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Abstract. 
We find the coordinate space wave functions, maximal localization states, and quasiposition wave
functions in a GUP framework that implies a minimal length uncertainty using a formally self-adjoint representation. We show how the boundary conditions in quasiposition space can be exactly determined from the boundary conditions in coordinate space.


1. Introduction
The existence of a minimal length uncertainty proportional to the Planck length 
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 m is one of the common predictions of various candidates of quantum gravity. This idea in the context of the Generalized (Gravitational) Uncertainty Principle (GUP) has attracted much attention in recent years and many papers have appeared in the literature to address the effects of this minimal length on various quantum mechanical systems [1–14].
It is pointed out by Mead that gravity amplifies the Heisenberg’s measurement uncertainty which makes it impossible to measure distances more accurate than Planck’s length [15]. In fact, since the increase of the energies to probe small distances considerably disturbs the spacetime structure because of the gravitational effects, the spatial uncertainty eventually increases at energy scales as large as the Planck scale. This minimal length can be considered as a fundamental property of quantum spacetime, a natural UV regulator, and a solution for the trans-Planckian problem. Since the string theory with large or warped extra dimensions can lower the Planck scale into the TeV range, this fundamental length scale also moved into the reach of the Large Hadron Collider.
The thought experiments that support the minimal length proposal include the Heisenberg microscope with Newtonian gravity and its relativistic counterpart [15], limit to distance measurements [16], limit to clock synchronization, and limit to the measurement of the blackhole horizon [4]. Moreover, different approaches to quantum gravity such as string theory, loop quantum gravity, and loop quantum cosmology, quantized conformal fluctuations [17, 18], asymptotically safe gravity [19], and noncommutative geometry all indicate a fundamental limit to the resolution of structure.
Based on the Heisenberg’s microscope and taking into account both the normal and the gravitational uncertainties one finds [20]
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 is the gravitational constant. As Adler and Santiago observed this GUP is invariant under 
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 and therefore has a momentum inversion symmetry. Because of the universality of the gravity, this correction modifies all Hamiltonians for the quantum systems near the Planck scale.
Recently, an experimental scheme is suggested by Pikovski et al. to test the presence of the minimal length scale in the context of quantum optics [21]. They used quantum optical control and optical interferometric techniques for direct measurement of the canonical commutator deformations of a massive object. This experiment does not need the Planck-scale accuracy of position measurement and can be reached by the current technology. Some attempts have been also made to test possible quantum gravitational phenomena using astronomical observations [22, 23].
In this paper, we consider a GUP that implies a minimal length uncertainty proportional to the Planck length. We find the exact coordinate space wave functions and quasiposition space wave functions using a formally self-adjoint representation. We first obtain the eigenfunctions of the position operator and the maximal localization states. Then we discuss how the boundary conditions can be imposed consistently in both coordinate space and quasiposition space.
2. The Generalized Uncertainty Principle
Consider the following one-dimensional deformed commutation relation [13]:
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. To proceed further, consider the following representation [11]:
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					which exactly satisfies (2). This representation is formally self-adjoint subject to the inner product:
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, but it is not a true self-adjoint operator. On the other hand, the momentum operator is a self-adjoint operator which can be shown using the von Neumann’s theorem [11], that is, 
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In this representation, the completeness relation and scalar product can be written as
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					Also the eigenfunctions of the position operator in momentum space are given by the solutions of the eigenvalue equation
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					Note that the physical meaning of the present eigenstates is different from the ones provided in [11, 13]. Now using (10) we find the wave function in coordinate space as
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3. Boundary Conditions
In this section, we discuss how the boundary conditions in quasiposition space can be determined by fixing the boundary conditions in coordinate space.
3.1. Dirichlet Boundary Condition
Consider the following Dirichlet boundary condition in coordinate space
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							which fixes the quasiposition wave functions at 
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. Note that, for the following class of the coordinate space solutions
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							we exactly have
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 are the zeros of (28). So, for these cases, the quasiposition wave functions obey the same boundary conditions as coordinate space wave functions.
3.2. Neumann Boundary Condition
The Neumann boundary condition determines the values that the derivative of a wave function is to take on the boundary of the domain. Let us consider the following boundary condition in coordinate space:
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							where prime denotes the derivation with respect to the argument. This equation is equivalent to
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							Also, using (23) we have
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							Therefore, to first order we obtain
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							Moreover, for the coordinate space wave functions presented in (28) we exactly find
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 satisfy the same Neumann boundary condition.
Now let us elaborate on the correspondence between the uncertainties in position and the imposition of localized boundary conditions. In the GUP framework, it is not possible to measure the position of a particle more accurate than 
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. So we cannot define the potentials with infinitely sharp boundaries. In fact, the position of these boundaries can be only specified within this uncertainty. As it is shown in [11], the potentials with infinitely sharp boundaries such as the particle in a box potential cannot be properly defined in the GUP framework with respect to ordinary quantum mechanics.
4. Conclusions
In this paper, we have investigated the issue of the boundary conditions in deformed quantum mechanics which implies a minimal length uncertainty proportional to the Planck length. We found the coordinate space wave functions, maximal localization states, and quasiposition wave functions using a formally self-adjoint representation. We indicated that the position operator 
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 is merely symmetric and the momentum operator 
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 is truly self-adjoint which agrees with [13]. The maximal localization states are the physical states and obey the minimal length uncertainty; that is, 
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. We showed that the boundary conditions in coordinate space specify the boundary conditions in quasiposition space and found the exact relations for both Dirichlet and Neumann boundary conditions. Also, for a particular class of solutions, the boundary conditions are found to be the same in coordinate and quasiposition spaces. In fact, because of (15) the quasiposition wave functions 
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 and their boundary conditions contain the standard physical interpretation.
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