fluctuations in net-charge distributions. In the next subsec-
tion, we discuss the energy dependence of 𝑝

𝑇
integrated V

2
,

V
𝑛
versus 𝑝

𝑇
, and flow fluctuations at RHIC and LHC. In the

final subsection, we compare the nuclear modification factor
for hadrons produced in heavy-ion collisions at RHIC and
LHC.

3.1. Bulk Properties at Freeze-Out

3.1.1. Multiplicity. Figure 4(a) shows the charged particle
multiplicity density at midrapidity (𝑑𝑁

𝑐h/𝑑𝜂) per participat-
ing nucleon pair produced in central heavy-ion collisions
versus√𝑠NN.Weobserve that the charged particle production
increases by a factor 2 as the energy increases from RHIC to
LHC.The energy dependence seems to rule out a logarithmic
dependence of particle production with √𝑠NN and supports
a power law type of dependence on √𝑠NN. The red solid
curve seems to describe the full energy range. More detailed
discussions on the energy dependence of thesemeasurements
can be found in [28].

Figure 4(b) shows the excess of 𝑑𝑁ch/𝑑𝜂/⟨𝑁part⟩ in A+A
collisions [15, 16, 29–37] over corresponding yields in𝑝+𝑝(𝑝)
[38–47] and 𝑝(𝑑)+A collisions [29, 48, 49].This observation
also seen at RHIC persists at LHC but is proportionately
larger at the higher energy collisions at the LHC. A power law
fit to the 𝑝 + 𝑝 collision charged particle multiplicity density
leads to a dependence ∼𝑠0.11, while those for A + A collisions
go as ∼𝑠0.15. There is no scaling observed in the charged
particle multiplicity density per participating nucleon, when
compared between elementary collisions like𝑝+𝑝 and heavy-
ion collisions. This is a clear indication that A + A collisions
at RHIC and LHC are not a simple superposition of several
𝑝 + 𝑝 collisions, whereas the 𝑝 + A collisions scale with the
𝑝 + 𝑝 collisions.

3.1.2. Average Transverse Mass and Bjorken Energy Density.
Figure 5(a) shows the ⟨𝑚

𝑇
⟩ values for pions in central heavy-

ion collisions as a function of√𝑠NN.The ⟨𝑚
𝑇
⟩ value increases

with √𝑠NN at lower AGS energies [50, 51], stays independent
of √𝑠NN for the SPS energies [52, 53], and then tends to rise
further with increasing √𝑠NN at the higher beam energies of
LHC. About 25% increase in ⟨𝑚

𝑇
⟩ is observed from RHIC

[41, 54] to LHC [55]. For a thermodynamic system, ⟨𝑚
𝑇
⟩ can

be an approximate representation of the temperature of the
system, and 𝑑𝑁/𝑑𝑦 ∝ ln(√𝑠NN) may represent its entropy
[56]. In such a scenario, the observations could reflect the
characteristic signature of a phase transition, as proposed by
VanHove [57].Then, the constant value of ⟨𝑚

𝑇
⟩ versus√𝑠NN

has one possible interpretation in terms of formation of a
mixed phase of a QGP and hadrons during the evolution of
the heavy-ion system.The energy domains accessed at RHIC
and LHCwill then correspond to partonic phase, while those
at AGS would reflect hadronic phase. However, there could
be several other effects to which ⟨𝑚

𝑇
⟩ is sensitive, which also

need to be understood for proper interpretation of the data
[56].

Figure 5(b) shows the product of the estimated Bjorken
energy density (𝜖Bj = (1/(𝐴

⊥
𝜏))𝑑𝐸

𝑇
/𝑑𝑦; 𝐴

⊥
[58] is the

transverse overlap area of the nuclei, and 𝐸
𝑇
is the transverse

energy) and formation time (𝜏) as a function of √𝑠NN [59–
64]. The product of energy density and the formation time
at LHC seem to be a factor of 3 larger compared to those
attained at RHIC. If we assume the same value of 𝜏

0
(=1 fm/c)

for LHC and RHIC, the Bjorken energy density is about a
factor of 3 larger at the LHC compared to that at RHIC in
central collisions.

3.1.3. Volume and Decoupling Time. The top panel of Figure 6
shows the energy dependence of the product of the three
radii (𝑅out,𝑅side, and𝑅long) obtained from pionHBT or Bose-
Einstein correlation analysis. Here, the “out” corresponds
to the axis pointing along the pair transverse momentum,
the “side” to the axis perpendicular to it in the transverse
plane, and the “long” corresponds to the axis along the beam
(Bertsch-Pratt convention [65, 66]). The product of the radii
is connected to the volume of the homogeneity region at the
last interaction. The product of the three radii shows a linear
dependence on the charged-particle pseudorapidity density.
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Figure 4: (Color online) (a) 𝑑𝑁ch/𝑑𝜂 per participating nucleon pair at midrapidity in central heavy-ion collisions as a function of√𝑠NN. (b)
Comparison of 𝑑𝑁ch/𝑑𝜂 per participating nucleon at midrapidity in central heavy-ion collisions [15, 16, 29–37] to corresponding results from
𝑝 + 𝑝(𝑝) [38–47] and 𝑝(𝑑) + A collisions [29, 48, 49].
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Figure 5: (a) ⟨𝑚
𝑇
⟩ for charged pions in central heavy-ion collisions at midrapidity for AGS [50, 51], SPS [52, 53], RHIC [41, 54], and LHC

[55] energies. The errors shown are the quadrature sum of statistical and systematic uncertainties. (b)The product of Bjorken energy density,
𝜖Bj [58], and the formation time (𝜏) in central heavy-ion collisions at midrapidity as a function of√𝑠NN [59–64].
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Figure 6: (a) Product of the three pion HBT radii at 𝑘
𝑇
(average transverse momenta of two pions) = 0.3GeV/c for central heavy-ion

collisions at AGS [68], SPS [69, 70], RHIC [71, 72], and LHC [73] energies. (b) The decoupling time extracted from 𝑅long(𝑘𝑇) for central
heavy-ion collisions at midrapidity at AGS, SPS, RHIC, and LHC energies as a function of (𝑑𝑁ch/𝑑𝜂)

1/3.

The data indicates that the volume of homogeneity region is
two times larger at the LHC than at RHIC.

Furthermore, within a hydrodynamic picture, the decou-
pling time for hadrons (𝜏

𝑓
) at midrapidity can be esti-

mated from the magnitude of radii 𝑅long as follows: 𝑅
2

long =

𝜏2
𝑓
𝑇𝐾
2
(𝑚
𝑇
/𝑇)/𝑚

𝑇
𝐾
1
(𝑚
𝑇
/𝑇), with 𝑚

𝑇
= √𝑚2

𝜋
+ 𝑘2
𝑇
, where

𝑚
𝜋
is the mass of the pion, 𝑇 is the kinetic freeze-out temper-

ature, and 𝐾
1
and 𝐾

2
are the integer-order modified Bessel

functions [67]. For the estimation of 𝜏
𝑓
, the average value of

the kinetic freeze-out temperature 𝑇 is taken to be 120MeV
fromAGS to LHC energies. However, the energy dependence
of kinetic freeze-out temperature, as discussed in the next
subsection, would provide a more accurate description of
the 𝜏
𝑓
values. The extracted 𝜏

𝑓
values for central heavy-ion

collisions at midrapidity at AGS [68], SPS [69, 70], RHIC [71,
72], and LHC [73] energies are shown as a function of cube
root of 𝑑𝑁ch/𝑑𝜂 in the bottom panel of Figure 6. We observe
that 𝜏
𝑓
scales linearly with (𝑑𝑁ch/𝑑𝜂)

1/3 and is about 10 fm/c
at LHC energies.This value is about 40% larger than at RHIC.
It may be noted that the above expression ignores transverse
expansion of the system and finite chemical potential for
pions. Also there are uncertainties associated with freeze-out
temperature that could lead to variations in the extracted 𝜏

𝑓

values.

3.1.4. Freeze-Out Temperature and Radial Flow Velocity. The
hadron yields and spectra reflect the properties of the bulk
matter at chemical and kinetic freeze-out, respectively. Gen-
erally, the point at which the inelastic collisions cease is called
the chemical freeze-out, and the point where even the elastic
collisions stop is called the kinetic freeze-out.

The transverse momentum distribution of different par-
ticles contains two components: one random and the other
collective. The random component can be identified with the
temperature of the system at kinetic freeze-out (𝑇kin). The
collective component, which could arise from thematter den-
sity gradient from the center to the boundary of the fireball
created in high energy nuclear collisions, is called collective
flow in transverse direction (⟨𝛽⟩). Using the assumption
that the system attains thermal equilibrium, the blast wave
formulation can be used to extract 𝑇kin and ⟨𝛽⟩. These two
quantities are shown in Figure 7 versus√𝑠NN [41, 55, 74–77].
For beam energies at AGS and above, one observes a decrease
in 𝑇kin with √𝑠NN. This indicates that the higher the beam
energy is, the longer interactions are among the constituents
of the expanding system and the lower the temperature. From
RHIC top energy to LHC, there seems to be, however, a
saturation in the value of 𝑇kin. In contrast to the temperature,
the collective flow increases with the increase in beam energy,
rapidly, reaching a value close to 0.6 times the speed of light
at the LHC energy.

Figure 8 shows the chemical freeze-out temperature (𝑇ch)
versus the baryon chemical potential (𝜇

𝐵
) in central heavy-

ion collisions [41, 55, 78–85].These quantities are obtained by
fitting the particle yields to a statistical model assuming ther-
mal equilibrium within the framework of a Grand Canonical
ensemble. There are two values of temperature quoted for
LHC energies. A 𝑇ch value of about 164MeV and fixed 𝜇

𝐵

value of 1MeV seem to reproduce the multistrange ratios
(involving Ξ and Ω) quite well but were observed to miss
the data for 𝑝/𝜋 and Λ/𝜋. On the other hand, the statistical
thermalmodel predictionwith𝑇ch = 152MeV and fixed 𝜇

𝐵
=

1MeV fits themeasured 𝑝/𝜋 andΛ/𝜋 ratios better but misses
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Figure 7: Kinetic freeze-out temperature (a) and radial flow velocity (b) in central heavy-ion collisions as a function of collision energy
[41, 55, 74–77].
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Figure 8: (Color online) Chemical freeze-out temperature versus
baryon chemical potential in central heavy-ion collisions [41, 55, 78–
85]. The curve corresponds to model calculations from [78, 79].

the ratios involving multistrange hadrons [86]. This issue is
not yet resolved, being possibly related to hadronic final state
interactions [87]. The curve corresponds to generalization of
the energy dependence of 𝑇ch − 𝜇𝐵 using statistical thermal
model calculations [78, 79]. The model works within the
framework of a GrandCanonical ensemble and takes as input
the produced particle yields from experiments to extract the
freeze-out parameters such as 𝑇ch and 𝜇𝐵.

3.1.5. Fluctuations. One of the proposed signatures to search
for the phase transition from hadronic to partonic medium is
to study the net-charge fluctuations in heavy-ion collisions.
The partonic phase has constituents with fractional charges,
while the hadronic phase has constituents with integral units
of charge; hence, the measure of the fluctuations in the net-
charge particle production is expected to be different in these
two cases. Specifically, net-charge fluctuations are expected
to be smaller if the system underwent a phase transition.
However, it is important to address how these fluctuations
may or may not survive the evolution of the system in the
heavy-ion collisions. An experimental measure of net-charge
fluctuations is defined as ](+−, 𝑑𝑦𝑛) = (⟨𝑁

+
(𝑁
+
−1)⟩/⟨𝑁2

+
⟩)+

(⟨𝑁
−
(𝑁
−
− 1)⟩/⟨𝑁2

−
⟩) − 2(⟨𝑁

−
𝑁
+
⟩/⟨𝑁
−
⟩⟨𝑁
+
⟩), where ⟨𝑁

−
⟩

and ⟨𝑁
+
⟩ are average negative and positive charged particle

multiplicity, respectively [88].
Figure 9 shows the product of ](+−, 𝑑𝑦𝑛) and ⟨𝑁ch⟩

(average number of charged particles) as a function of √𝑠NN
[89–91]. We find that this observable fluctuation rapidly
decreases with√𝑠NN and approaches expectation for a simple
QGP-like scenario [92] as we move from RHIC to LHC
energies. Given that several other observables already indi-
cate that a hot and dense medium of color charges has been
formed at RHIC and LHC, the net-charge fluctuation result
may indicate that the observable ](+−, 𝑑𝑦𝑛) is not sensitive
enough to QGP physics or the process of hadronization
washes out the QGP signal for this observable. It may be
also noted that the model’s results do not incorporate the
acceptance effects and do not consider any dynamic evolution
of the system like, for example, the dilution of the signals in
the hadronization process.

3.2. Azimuthal Anisotropy

3.2.1. Energy Dependence of 𝑝
𝑇
Integrated V

2
. Figure 10 shows

the 𝑝
𝑇
integrated V

2
close to midrapidity of charged particles
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Figure 9: (Color online) Energy dependence of net-charge fluctua-
tions about midrapidity in central heavy-ion collisions at SPS [89],
RHIC [90], and LHC [91] energies. Also shown are the expectations
from a hadron resonance gas model and for a simple QGP picture
[92].
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Figure 10: (Color online) Transversemomentum integrated V
2
close

to midrapidity for charged (𝑍 = 1) particles for collision centralities
around 20–30% as a function of center of mass energy.

for collision centralities around 20–30% as a function of
center of mass energy. We observe that there is an increase in
magnitude of V

2
by about 30% from topRHIC energy (√𝑠NN =

200GeV) to LHC energy (√𝑠NN = 2.76TeV).This needs to be
viewed within the context of a similar magnitude of increase
in ⟨𝑝
𝑇
⟩ of pions from RHIC to LHC energies.The increase of

V
2
beyondbeamenergy of 10GeV is logarithmic in√𝑠NN.This

is expected to be determined by the pressure gradient-driven
expansion of the almond-shape fireball produced in the
initial stages of a noncentral heavy-ion collision [93] while
for V
2
measured at lower beam energies, the dependences

observed are due to interplay of passing time of spectators
and time scale of expansion of the system. A preference
for an inplane emission versus out-of-plane (“squeeze-out”)
pattern of particles as a function of beam energy is observed.
The experimental data used are from FOPI [94, 95], EOS,
E895 [96], E877 [97], CERES [98], NA49 [99], STAR [100],
PHOBOS [101], PHENIX [102], ALICE [25], ATLAS [103],
and CMS [17–20] experiments. Charged particles are used for
LHC, RHIC, CERES, and E877 experiments, pion data is used
from NA49 experiment, protons’ results are from EOS and
E895 experiments, and FOPI results are for all particles with
𝑍 = 1.

3.2.2. Azimuthal Anisotropy Coefficients versus Transverse
Momentum. Figure 11(a) shows the comparison of V

2
(𝑝
𝑇
),

V
3
(𝑝
𝑇
), and V

4
(𝑝
𝑇
) for 30–40% collision centrality at RHIC

(PHENIX experiment [104]) and LHC (ALICE [105]) at
midrapidity in Au + Au and Pb + Pb collisions, respectively.
The bottom panel of this figure shows the ratio of LHC
and RHIC results to a polynomial fit to the LHC data. The
V
𝑛
(𝑝
𝑇
) measurement techniques are similar at RHIC and

LHC energies. One observes that at lower 𝑝
𝑇
(<2GeV/c),

the V
2
(𝑝
𝑇
) and V

3
(𝑝
𝑇
) are about 10–20% smaller at RHIC

compared to the corresponding LHC results. However, at
higher 𝑝

𝑇
, the results are quite similar. The V

4
(𝑝
𝑇
) seems

higher at RHIC compared to that at LHC.
One of the most striking observations to come out from

RHIC is the number of constituent quark (𝑛
𝑞
) scaling of

V
2
(𝑝
𝑇
) for identified hadrons. The basis of such a scaling

is the splitting of V
2
(𝑝
𝑇
) between baryons and mesons at

intermediate 𝑝
𝑇
(2–6GeV/c). This is shown in the bottom

panels of Figure 11(b). Such a splitting between baryon and
meson V

2
(𝑝
𝑇
) is also observed at intermediate 𝑝

𝑇
at LHC

energies (seen in the top panels of Figure 11(b)). However,
the degree to which 𝑛

𝑞
scaling holds could be different at

RHIC [106] and LHC [107] energies. The 𝑛
𝑞
scaling is much

more closely followed at RHIC compared to LHC. It may
be noted that there are several factors which could dilute
such scaling, which include energy dependence of radial flow,
an admixture of higher Fock states, and consideration of a
realistic momentum distribution of quarks inside a hadron
[108, 109]. The observation of the baryon-meson splitting
is commonly interpreted as due to substantial amount of
collectivity being generated in the deconfined phase. Another
important feature is that at both RHIC and LHC energies, a
clear hydrodynamic feature of mass dependence of V

2
(𝑝
𝑇
) is

observed at low 𝑝
𝑇
(<2GeV/c).

Figure 12 shows the charged hadron V
2
(𝑝
𝑇
) for 30–40%

collision centrality in Au + Au collisions at √𝑠NN = 200GeV
and Pb + Pb collisions at √𝑠NN = 2.76TeV for |𝜂| < 1
[17–20]. This figure demonstrates the kinematic reach for
higher energy collisions at LHC relative to RHIC. LHC data
allows us to study the V

2
(𝑝
𝑇
) in the 𝑝

𝑇
range never measured
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Figure 11: (Color online) (a) Comparison of V
𝑛
(𝑝
𝑇
) at midrapidity for 30–40% collision centrality at RHIC (Au + Au collisions at √𝑠NN =

200GeV from PHENIX experiment [104]) and at LHC (Pb + Pb collisions at √𝑠NN = 2.76 TeV from ALICE experiment [105]). (b) show the
ratio of V

𝑛
at LHC and RHIC. (b) V

2
versus 𝑝

𝑇
and V

2
/𝑛
𝑞
versus 𝑝

𝑇
/𝑛
𝑞
for pions and protons at midrapidity for 10–20% collision centrality

from Au + Au collisions at √𝑠NN = 200GeV (PHENIX experiment [106]) and Pb + Pb collisions at √𝑠NN = 2.76TeV (ALICE experiment
[107]).
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Figure 12: (Color online) Comparison of V
2
(𝑝
𝑇
) at midrapidity for

30–40% collision centrality at RHIC (Au + Au collisions at √𝑠NN =
200GeV from STAR experiment) and at LHC (Pb + Pb collisions
at √𝑠NN = 2.76TeV from CMS experiment [17–20]). The shaded
band about CMS data point are systematic errors and vertical lines
represent statistical errors.

before in heavy-ion collisions. The V
2
(𝑝
𝑇
) ∼ 0 for 𝑝

𝑇
>

40GeV/c might suggest that those particles must have been
emitted very early in the interactions when the collective
effects had not set in. These high transverse momentum data
are useful to understand the effects of the initial geometry
or path-length dependence of various properties associated
with parton modification inside the hot QCD medium. In
addition, it also provides significantly improved precision
measurement of V

2
for 12 < 𝑝

𝑇
< 20GeV/c.

3.2.3. Flow Fluctuations. Fluctuations in azimuthal anisot-
ropy coefficient V

2
have gained quite an attention in recent

times. In particular, the measurement of event-by-event
V
2
fluctuations can pose new constraints on the models

of the initial state of the collision and their subsequent
hydrodynamic evolution. In extracting event-by-event V

2

fluctuations, one needs to separate nonflow effects, and so
far, there is no direct method to decouple V

2
fluctuations and

nonflow effects in a model independent from the experimen-
tal measurements. However, several techniques exist where
the nonflow effects can be minimized; for example, flow
and non-flow contributions can be possibly separated to a
great extent with a detailed study of two particle correlation
function in Δ𝜙 and its dependence on 𝜂 and Δ𝜂. Here,
we discuss another technique to extract and compare the
V
2
fluctuations at RHIC and LHC. We assume that the

difference between V
2
{2} (two-particle cumulant) and V

2
{4}

(four-particle cumulant) is dominated by V
2
fluctuations, and

nonflow effect is negligible for V
2
{4}. Then, the ratio 𝑅V(2−4) =

√(V
2
{2}2 − V

2
{4}2)/(V

2
{2}2 + V

2
{4}2) can be considered as an

estimate for V
2
fluctuations in the data. Figure 13 shows the

𝑅V(2−4) as a function of collision centrality and ⟨𝑑𝑁ch/𝑑𝜂⟩
for RHIC [110] and LHC [107] energies. The centrality
dependence of 𝑅V(2−4) at RHIC or LHC as seen in Figure 13
could be an interplay of residual nonflow effects which
increases for central collisions and multiplicity fluctuations
which dominate smaller systems. It is striking to see that
𝑅V(2−4) when presented as a function of % cross section is
similar at RHIC and LHC, suggesting it reflects features
associated with initial state of the collisions, for example, the
event-by-event fluctuations in the eccentricity of the system.
But when presented as a function of 𝑑𝑁ch/𝑑𝜂, it tends to
suggest a different behavior for most central collisions at
RHIC.

Recently, a great interest has been generated on extract-
ing initial condition and flow fluctuation information
from the measurement of the probability distribution
of V
𝑛

at LHC. The probability density of V
𝑛

can be
expressed as a Gaussian function in transverse plane [111]
as 𝑝(V

𝑛
) = (1/2𝜋𝛿2V

𝑛

)𝑒−(V𝑛−V
RP
𝑛
)
2

/(2𝛿
2

V𝑛
) or as one dimen-

sional Bessel-Gaussian function [112, 113] as 𝑝(V
𝑛
) = (V

𝑛
/

𝛿2V
𝑛

)𝑒−(((V𝑛)
2

+(VRP
𝑛
)
2

)/2𝛿
2

V𝑛
)𝐼
0
(VRP
𝑛
V
𝑛
/𝛿2V
𝑛

), where 𝐼
0
is the modified

Bessel function of the first kind and 𝛿V
𝑛

is the fluctuation in
V
𝑛
, with 𝛿V

𝑛

≈ 𝜎V
𝑛

for 𝛿V
𝑛

≪ VRP
𝑛

(V
𝑛
measured with respect to

reaction plane).
Figure 14 shows the VRP

2
and 𝛿V

2

values extracted from the
V
2
distributions as a function of ⟨𝑁part⟩ by fitting to the above

probability functions [114]. They are compared with values
of ⟨V
2
⟩ and 𝜎V

2

obtained directly from the V
2
distributions.

The VRP
2

value is always smaller than the value for ⟨V
2
⟩, and it

decreases to zero in the 0–2% centrality interval.The value of
𝛿V
2

is close to 𝜎V
2

, except in the most central collisions. This
leads to a value of 𝛿V

2

/VRP
2

larger than 𝜎V
2

/⟨V
2
⟩ over the full

centrality range as shown in Figure 14(c).The value of 𝛿V
2

/VRP
2

decreases with ⟨𝑁part⟩ and reaches a minimum at ⟨𝑁part⟩ ≈

200 but then increases for more central collisions. Thus, the
event-by-event V

2
distribution brings additional insight for

the understanding of V
2
fluctuations.

3.3. Nuclear Modification Factor. Figure 15 shows the 𝑅AA of
various particles produced in heavy-ion collisions at RHIC
and LHC. In Figure 15(a), we observe that the shape of the
𝑅AA versus 𝑝

𝑇
of charged hadrons at RHIC and LHC [26, 27]

is very similar for the common 𝑝
𝑇
range of measurements.

The values𝑅AA at RHIC are higher compared to those at LHC
energies up to 𝑝

𝑇
< 8GeV/c. The higher kinematic reach

of LHC in 𝑝
𝑇
allows us to see the full 𝑝

𝑇
evolution of 𝑅AA

in high energy heavy-ion collisions. All these measurements
suggest that the energy loss of partons in the medium formed
in heavy-ion collisions at LHC energies is perhaps larger
compared to that at RHIC. In Figure 15(b), we observe that
the nuclear modification factors for 𝑑 + Au collisions at
√𝑠NN = 200GeV [115] and 𝑝 + Pb collisions at √𝑠NN =
5.02TeV [116] are greater than unity for the 𝑝

𝑇
> 2GeV/c.

The values for RHIC are slightly larger compared to those for
LHC. A value greater than unity for the nuclear modification
factor in 𝑝(𝑑) +A collisions is generally interpreted as due to
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Figure 13: (Color online) The ratio 𝑅V(2−4) = √(V
2
{2}2 − V

2
{4}2)/(V

2
{2}2 + V

2
{4}2), an estimate of V

2
fluctuations plotted as a function of

collision centrality (a) and ⟨𝑑𝑁ch/𝑑𝜂⟩ (b) for RHIC (STAR experiment: Au + Au collisions at √𝑠NN = 200GeV [110]) and LHC (ALICE:
Pb + Pb collisions at√𝑠NN = 2.76TeV [107]) at midrapidity. The bands reflect the systematic errors.
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Figure 14: (Color online) The dependence of VRP
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and ⟨V
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⟩ (a), 𝛿V

2
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2

(b), and 𝛿V
2

/VRP
2

and 𝜎V
2

/⟨V
2
⟩ (c) on ⟨𝑁part⟩ [114]. The shaded

boxes indicate the systematic uncertainties.

Cronin effect [117, 118]. However, several other physics effects
could influence the magnitude of the nuclear modification
factor in 𝑝(𝑑) + A collisions such as nuclear shadowing
and gluon saturation effects. But the results that the nuclear
modification factors in 𝑝(𝑑) + A collisions are not below

unity strengthen the argument (from experimental point of
view) that a hot and densemedium of color charges is formed
in A + A collisions at RHIC and LHC. In Figure 15(c), we
show the 𝑅AA of particles that do not participate in strong
interactions, and some of them are most likely formed in the
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Figure 15: (Color online) (a) Nuclear modification factor 𝑅AA of charged hadrons measured by ALICE [26] and CMS [27] experiments at
midrapidity for 0–5%most central Pb+Pb collisions at√𝑠NN = 2.76TeV. For comparison, shown are the𝑅AA of charged hadrons atmidrapidity
for 0–5%most central collisionsmeasured by STAR [115] and𝑅AA of𝜋

0 atmidrapidity for 0–10%most central collisionsmeasured by PHENIX
[173] for Au +Au collisions at√𝑠NN = 200GeV. (b) Comparison of nuclear modification factor for charged hadrons versus 𝑝

𝑇
at midrapidity

for minimum bias collisions in 𝑑 + Au collisions at √𝑠NN = 200GeV [115] and 𝑝 + Pb collisions at √𝑠NN = 5.02TeV [116]. (c) The nuclear
modification factor versus 𝑝

𝑇
for isolated photons in central nucleus-nucleus collisions at √𝑠NN = 200GeV [119] and 2.76 TeV [120]. Also

shown are the 𝑝
𝑇
integrated 𝑅AA of𝑊± [121] and 𝑍 bosons [122] at corresponding 𝑚

𝑇
at LHC energies. Open and shaded boxes represents

the systematic uncertainties in the experimental measurements and normalization uncertainties, respectively.

very early stages of the collisions. These particles (photon
[119, 120], 𝑊± [121], and 𝑍 [122] bosons) have an 𝑅AA ∼ 1,
indicating that the 𝑅AA < 1, observed for charged hadrons in
A + A collisions, is due to the strong interactions in a dense
medium consisting of color charges.

4. Comparison to Model Calculations

In this section, we compare some of the experimental
observables discussed above with corresponding model cal-
culations.This helps us to interpret the data at both RHIC and
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Figure 16: (Color online) Comparison of 𝑑𝑁ch/𝑑𝜂measurement atmidrapidity for central heavy-ion collisions at RHIC and LHCwithmodel
predictions.

LHC energies. We restrict our discussion on the comparison
of the models with the experimental data for charged particle
production, ratio of kaon to pion yields as a function of
beam energy, 𝑝

𝑇
dependence of V

2
, and 𝑅AA for charged

particles and pions. For the charged particle production, we
compare the experimental data with models inspired by the
perturbative QCD-based calculations (HIJING, DPMJET)
with macroscopic models (statistical and hydrodynamical),
microscopic models (string, transport, cascade, etc.), and
calculations which are derived by the different parametriza-
tions of the nucleon-nucleon and nucleus-nucleus lower
energy data. The ratio of kaon to pion yields for different
beam energies is compared with the statistical and thermal
models. The transverse momentum dependence of V

2
is

compared with models incorporating the calculations based
on hydrodynamic and transport approaches. Finally, the
𝑅AA results are compared with the perturbative QCD-based
calculations with different mechanism for the parton energy
loss in the presence of colored medium.

4.1. Charged Particle Multiplicity Density and Particle Ratio.
Figure 16 compares the measured charged particle pseudora-
pidity density at RHIC (0.2 TeV) and LHC (2.76 TeV) energies
to various model calculations.

Empirical extrapolation from lower energy data (named
“Busza” in the figure) [123] significantly under-predicts the
measurement at LHC energies. A simple power-law growth
of charged-particle multiplicities near midrapidity in central

Au +Au collisions seems to be followed up to RHIC energies
(named as “Barshay and Kreyerhoff” in the figure) [124].
Perturbative QCD-inspired Monte Carlo event generators,
the HIJING model without jet quenching [125], the Dual
PartonModel [126] (named “DPMJET III” in the figure), and
the Ultrarelativistic Quantum Molecular Dynamics model
[127] (named “UrQMD” in the figure) are consistent with the
measurement.TheHIJINGmodel results without jet quench-
ing were also consistent with the RHIC measurements.
The semimicroscopic models like LEXUS are successful in
explaining the observedmultiplicity at RHIC (named as “Jeon
and Kapusta” in the figure) [128]. Models based on initial-
state gluon density saturation have a range of predictions
depending on the specifics of the implementation [129–133].
The best agreement with LHC data happens for model as
described in (named as “Kharzeev et al.” and “Armesto et al.”
in the figure) [131, 133]. Conclusions for RHIC energy from
these models are similar. The prediction of a hybrid model
based on hydrodynamics and saturation of final-state phase
space of scattered partons (named as “Eskola et al.” in the
figure) [134] is slightly on a higher side compared to the mea-
surement at LHC. But such a model seems to do a reasonable
job for RHIC energies [135]. Another hydrodynamicmodel in
whichmultiplicity is scaled from 𝑝+𝑝 collisions overpredicts
the measurement (named as “Bozek et al.” in the figure)
[136]. Models incorporating constituent quark scaling and
Landau hydrodynamics (named as “Sarkisyan and Sakharov”
in the figure) [137, 138] and based on modified PYTHIA
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Figure 17: (Color online) Centrality dependence of
(𝑑𝑁ch/𝑑𝜂)/(⟨𝑁part⟩/2) for Pb + Pb collisions at √𝑠NN = 2.76TeV
[14] and Au + Au collisions at √𝑠NN = 200GeV. The RHIC results
are scaled up by a factor of 2.15. Also shown are comparisons to
theoretical model calculations [144] and some parametrization
based on detail shape of 𝑑𝑁ch/𝑑𝜂 distributions at RHIC [47] and
⟨𝑁part⟩.
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Figure 18: (Color online) Energy dependence of 𝐾±/𝜋± ratio for
central collisions at midrapidity. Errors are statistical and systematic
added in quadrature. Results are also compared with various
theoretical model predictions [79, 147–150].

and hadronic re-scattering (named as “Humanic” in the
figure) [139] underpredict the measurement at LHC energy.
At RHIC energies, models considering minijet production
in ultrarelativistic heavy-ion collisions by taking semihard
parton rescatterings explicitly into account underpredict the
multiplicities (named as “Accardi” in the figure) [140]. It is
also seen at RHIC energies thatmodels based on string fusion
[141] and dual string model [142] seem to work well, whereas
those based on heavy-ion cascade LUCIFER model [143]
underpredict the data.

Figure 17 shows the (𝑑𝑁ch/𝑑𝜂)/(⟨𝑁part⟩/2) versus ⟨𝑁part⟩
for Pb + Pb collisions at √𝑠NN = 2.76TeV [14]. Also shown
are the corresponding RHIC results scaled up by a factor
2.15. Remarkable similarity is observed in the shape of the
distributions at RHIC and LHC energies. Particle production
based on saturation model explains the trends nicely (named
as “ALbacete and Dumitru” in the figure) [144] (published
after themost central 𝑑𝑁ch/𝑑𝜂 value [25] was known). simple
fit to the data using a power law form for the ⟨𝑁part⟩ also
explains the measurements. In addition, a functional form
inspired by the detailed shape of pseudorapidity distribution
of charged particle multiplicity distributions at RHIC [47]
explains the centrality trends nicely.

Strangeness production in heavy-ion collisions is a classic
signature for formation of QGP [145]. The particle yield
ratio 𝐾/𝜋 could reflect the strangeness enhancement in
heavy-ion collisions with respect to the elementary collisions.
Figure 18 shows the energy dependence of 𝐾±/𝜋± ratio for
central collisions at midrapidity. It will be interesting to
see which model explains such an impressive collection of
systematic data on𝐾/𝜋 ratio. Figure 18 also shows the energy
dependence of 𝐾/𝜋 ratio from various theoretical model
calculations.The energy dependence of𝐾+/𝜋+ ratio has been
interpreted using the Statistical Model of Early Stage (SMES)
[146].Themodel predicts first-order phase transition and the
existence of mixed phase around beam energy of 7-8GeV.
The SHM or statistical hadronization model [147] assumes
that the strong interactions saturate the particle production
matrix elements. This means that the yield of particles is
controlled predominantly by the magnitude of the accessible
phase space. The system is in chemical nonequilibrium for
√𝑠NN < 7.6GeV,while for higher energies, the oversaturation
of chemical occupancies is observed. The statistical model
[148] assumes that the ratio of entropy to 𝑇3 as a function
of collision energy increases for mesons and decreases for
baryons. Thus, a rapid change is expected at the crossing of
the two curves, as the hadronic gas undergoes a transition
from a baryon-dominated to a meson-dominated gas. The
transition point is characterized by 𝑇 = 140MeV, 𝜇

𝐵
=

410MeV, and √𝑠NN = 8.2GeV. In the thermal model [79],
the energy dependence of 𝐾±/𝜋± is studied by including 𝜎-
meson, which is neglected in most of the models, and many
higher mass resonances (𝑚 > 2GeV/c2) into the resonance
spectrum employed in the statistical model calculations. The
hadronic nonequilibrium kinetic model [149] assumes that
the surplus of strange particles is produced in secondary
reactions of hadrons generated in nuclear collisions.Then, the
two important aspects are the available energy density and the
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lifetime of the fireball. It is suggested that these two aspects
combine in such a way so as to show a sharp peak for the
strangeness-to-entropy or 𝐾/𝜋 ratio as a function of beam
energy. In the hadron resonance gas and hagedorn (HRG +
Hagedorn) model [150], all hadrons as given in PDG with
masses up to 2GeV/c2 are included. The unknown hadron
resonances in this model are included through Hagedorn’s
formula for the density of states. The model assumes that the
strangeness in the baryon sector decays to strange baryons
and does not contribute to the kaon production. The energy
dependence of 𝐾±/𝜋± ratio seems to be best explained using
HRG +Hagedorn model.

This systematic measurement of 𝐾/𝜋 ratio reveals two
interesting pieces of information. (a)The𝐾+/𝜋+ ratio shows
a peak around√𝑠NN = 8GeV,while the𝐾

−/𝜋− ratio increases
monotonically; the peak indicates the role of the maximum
baryon density at freeze-out around this collision energy. (b)
For√𝑠NN > 100GeV, pair production becomes the dominant
mechanism for𝐾± production, so both the ratios𝐾+/𝜋+ and
𝐾−/𝜋− approach the value of 0.16. Taking into account the
different masses between pions and kaons, this asymptotic
value corresponds to a temperature of the order of 160MeV.

4.2. Azimuthal Anisotropy. Theazimuthal anisotropy param-
eter V

2
, measured at RHIC and LHC, provides a unique

opportunity to study the transport properties of the fun-
damental constituents of any visible matter, a system of
quarks and gluons. Furthermore, it provides an opportunity
to understand whether the underlying dynamics of the
evolution of the system formed in the collisions are governed
by macroscopic hydrodynamics [151–153] or by microscopic
transport approach [154]. Figure 19 shows the V

2
versus𝑝

𝑇
for

30–40% collision centrality Au+Au and Pb+Pb collisions at
midrapidity for √𝑠NN = 200GeV and 2.76 TeV, respectively.
The measurements are compared to a set of model calcula-
tions based onhydrodynamic approach (includingTHERMI-
NATOR [155, 156]) and another set of calculations based on
transport approach. It is observed that hydrodynamic-based
models explain the V

2
measurements both at RHIC and LHC

energies. Transport-based models including partonic inter-
actions (like AMPT [154]) also explain the V

2
measurements.

However, those transport models which do not incorporate
partonic interactions like UrQMD [157, 158] fail to explain
the data. The model comparison also reveals that the data
favors a high degree of fluidity reflected by a small value of
shear viscosity to entropy density ratio (𝜂/𝑠) < 0.2. A more
detailed comparison of the model calculations with various
order azimuthal anisotropy parameters V

𝑛
would in the near

future give us a more quantitative picture of the temperature
(or energy) dependence of transport coefficients of the system
formed in the heavy-ion collisions.

4.3. Nuclear Modification Factor. The nuclear modification
factor (𝑅AA) is an observable used to study the structure
of strongly interacting dense matter formed in heavy-ion
collisions. Here, we discuss the observation of 𝑅AA < 1 at
high 𝑝

𝑇
seen at RHIC and LHC by comparing two models

within perturbative QCD- (pQCD-) based formalisms. In

this picture, the high 𝑝
𝑇
hadrons are expected to originate

from the fragmentation of hard partons (hard scattering
scales larger than QCD scales of 200MeV).The hard partons
lose energy through interactions with the hot and dense
mediums, which get reflected in the observed values of 𝑅AA.
The processes by which they could lose energy includes
radiative energy loss and elastic energy loss. For a more
elaborate discussion on these models, we refer the reader to
the review article [159].

In Figure 20, we show a comparison between experimen-
tally measured 𝑅AA versus 𝑝

𝑇
at LHC and RHIC energies

and corresponding pQCD-based model calculations. All
theoretical formalisms require a microscopic model of the
medium to set the input parameters for the energy loss
calculation. These parameters, for example, are denoted as
⟨𝑞⟩, the transport coefficient of the medium or the gluon
number density𝑑𝑁𝑔/𝑑𝑦per unit rapidity.Theparameter𝑃esc,
on the other hand, reflects the strength of elastic energy loss
put in the model calculations. Without going into deeper
theoretical discussions of each model, we refer the readers
to the following related publications: PQM [160], GLV [161],
ASW [162], YaJEM [163], WHDG [164], and ZOWW [165].
However, for completeness and to elucidate the approach
taken in the model calculations, we briefly mention two
formalisms as examples: the GLV approach named after
their authors Gyulassy, Levai, and Vitev and ASW approach
named after the corresponding authors Armesto, Salgado
and Wiedemann, where the medium is defined as separated
heavy static scattering centers with color screened potentials,
where as in some other formalism, a more precise definition
of the medium is considered as being composed of quark
gluon quasiparticles with dispersion relations and interac-
tions given by the hard thermal loop effective theory.

We observe that most models predict the 𝑝
𝑇
dependence

of 𝑅AA well for collisions both at RHIC and LHC energies.
The models specially capture the generally rising behavior
of 𝑅AA that is observed in the data at high 𝑝

𝑇
for the LHC

energies. The magnitude of the predicted slope of 𝑅AA versus
𝑝
𝑇
varies between models, depending on the assumptions

for the jet-quenching mechanism. The models shown do not
need larger values of medium density in the calculation to
explain the 𝑅AA for 3 < 𝑝T < 20GeV/c at RHIC and LHC for
the common kinematic range. They however, require a high
medium density at LHC energy to explain the values of 𝑅AA
for 𝑝
𝑇
> 20GeV/c.

5. Summary

In summary, the results on multiplicity density in pseudo-
rapidity, HBT, azimuthal anisotropy, and nuclear modifica-
tion factor from LHC experiments indicate that the fireball
produced in these nuclear collisions is hotter, lives longer,
and expands to a larger size at freeze-out compared to
lower energies. These results also confirm the formation of a
deconfined state of quarks and gluons at RHIC energies. The
measurements at LHC provide a unique kinematic access to
study in detail the properties (such as transport coefficients)
of this system of quarks and gluons.
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Figure 19: (Color online)The azimuthal anisotropy parameter V
2
, measured in noncentral heavy-ion collisions at midrapidity for RHIC and

LHC energies. For comparison, shown are the various theoretical calculations based on hydrodynamic and transport approaches (see text for
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Figure 20: (Color online)Measurements of the nuclearmodification factor𝑅AA in central heavy-ion collisions at two different center-of-mass
energies, as a function of 𝑝

𝑇
, for pions (𝜋±,0) [174, 175] and charged hadrons [26, 27], compared to several theoretical predictions (see text).

The error bars on the points are the statistical uncertainties, and the boxes around the data points are the systematic uncertainties. Additional
absolute normalization uncertainties of order 5% to 10% are not plotted. The bands for several of the theoretical calculations represent their
uncertainties.
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In this review, we showed that the first set of mea-
surements made by the three LHC experiments within the
heavy-ion programs, ALICE, ATLAS, and CMS, show a high
degree of consistency. These measurements include central-
ity dependence of charged particle multiplicity, azimuthal
anisotropy, and nuclear modification factor versus transverse
momentum. Next, we discussed the comparison of various
measurements made at RHIC and LHC energies. LHC
measurements of 𝑑𝑁ch/𝑑𝜂 clearly demonstrated the power
law dependence of charged particle multiplicity on the beam
energy. They also reconfirmed the observation at RHIC that
particle production mechanism is not a simple superposition
of several 𝑝 + 𝑝 collisions. The values of ⟨𝑚

𝑇
⟩, 𝜖Bj, freeze-out

volume, decoupling time for hadrons, and ⟨V
2
⟩ and ⟨𝛽⟩ are

larger at LHC energies compared to those at RHIC energies,
even though the freeze-out temperatures are comparable.The
value of the net-charge fluctuation measure is observed to
rapidly approach towards a simple model-based calculation
for QGP state. However, the sensitivity of this observable for
a heavy-ion system as well as the lack of proper modeling
of the heavy-ion system theoretically for such an observable
needs careful consideration.The V

2
fluctuations as a function

of centrality fraction have a similar value at both RHIC and
LHC. This reflects their sensitivity to initial state effects. Just
like at RHIC, the 𝑅

𝑑Au and direct photon 𝑅AA measurements
experimentally demonstrated that the observed 𝑅AA < 1 for
charged hadrons is a final state effect; also at LHC, the 𝑅

𝑝Pb,
direct photon, and 𝑊± and 𝑍0 𝑅AA measurements showed
that the observed 𝑅AA < 1 is indeed due to formation of
a dense medium of colored charges in central heavy-ion
collisions. All these conclusions were further validated by the
comparison of several observables to corresponding model
calculations. Further, it was found that the fluid at LHC
shows a comparable degree of fluidity as that at RHIC.This is
reflected by a small value of shear viscosity to entropy density
ratio.

Measurements-related heavy quark production [166–
168], dilepton production, jet-hadron correlations [169, 170],
and higher-order azimuthal anisotropy [171, 172] which are
now coming out of both RHIC and LHC experiments
will provide a much more detailed characterization of the
properties of the QCDmatter formed in heavy-ion collisions.
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