Research Article

Can Tsallis Distribution Fit All the Particle Spectra Produced at RHIC and LHC?

H. Zheng and Lilin Zhu

1INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, 95123 Catania, Italy
2Department of Physics, Sichuan University, Chengdu 610064, China

Correspondence should be addressed to H. Zheng; zheng@lns.infn.it

Received 24 April 2015; Revised 15 June 2015; Accepted 9 July 2015

1. Introduction

The heavy-ion collision experiments at RHIC and LHC give us the opportunity to study the phase transition from nuclear matter to quark gluon plasma (QGP), the collective motion, the nuclear medium effects, and so on. The particle spectrum is one of the basic quantities measured in experiments to address the questions raised in such studies. Recently, the Tsallis distribution has attracted the attention of many theorists and experimentalists in high energy heavy-ion collisions [1–25]. It has been applied to particle spectra produced in different reaction systems, from pp, pA to AA, to understand the particle production mechanism and extract physical quantities, for example, temperature [2–4, 7, 12–14, 17–21, 24] and chemical potential [26]. In pp collisions, the excellent ability to fit the spectra of identified hadrons and charged particles in a large range of p_T up to 200 GeV/c is quite impressive [2, 23–25]. A systematic investigation of particle spectra in p+p collisions at RHIC and LHC has been conducted in [2]. The results show that the Tsallis distribution can fit all the particle spectra at different energies in p+p collisions. A possible cascade particle production mechanism is proposed. Recently, a Tsallis distribution scaling function was found for charged hadron spectra in p+p and p+P collisions [1]. Comparing to nucleus-nucleus collisions, the pp collision is very simple. It has been used as a baseline for nucleus-nucleus collisions. A nuclear modification factor R_{pA} or R_{AA} was proposed to show the nuclear medium effects in pA or AA collisions referring to pp collisions [5, 10–12, 27–34]. The nuclear modification factor different from unity is a manifestation of medium effects. Many authors have successfully applied Tsallis distribution to fit particle spectra in pA and AA collisions even though the spectra were affected by nuclear medium modification [3–8, 10, 11, 18, 21]. We also notice that many works only show the small p_T part of the particle spectra, while the exponential distribution also can fit the low p_T region [11, 35]. It should cover all p_T regions of particle spectra, available in experiment, in order to show the advantage and/or the fitting power of the Tsallis distribution. In recent years, the experimental groups at RHIC and LHC have published the wide p_T range of particle spectra for different particles in different reaction systems. Such data allow us to conduct the systematic study of particle spectra in

The Tsallis distribution has been tested to fit all the particle spectra at mid-rapidity from central events produced in d+Au, Cu+Cu, and Au+Au collisions at RHIC and p+Pb, Pb+Pb collisions at LHC. Even though there are strong medium effects in Cu+Cu and Au+Au collisions, the results show that the Tsallis distribution can be used to fit most of particle spectra in the collisions studied except in Au+Au collisions where some deviations are seen for proton and Λ at low p_T. In addition, as the Tsallis distribution can only fit part of the particle spectra produced in Pb+Pb collisions where p_T is up to 20 GeV/c, a new formula with one more fitting degree of freedom is proposed in order to reproduce the entire p_T region.
heavy-ion collisions at RHIC and LHC using the Tsallis distribution, as we have done for p + p collisions [2].

In this work, we would like to test whether the Tsallis distribution can fit all the particle spectra produced at RHIC and LHC, which can help us to understand the particle production mechanism. Before we start to conduct our investigation, we can get some clues to estimate whether it can fit the particle spectrum or not from the nuclear modification factor. If \(R_{pA}\) or \(R_{AA}\) is flat for the whole \(p_T\) region, according to its definition, this means that the particle spectrum is similar in shape and only differs in magnitude to the one in p + p collisions. Based on the previous studies [1, 2], we are sure that the Tsallis distribution can fit the particle spectrum since it can fit all the particle spectra produced in p + p collisions, especially up to extremely high \(p_T\) [23–25]. In the pA reactions, \(R_{pA}\) are flat and very close to 1 for most of the produced particles at different centralities [5, 10, 11, 27, 29, 34], while in the AA collisions the nuclear medium effects increase from d + Au, Cu + Cu, and Au + Au collisions at RHIC and p + Pb, Pb + Pb collisions at LHC and select the data for most of the particles with the highest \(p_T > 5\) GeV to conduct this study.

The paper is organized as follows. In Section 2, we show different versions of the Tsallis distribution used in the literature. More details can be found in [2]. We also give the form of Tsallis distribution used in our analysis. In Section 3, we show our results of particle spectra from d + Au, p + Pb, Cu + Cu, Au + Au, and Pb + Pb. Another distribution is proposed to fit the particle spectra in Pb + Pb collisions since Tsallis distribution can only fit part of the particle spectra in the case. A brief conclusion is given in Section 4.

2. Tsallis Distributions

In the literature, several versions of Tsallis distribution with different arguments can be found [2–25]. The asymptotic behaviors of these distributions at low and high \(p_T\) limits can be found in [2]. We only briefly show them here.

The STAR [9] and PHENIX [5, 12] Collaborations at RHIC along with ALICE [13, 14] and CMS [15] Collaborations at LHC adopted this form of Tsallis distribution:

\[
\frac{d^3N}{d^3p} = \left(\frac{2\pi T}{\hbar} \right)^3 \frac{d^3N}{d^3p_T} = \frac{1}{2\pi T} \frac{dN}{dy \frac{d^3p}{dp_T}} = \frac{1}{2\pi T} \frac{dN}{dy \frac{d^3p}{dp_T}} = \frac{dN}{dy \frac{d^3p}{dp_T}} \frac{(n-1)(n-2)}{(nC + m(n-2))} \left(1 + \frac{m_T - m}{nC} \right)^{-n},
\]

where \(m_T = \sqrt{p_T^2 + m^2}\) is the transverse mass and \(m\) is the mass of the particle. \(dN/dy, n,\) and \(C\) are fitting parameters.

In [8, 19–22, 36], the following Tsallis form is used:

\[
E \frac{d^3N}{dp^3} = gV \frac{m_T \cosh y}{(2\pi)^3} \left[1 + (q-1) \frac{m_T \cosh y - \mu}{T} \right]^{q/(1-q)},
\]

based on thermodynamic consistency arguments. Where \(g\) is the degeneracy of the particle, \(V\) is the volume, \(y\) is the rapidity, \(\mu\) is the chemical potential, \(T\) is the temperature, and \(q\) is a parameter. In (2), there are four parameters \(V, \mu, T,\) and \(q, \mu\) was assumed to be 0 in [19–21, 36] which is a reasonable assumption because the energy is high enough and the chemical potential is small compared to temperature. In the mid-rapidity \(y = 0\) region, (2) is reduced to

\[
E \frac{d^3N}{dp^3} = gV \frac{m_T}{(2\pi)^3} \left[1 + (q-1) \frac{m_T}{T} \right]^{q/(1-q)}. \tag{3}
\]

In [4, 21], (2) has been rewritten as

\[
dN \frac{m_T}{m_T} = C \int_{-\frac{1}{2}}^{\frac{1}{2}} \cosh \frac{\mu}{T} m_T \left[1 + (q-1) \frac{m_T \cosh y}{T} \right]^{q/(1-q)}, \tag{4}
\]

to take into account the width of the corresponding rapidity distribution of the particles.

In [17], Sena and Deppman applied the nonextensive formalism to obtain the probability of particle with momentum \(p_T\) as

\[
\frac{1}{\sigma} \frac{d\sigma}{dp_T} = c \int_0^\infty dp_L \left[1 + (q-1) \beta \sqrt{p_L^2 + \frac{m^2}{2}} \right]^{q/(1-q)}, \tag{5}
\]

where \(c\) is the normalization constant, \(\beta\) is a parameter, \(\beta = 1/T,\) and \(m\) is the mass of particle. With the approximation \(p_T\) very large compared to \(p_L\) and \(m\) [37], (5) can be rewritten as

\[
\frac{1}{\sigma} \frac{d\sigma}{dp_T} = c \left[2(q-1) \right]^{1-1/2} \beta \sqrt{\frac{1}{2} - \frac{q}{q-1}} \frac{1}{2} \cdot u^{3/2} \left[1 + (q-1) u \right]^{-q/(q-1)+1/2}, \tag{6}
\]

where \(u = p_T/T\) and \(B(x, y)\) is the beta-function.

In [24], Wong and Wilk proposed a new form of the Tsallis distribution function to take into account the rapidity cut:

\[
\left(E \frac{d^3N}{dp^3} \right)_{\eta < \alpha} = \int_{-\alpha}^\alpha d\eta \frac{d\eta}{\eta} \left(E \frac{d^3N}{dp^3} \right), \tag{7}
\]
where
\[
dy{d\eta}(\eta, p_T) = \sqrt{1 - \frac{m^2}{m_T^2\cosh^2 y}}, \quad (8)
\]
with
\[
y = \frac{1}{2} \ln \left[\sqrt{p_T^2\cosh^2 \eta + m^2} + p_T\sinh \eta \right],
\]
\[
\frac{d^3N}{dp^3} = C \frac{dN}{dy} \left(1 + \frac{E_T}{nT} \right)^{-\alpha}, \quad E_T = m_T - m,
\]
where \(C(dN/dy)\) is assumed to be a constant.

In [2], we have obtained
\[
\left(\frac{E^3 d^3N}{dp^3} \right)_{|\eta|<a} = A \left(1 + \frac{E_T}{nT} \right)^{-\alpha}, \quad (10)
\]
where \(A, \alpha, \) and \(T\) are the fitting parameters. This is equivalent to (1) but in a simpler form. We adopt (10) to do the analysis here. We notice that (10) has been used by the CMS Collaboration [16, 38] and by Wong et al. in their recent paper [25]. The STAR Collaboration has also applied a formula which is very close to (10) [29].

3. Results

We have selected the data of particle spectra from the most central collisions with the highest \(p_T > 5\) GeV for most of the particles in d + Au, p + Pb, Cu + Cu, A u + Au, and Pb + Pb at RHIC and LHC. We fit the center values of the experimental points. The fit metric used is defined by
\[
M^2 = \sum_{i} \left(1 - \frac{y_i(\text{fit})}{y_i(\text{data})} \right)^2, \quad (11)
\]
As we discussed before, the Tsallis distribution should be able to fit the particle spectra from d + Au and p + Pb. One good example has been shown in [4, 5] for \(K_S^0\) and \(K^0\) in d + Au at \(\sqrt{s_{NN}} = 200\) GeV where their spectra can be obtained by multiplying the particle spectra in p + p collisions with \(N_{cusp}\). In Figures 1 and 2, our results for d + Au at \(\sqrt{s_{NN}} = 200\) GeV and p + Pb at \(\sqrt{s_{NN}} = 5.02\) TeV using (10) have been shown. In order to see the agreement between the data and the Tsallis distribution in linear scale, a ratio data/fit is defined. As shown in Figures 1 and 2, the fits for all particles are good. For the left collision systems, we also do the same comparisons. We would like to emphasize that \(p_T\) of charged particle spectrum is up to 45 GeV/c.

Now let us turn to the AA collisions. First we use Tsallis distribution Equation (10) to fit the particle spectra in Au + Au collisions at \(\sqrt{s_{NN}} = 200\) GeV in Figure 3. All the particle spectra are well fitted except the proton spectrum at \(p_T < 1\) GeV/c. This makes a little different of AA collisions from p + p collisions. We want to check whether this deviation will become larger at higher colliding energy in AA collisions. We considered the particle spectra from Cu + Cu collisions at \(\sqrt{s_{NN}} = 200\) GeV. The results are shown in Figure 4. The fitting with (10) for different particle spectra is very well. But we do not know whether there is deviation or not for proton at low \(p_T\) since the data for \(p_T < 3\) GeV/c are not available. Fortunately, the data for different particle spectra at low \(p_T\) in Au + Au collisions at \(\sqrt{s_{NN}} = 200\) GeV are given. In Figure 5, one can see the deviations of particle spectra of proton and \(A\) at low \(p_T\) from the Tsallis distribution Equation (10). While a deviation is observed for proton at \(p_T < 2\) GeV/c which becomes a little larger than the one in Au + Au at \(\sqrt{s_{NN}} = 62.4\) GeV, all other particle spectra are well fitted. This makes us curious to fit the particle spectra in Pb + Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. With the successful running at LHC, the identified hadron particle spectra data in Pb + Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV are available up to 20 GeV/c. The data satisfy two criteria. One is that there are strong nuclear medium effects in Pb + Pb collisions which can be seen from \(R_{bbps}\), and the other is that the transverse momenta of the particles reach high values. This gives us an opportunity to test the fitting power of the Tsallis distribution. When we use Tsallis distribution Equation (10) to fit pion spectrum, we...
Table 1: The fitting parameters and the corresponding χ^2/ndf for various particles in different collision systems with Tsallis distribution Equation (10).

<table>
<thead>
<tr>
<th>System</th>
<th>Particle</th>
<th>Centrality</th>
<th>A (GeV)</th>
<th>T (GeV)</th>
<th>n</th>
<th>χ^2/ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>d + Au</td>
<td>γ</td>
<td>Minimum bias</td>
<td>1274.39</td>
<td>0.108</td>
<td>7.48</td>
<td>30.66/21</td>
</tr>
<tr>
<td>$\sqrt{s_{NN}} = 200$ GeV</td>
<td>π^0</td>
<td>0–20%</td>
<td>54.08</td>
<td>0.130</td>
<td>9.70</td>
<td>15.46/18</td>
</tr>
<tr>
<td></td>
<td>π^+</td>
<td>0–20%</td>
<td>21.60</td>
<td>0.173</td>
<td>11.56</td>
<td>10.74/21</td>
</tr>
<tr>
<td></td>
<td>K^+</td>
<td>0–20%</td>
<td>0.776</td>
<td>0.214</td>
<td>8.89</td>
<td>1.54/18</td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>0–20%</td>
<td>2.403</td>
<td>0.163</td>
<td>9.57</td>
<td>6.75/10</td>
</tr>
<tr>
<td></td>
<td>ω</td>
<td>0–20%</td>
<td>0.565</td>
<td>0.224</td>
<td>10.53</td>
<td>18.08/24</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0–20%</td>
<td>0.568</td>
<td>0.221</td>
<td>11.97</td>
<td>11.60/20</td>
</tr>
<tr>
<td></td>
<td>ϕ</td>
<td>0–20%</td>
<td>0.0563</td>
<td>0.270</td>
<td>13.63</td>
<td>3.57/7</td>
</tr>
<tr>
<td></td>
<td>J/Ψ</td>
<td>0–20%</td>
<td>8.30E − 7</td>
<td>0.582</td>
<td>26.91</td>
<td>15.67/10</td>
</tr>
<tr>
<td>p + Pb</td>
<td>K^0_s</td>
<td>0–5%</td>
<td>1.537</td>
<td>0.302</td>
<td>9.16</td>
<td>15.12/31</td>
</tr>
<tr>
<td>$\sqrt{s_{NN}} = 5.02$ TeV</td>
<td>p</td>
<td>0–5%</td>
<td>0.536</td>
<td>0.449</td>
<td>22.49</td>
<td>6.53/36</td>
</tr>
<tr>
<td></td>
<td>Λ</td>
<td>0–5%</td>
<td>0.323</td>
<td>0.469</td>
<td>19.47</td>
<td>21.13/17</td>
</tr>
<tr>
<td>Au + Au</td>
<td>π^+</td>
<td>0–10%</td>
<td>551.14</td>
<td>0.171</td>
<td>16.80</td>
<td>20.80/20</td>
</tr>
<tr>
<td>$\sqrt{s_{NN}} = 62.4$ GeV</td>
<td>K^0_s</td>
<td>0–5%</td>
<td>20.03</td>
<td>0.264</td>
<td>40.88</td>
<td>12.95/12</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0–10%</td>
<td>21.37</td>
<td>0.226</td>
<td>22.64</td>
<td>304.57/16</td>
</tr>
<tr>
<td></td>
<td>Λ</td>
<td>0–5%</td>
<td>6.83</td>
<td>0.295</td>
<td>110.39</td>
<td>7.26/9</td>
</tr>
<tr>
<td></td>
<td>Ξ</td>
<td>0–5%</td>
<td>0.352</td>
<td>0.315</td>
<td>781.17</td>
<td>6.94/8</td>
</tr>
<tr>
<td></td>
<td>Ω</td>
<td>0–20%</td>
<td>4.35E − 2</td>
<td>0.308</td>
<td>3064.05</td>
<td>2.57/2</td>
</tr>
<tr>
<td>Cu + Cu</td>
<td>π^0</td>
<td>0–10%</td>
<td>304.12</td>
<td>0.128</td>
<td>9.42</td>
<td>38.83/21</td>
</tr>
<tr>
<td>$\sqrt{s_{NN}} = 200$ GeV</td>
<td>π^+</td>
<td>0–10%</td>
<td>1016.57</td>
<td>0.111</td>
<td>9.45</td>
<td>7.16/8</td>
</tr>
<tr>
<td></td>
<td>K^0_s</td>
<td>0–10%</td>
<td>15.89</td>
<td>0.198</td>
<td>12.19</td>
<td>51.37/19</td>
</tr>
<tr>
<td></td>
<td>ω</td>
<td>0–20%</td>
<td>51.79</td>
<td>0.139</td>
<td>9.48</td>
<td>1.21/4</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0–10%</td>
<td>242.07</td>
<td>0.107</td>
<td>9.90</td>
<td>0.12/5</td>
</tr>
<tr>
<td></td>
<td>ϕ</td>
<td>0–10%</td>
<td>1.09</td>
<td>0.226</td>
<td>12.08</td>
<td>7.02/8</td>
</tr>
<tr>
<td></td>
<td>Λ</td>
<td>0–10%</td>
<td>2.04</td>
<td>0.297</td>
<td>35.35</td>
<td>121.47/16</td>
</tr>
<tr>
<td></td>
<td>Ξ</td>
<td>0–10%</td>
<td>0.199</td>
<td>0.326</td>
<td>42.47</td>
<td>6.25/7</td>
</tr>
<tr>
<td></td>
<td>J/Ψ</td>
<td>0–20%</td>
<td>7.98E − 6</td>
<td>0.399</td>
<td>8.16</td>
<td>3.60/7</td>
</tr>
<tr>
<td>Au + Au</td>
<td>γ low p_T</td>
<td>0–20%</td>
<td>109.59</td>
<td>0.184</td>
<td>19.24</td>
<td>4.10/8</td>
</tr>
<tr>
<td>$\sqrt{s_{NN}} = 200$ GeV</td>
<td>γ high p_T</td>
<td>0–5%</td>
<td>4.64</td>
<td>0.187</td>
<td>7.85</td>
<td>15.44/14</td>
</tr>
<tr>
<td></td>
<td>π^0</td>
<td>0–10%</td>
<td>18.68</td>
<td>0.191</td>
<td>9.06</td>
<td>12.36/12</td>
</tr>
<tr>
<td></td>
<td>π^+</td>
<td>0–10%</td>
<td>1165.01</td>
<td>0.138</td>
<td>10.50</td>
<td>251.34/28</td>
</tr>
<tr>
<td></td>
<td>K^0_s</td>
<td>0–5%</td>
<td>49.56</td>
<td>0.213</td>
<td>13.99</td>
<td>153.73/18</td>
</tr>
<tr>
<td></td>
<td>η</td>
<td>0–20%</td>
<td>4978.81</td>
<td>0.066</td>
<td>8.16</td>
<td>4.03/7</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>0–12%</td>
<td>31.28</td>
<td>0.118</td>
<td>9.50</td>
<td>54866.3/26</td>
</tr>
<tr>
<td></td>
<td>ϕ</td>
<td>0–10%</td>
<td>3.44</td>
<td>0.236</td>
<td>13.70</td>
<td>7.85/7</td>
</tr>
<tr>
<td></td>
<td>Λ</td>
<td>0–5%</td>
<td>31.74</td>
<td>0.215</td>
<td>18.91</td>
<td>2739.02/18</td>
</tr>
<tr>
<td></td>
<td>J/Ψ</td>
<td>0–20%</td>
<td>3.576E − 4</td>
<td>0.221</td>
<td>7.88</td>
<td>0.83/3</td>
</tr>
</tbody>
</table>
Figure 2: The data are from [34, 43] for p + Pb at √S_{NN} = 5.02 TeV. The curves are the analytical results with Tsallis distribution Equation (10). The corresponding fitting parameters and χ²/ndf are given in Table 1. For a better visualization both the data and the analytical curves have been scaled by a constant as indicated. The ratios of data/fit are shown at the bottom. (Color online).

There are four parameters A, b, T, and c. We are inspired by the solution of Fokker-Planck equation [56]. We change the power from 2 in [56] to 4 in (12) in order to fit well all the particle spectra with one equation. Figure 6 shows that the fits with (12) are excellent. We would like to mention that when E_{T}/b ≪ 1, (12) becomes

\[\left(E \frac{d^3N}{dp^3} \right)_{|\eta|<\alpha} \propto e^{-E_{T}/T} \]

and when E_{T}/b ≫ 1,

\[\left(E \frac{d^3N}{dp^3} \right)_{|\eta|<\alpha} \propto p_{T}^{-4c} \]

Equation (12) has the same asymptotic behaviors as (10).

4. Conclusions

In this paper, we have tested the fitting ability of Tsallis function by fitting different particle spectra produced at the most central collisions in d + Au, p + Pb, Cu + Cu, Au + Au, and Pb + Pb at RHIC and LHC. The Tsallis distribution is able to fit all the particle spectra in d + Au and p + Pb collisions where the medium effects are very weak. This information can be obtained by the nuclear modification.
Table 2: The fitting parameters and the corresponding χ^2/ndf for different particles in Pb + Pb at $\sqrt{s_{NN}} = 2.76$ TeV with (12).

<table>
<thead>
<tr>
<th>System</th>
<th>Particle</th>
<th>Centrality</th>
<th>A</th>
<th>T (GeV)</th>
<th>b</th>
<th>c</th>
<th>χ^2/ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb + Pb</td>
<td>Charged π</td>
<td>0–5%</td>
<td>2049.91</td>
<td>0.252</td>
<td>2.195</td>
<td>0.886</td>
<td>174.54/59</td>
</tr>
<tr>
<td></td>
<td>Charged K</td>
<td>0–5%</td>
<td>112.68</td>
<td>0.346</td>
<td>1.776</td>
<td>1.150</td>
<td>35.37/54</td>
</tr>
<tr>
<td></td>
<td>Charged p</td>
<td>0–5%</td>
<td>10.55</td>
<td>0.710</td>
<td>1.845</td>
<td>1.605</td>
<td>42.29/45</td>
</tr>
<tr>
<td></td>
<td>ϕ</td>
<td>0–5%</td>
<td>2.11</td>
<td>0.749</td>
<td>1.281</td>
<td>1.080</td>
<td>1.84/4</td>
</tr>
<tr>
<td></td>
<td>Λ</td>
<td>0–5%</td>
<td>3.525</td>
<td>0.761</td>
<td>1.907</td>
<td>1.679</td>
<td>23.15/27</td>
</tr>
<tr>
<td></td>
<td>Ξ</td>
<td>0–10%</td>
<td>0.376</td>
<td>0.774</td>
<td>2.003</td>
<td>1.665</td>
<td>32.95/23</td>
</tr>
<tr>
<td></td>
<td>Ω</td>
<td>0–10%</td>
<td>0.0615</td>
<td>0.658</td>
<td>2.098</td>
<td>1.324</td>
<td>2.41/9</td>
</tr>
</tbody>
</table>

Figure 4: The data are from [11, 31, 40, 45–47] for Cu + Cu at $\sqrt{s_{NN}} = 200$ GeV. The curves are the analytical results with Tsallis distribution Equation (10). The corresponding fitting parameters and χ^2/ndf are given in Table 1. For a better visualization both the data and the analytical curves have been scaled by a constant as indicated. The ratios of data/fit are shown at the bottom.

Figure 5: The data are from [11, 32, 46, 48–52] for Au + Au at $\sqrt{s_{NN}} = 200$ GeV. The curves are the analytical results with Tsallis distribution Equation (10). The corresponding fitting parameters and χ^2/ndf are given in Table 1. For a better visualization both the data and the analytical curves have been scaled by a constant as indicated. The ratios of data/fit are shown at the bottom.

In the AA collisions, the Tsallis distribution can fit all the particle spectra very well at RHIC energies except the little deviation observed for proton and Λ at low p_T. However, the Tsallis distribution can only fit part of the particle spectra in Pb + Pb at $\sqrt{s_{NN}} = 2.76$ TeV, either in the low or in the high p_T region. We have proposed a new formula in order to fit all the particle spectra in Pb + Pb by increasing one fitting degree of freedom from Tsallis distribution. This follows the same idea of the transition from the exponential distribution to Tsallis distribution when intermediate p_T data are available in experiments.

According to the results in this paper and [2], we conclude that we can do the systematic analysis of particle spectra with Tsallis distribution in $p + p$, pA at RHIC and LHC. In the AA collisions at $p_T < 10$ GeV/c, we can do the same analysis as in $p + p$ and pA at RHIC and LHC. But when we consider Pb + Pb collisions, the Tsallis distribution fails.
Advances in High Energy Physics

[Figure 6: The data are from [33, 53–55] for Pb + Pb at $\sqrt{s_{NN}} = 2.76$ TeV. The red dashed line is the results fitting the low p_T region and the blue dotted-dashed line is the results fitting the high p_T region using (10). The solid curves are the analytical results with (12). The corresponding fitting parameters and χ^2/ndf are given in Table 2. For a better visualization both the data and the analytical curves have been scaled by a constant as indicated. The ratios of data/fit are shown at the bottom.]

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors thank Dr. J. Mabiala for reading carefully their paper. This work was supported, in part, by the NSFC of China under Grant no. 11205106.

References

S. S. Adler, S. Afanasiev, C. Aidala et al., “Centrality dependence of n^0 and η production at large transverse momentum in $\sqrt{s_{NN}} = 200$ GeV d + Au collisions;” *Physical Review Letters*, vol. 98, no. 17, Article ID 172302, 7 pages, 2007.

