Research Article

Study of Nonleptonic $B^*_q \rightarrow D_q V$ and $P_q D^*_q$ Weak Decays

Qin Chang, 1, 2, 3 Xiaohui Hu, 1 Junfeng Sun, 1 Xiaolin Wang, 1 and Yueling Yang 1

1 Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China
2 Institute of Particle Physics, Central Normal University, Wuhan 430079, China
3 State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Correspondence should be addressed to Junfeng Sun; sunjunfeng@htu.cn

Received 2 August 2015; Accepted 29 September 2015

Academic Editor: Enrico Lunghi

Copyright © 2015 Qin Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

Motivated by the powerful capability of measurement for the b hadron decays at LHC and SuperKEKB/Belle-II, the nonleptonic $\bar{B} \rightarrow D \bar{D}^*, D \rho^*$, $D \bar{K}^*$, and $K D^*$ decays are studied. With the amplitudes calculated with factorization approach and the form factors evaluated with the BSW model, branching fractions and polarization fractions are firstly presented. Numerically, the CKM-favored $\bar{B} \rightarrow D_q \bar{D}^*_q$ and $D_q \rho^*$ decays have branching fractions $\sim 10^{-8}$, which should be sought for with priority and firstly observed by LHC and Belle-II. The $\bar{B} \rightarrow D_q \bar{K}^*$ and $D_q \rho$ decays are dominated by the longitudinal polarization states, while the parallel polarization fractions of $\bar{B} \rightarrow D_q \bar{D}^*$ decays are comparable with the longitudinal ones; numerically, $f_L \times f_\perp \approx 5 : 4$. Some comparisons between $\bar{B} \rightarrow D_q V$ and their corresponding $\bar{B} \rightarrow D^* V$ decays are performed, and the relation $f_L (\bar{B} \rightarrow D V) \approx f_\perp (\bar{B} \rightarrow D^* V)$ is found. With the implication of $SU(3)$ flavor symmetry, the ratios $R_{u,s}$ and $R_{d,s}$ are discussed and suggested to be verified experimentally.

1. Introduction

The b physics plays an important role in testing the flavor dynamics of Standard Model (SM), exploring the source of CP violation, searching the indirect hints of new physics, investigating the underlying mechanisms of QCD, and so forth and thus attracts much experimental and theoretical attention. With the successful performance of BABAR, Belle, CDF, and D0 in the past years, many $B_{u,d,s}$ meson decays have been well measured. Thanks to the ongoing LHCb experiment [1] at LHC and forthcoming Belle-II experiment [2] at SuperKEKB, experimental analysis of B meson decays is entering a new frontier of precision. By then, besides $B_{u,d,s}$ mesons, the rare decays of some other b-flavored hadrons are hopefully to be observed, which may provide much more extensive space for b physics.

The excited states $B_{u,d,s}^{*,*}$ with quantum number of $n^{2s-1}L_J = 1^+S_1$ and $J^P = 1^-$ (n, L, s, J, and P are the quantum numbers of radial, orbital, spin, total angular momenta, and parity, resp.), which will be referred to as B^* in this paper, had been observed by CLEO, Belle, LHCb, and so on [3]. However, except for their masses, there is no more experimental information due to the fact that the production of B^* mesons is mainly through $Y(5S)$ decays at e^+e^- colliders and the integrated luminosity is not high enough for probing the B^* rare decays. Moreover, B^* decays are dominated by the radiative processes $B^* \rightarrow B\gamma$, and the other decay modes are too rare to be measured easily. Fortunately, with annual integrated luminosity ~ 13 ab$^{-1}$ [2] and the cross section of $Y(5S)$ production in e^+e^- collisions $\sigma(e^+e^- \rightarrow Y(5S)) = (0.301 \pm 0.002 \pm 0.039)$ nb [4], it is expected that about $4 \times 10^8 Y(5S)$ samples could be produced per year at the forthcoming super-B factory SuperKEKB/Belle-II, which implies that the B^* rare decays with branching fractions $\gtrsim 10^{-9}$ are possible to be observed. Besides, due to the much larger production cross section of pp collisions, experiments at LHC [5, 6] also possibly provide some experimental information for B^* decays.
2. Theoretical Framework

Within SM, the effective Hamiltonian responsible for nonleptonic B^* weak decay is \cite{7}

\[\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q = u, c, t} \left[V_{q\alpha}^* V_{q'\beta} + \sum_{i=1}^{10} C_i (\mu) O_i (\mu) + V_{q\alpha}^* \right] + \text{h.c.,} \]

where $p = d$ or s, $V_{q\alpha}^* V_{q'\beta}$ is the product of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, and C_i are Wilson coefficients, which describe the short-distance contributions and are calculated perturbatively; the explicit expressions of local four-quark operators O_i are

\[O_1 = (\bar{q}_a b_{\alpha})_{V-A} \left(\bar{p}_{\beta} P^\prime_{\beta} \right)_{V-A}, \]
\[O_2 = (\bar{q}_a b_{\alpha})_{V-A} \left(\bar{p}_{\beta \gamma} q_{\beta} q_{\gamma} \right)_{V-A}, \]
\[O_3 = (\bar{p}_{a \alpha} b_{\beta})_{V-A} \sum_{p'} (\bar{p}_{\beta} P^\prime_{\beta} p_{p'}), \]
\[O_4 = (\bar{p}_{a \alpha} b_{\beta})_{V-A} \sum_{p'} (\bar{p}_{\beta} P^\prime_{\beta} p_{p'}), \]
\[O_5 = (\bar{p}_{a \alpha} b_{\beta})_{V-A} \sum_{p'} (\bar{p}_{\beta} P^\prime_{\beta} p_{p'}), \]

where $q = (\bar{q}_i q_j)_{V-A} = q_i j_i (1 \pm \gamma_5) q_j$, α and β are color indices, $Q_{p'}$ is the electric charge of the quark p' in the unit of $|e|$, and p' denotes the active quark at the scale $\mu \sim \mathcal{O}(m_b)$; that is, $p' = u, d, c, s, b$.

To obtain the decay amplitudes, the remaining and also the most intricate work is how to calculate hadronic matrix elements $\langle PV | O_i | B^* \rangle$. With the factorization approach \cite{8–11} based on the color transparency mechanism \cite{12, 13}, in principle, the hadronic matrix element could be factorized as

\[\langle PV | O_i | B^* \rangle = a \langle P | f_\mu | B^* \rangle \langle V | f^\mu | 0 \rangle + b \langle P | f_\mu | B^* \rangle \langle V | f^\mu | 0 \rangle + c \langle PV | f_\mu | 0 \rangle \langle 0 | f^\mu | B^* \rangle. \]

Due to the unnecessary complexity of hadronic matrix element ($\langle PV | f_\mu | B^* \rangle$) and power suppression of annihilation contributions, we only consider one simple scenario where pseudoscalar meson picks up the spectator quark in B^* meson; that is, $a = 1, b = 0, c = 0$ in (3) for the moment. Two current matrix elements can be further parameterized by decay constants and transition form factors:

\[\langle V (p, \epsilon) | \bar{q}_1 y_0 q_2 | 0 \rangle = f_V m_V \epsilon_\mu, \]
\[\langle P (p_P) | \bar{q}_1 y_\mu b | \bar{B}^* (p_{B^*}, \eta) \rangle = \frac{2V(q^2)}{m_{B^*} + m_P} \cdot \epsilon_\mu \cdot \eta \cdot p^\mu_{P} P^\mu_{B^*}, \]
\[\langle P (p_P) | \bar{q}_1 y_\mu y_3 b | \bar{B}^* (p_{B^*}, \eta) \rangle = i2m_{B^*} A_0 (q^2) \frac{\eta \cdot q^\mu}{q^2} q^\mu + i A_2 (q^2) \cdot \frac{\eta \cdot q^\mu}{m_P + m_{B^*}} \left[(p_{B^*} + p_P)_{\mu} - \frac{(m_{B^*}^2 - m_P^2)}{q^2} q^\mu \right], \]

where ϵ and η are the polarization vector, f_V is the decay constant of vector meson, V and $A_{0,1,2}$ are transition form factors.
Advances in High Energy Physics

factors, \(q = p_B - p_p \), and the sign convention \(\epsilon^{0123} = 1 \). Even though some improved approaches, such as the QCD factorization [14, 15], the perturbative QCD scheme [16, 17], and the soft-collinear effective theory [18–21], are presented to evaluate higher order QCD corrections and reduce the renormalization scale dependence, the naive factorization (NF) approximation is a useful tool of theoretical estimation. Because there is no available experimental measurement for now, the NF approach is good enough to give a preliminary analysis, and so it is adopted in our evaluation.

With the above definitions, the hadronic matrix elements considered here can be decomposed into three scalar invariant amplitudes \(S_{1,2,3} \):

\[
\langle PV | O | B^* \rangle = \epsilon^{\mu \nu} \eta^{\nu} \left\{ S_1 g_{\mu \nu} + S_2 \left(\frac{p_B \cdot p_P}{m_B \cdot m_P} \right) + S_3 \left(\frac{2 p_B \cdot p_P}{m_B \cdot m_P} \right) \right\},
\]

where the amplitudes \(S_{1,2,3} \) describe the \(s, d \), and \(p \) wave contributions, respectively, and are explicitly written as

\[
S_1 = -i f_V (m_{B^*} + m_p) m_P A_1, \\
S_2 = -i 2 f_V m_{B^*} m_P \frac{m_P^2}{m_{B^*} + m_p}, \\
S_3 = +i 2 f_V m_{B^*} m_P \frac{V}{m_{B^*} + m_p}.
\]

Alternatively, one can choose the helicity amplitudes \(H_\lambda(\lambda = 0, +, -) \),

\[
H_0^{PV} = -S_1 x - S_2 \left(\chi^2 - 1 \right), \\
H_1^{PV} = -S_1 \pm S_3 \sqrt{\chi^2 - 1},
\]

with

\[
x = \frac{p_B \cdot p_P}{m_B \cdot m_P} = \frac{m_{B^*}^2 - m_p^2 + m_P^2}{2m_{B^*} m_P}.
\]

Now, with the formulae given above and the effective coefficients \(\alpha_i \) defined as

\[
\alpha_1 = C_1 + \frac{C_2}{N_c}, \\
\alpha_2 = C_2 + \frac{C_1}{N_c}, \\
\alpha_4 = C_4 + \frac{C_3}{N_c}, \\
\alpha_{4,EW} = C_{10} + \frac{C_9}{N_c},
\]

we present the amplitudes of nonleptonic two-body \(B^- \) decays as follows:

(i) For \(B^- \rightarrow D_s^0 \) decays (the spectator \(q = u, d \), and \(s \)),

\[
\begin{align*}
\alpha_0^R \left(B^- \rightarrow D_s^0 \right) &= H_0^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_1^R \left(B^- \rightarrow D_s^0 \right) &= H_1^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_{2,3}^R \left(B^- \rightarrow D_s^0 \right) &= H_{2,3}^{PV} V_{ub}^* V_{cd}^* \alpha_1,
\end{align*}
\]

(ii) For \(B^- \rightarrow D_s \) decays (the spectator \(q = d \) and \(V = p^- \) and \(K^* \)),

\[
\begin{align*}
\alpha_0^R \left(B^- \rightarrow D_s \right) &= H_0^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_1^R \left(B^- \rightarrow D_s \right) &= H_1^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_{2,3}^R \left(B^- \rightarrow D_s \right) &= H_{2,3}^{PV} V_{ub}^* V_{cd}^* \alpha_1.
\end{align*}
\]

(iii) For \(B^- \rightarrow \pi D^* \) decays,

\[
\begin{align*}
\alpha_0^R \left(B^- \rightarrow \pi D^* \right) &= H_0^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_1^R \left(B^- \rightarrow \pi D^* \right) &= H_1^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_2^R \left(B^- \rightarrow \pi D^* \right) &= H_2^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_3^R \left(B^- \rightarrow \pi D^* \right) &= H_3^{PV} V_{ub}^* V_{cd}^* \alpha_1.
\end{align*}
\]

(iv) For \(B^- \rightarrow K D^* \) decays,

\[
\begin{align*}
\alpha_0^R \left(B^- \rightarrow K D^* \right) &= H_0^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_1^R \left(B^- \rightarrow K D^* \right) &= H_1^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_2^R \left(B^- \rightarrow K D^* \right) &= H_2^{PV} V_{ub}^* V_{cd}^* \alpha_1, \\
\alpha_3^R \left(B^- \rightarrow K D^* \right) &= H_3^{PV} V_{ub}^* V_{cd}^* \alpha_1.
\end{align*}
\]
In the rest frame of B^* meson, the branching fraction can be written as
\[
\mathcal{B} \left(B^* \rightarrow PV \right) = \frac{G_F^2}{3 \cdot 16 \pi m_{B^*}^2} \frac{p_c}{\Gamma_{tot}(B^*)} \sum_\lambda \left| \mathcal{A}_\lambda \left(B^* \rightarrow PV \right) \right|^2,
\]
(16)
where the momentum of final states is
\[
p_c = \sqrt{\left(m_{B^*}^2 - (m_p + m_{\pi^0})^2 \right) \left(m_{B^*}^2 - (m_p - m_{\pi^0})^2 \right)} / 2m_{B^*}.
\]
(17)
The longitudinal, parallel, and perpendicular polarization fractions are defined as
\[
f_{L,\parallel,\perp} = \frac{\left| \mathcal{A}_{0,\parallel,\perp} \right|^2}{\left| \mathcal{A}_{\parallel} \right|^2 + \left| \mathcal{A}_{\perp} \right|^2},
\]
(18)
where \mathcal{A}_{\parallel} and \mathcal{A}_{\perp} are parallel and perpendicular amplitudes:
\[
\mathcal{A}_{\parallel,\perp} = \frac{1}{\sqrt{2}} \left(\mathcal{A}_{\perp,\parallel} \pm \mathcal{A}_{\parallel,\perp} \right).
\]
(19)

3. Numerical Results and Discussion

Firstly, we would like to clarify the input parameters used in our numerical evaluations. For the CKM matrix elements, we adopt the Wolfenstein parameterization [22] and choose the four parameters A, λ, ρ, and η as [23]
\[
\begin{align*}
A &= 0.810^{+0.018}_{-0.024}, \\
\lambda &= 0.22548^{+0.00068}_{-0.00034}, \\
\rho &= 0.1453^{+0.013}_{-0.0073}, \\
\eta &= 0.343^{+0.011}_{-0.012},
\end{align*}
\]
(20)
with $\rho = \rho(1 - \lambda^2/2)$ and $\eta = \eta(1 - \lambda^2/2)$.

The decay constants of light vector mesons are [24]
\[
\begin{align*}
f_p &= (216 \pm 3) \text{ MeV}, \\
f_{K^*} &= (220 \pm 5) \text{ MeV}.
\end{align*}
\]
(21)
For the decay constants of $D_s(\ast)$ mesons, we will take [25]
\[
\begin{align*}
f_{D_s} &= (252.2 \pm 22.3 \pm 4) \text{ MeV}, \\
f_{D_{s\ast}} &= (305.5 \pm 26.8 \pm 5) \text{ MeV},
\end{align*}
\]
(22)
which agree well with the results of the other QCD sum rules [26, 27] and lattice QCD with $N_f = 2$ [28].

Besides the decay constants, the $B^* \rightarrow P$ transition form factors are also essential inputs to estimate branching ratios for nonleptonic $B^* \rightarrow PV$ decay. In this paper, the Bauer-Stech-Wirbel (BSW) model [10] is employed to evaluate the form factors $A_1(0)$, $A_2(0)$, and $V(0)$, which could be written as the overlap integrals of wave functions of mesons [10]:
\[
\begin{align*}
V^{B^* \rightarrow P}(0) &= \frac{m_b - m_q}{m_{B^*} - m_P} f_{B^* \rightarrow P}, \\
A_1^{B^* \rightarrow P}(0) &= \frac{m_b + m_q}{m_{B^*} + m_P} f_{B^* \rightarrow P}, \\
A_2^{B^* \rightarrow P}(0) &= \frac{2m_{B^*}}{m_{B^*} - m_P} A_0^{B^* \rightarrow P}(0) - \frac{m_{B^*} + m_P}{m_{B^*} - m_P} A_1^{B^* \rightarrow P}(0), \\
A_0^{B^* \rightarrow P}(0) &= \int d^2 \vec{p}_\perp \int_0^1 d\xi \phi_P(\vec{p}_\perp, \xi) \sigma_\gamma \phi_{V^\ast}(\vec{p}_\perp, \xi), \\
j^{B^* \rightarrow P} &= \sqrt{2} \int d^2 \vec{p}_\perp \int_0^1 d\xi \phi_P(\vec{p}_\perp, \xi) i \sigma_\gamma \phi_{V^\ast}(\vec{p}_\perp, \xi),
\end{align*}
\]
where \vec{p}_\perp is the transverse quark momentum, $\sigma_{\gamma z}$ are the Pauli matrix acting on the spin indices of the decaying quark, and m_q represents the mass of nonspectator quark of pseudoscalar meson. With the meson wave function $\phi_{\gamma M}(\vec{p}_\perp, \xi)$ as solution of a relativistic scalar harmonic oscillator potential [10] and $\omega = 0.4$ GeV which determines the average transverse quark momentum through $\langle p^2_\perp \rangle = \omega^2$, we get the numerical results of the transition form factors summarized in Table 1.

In our following evaluation, these numbers and 15% of them are used as default inputs and uncertainties, respectively.

To evaluate the branching fractions, the total decay widths (or lifetimes) $\Gamma_{tot}(B^*)$ are necessary. However, there is no available experimental or theoretical information for $\Gamma_{tot}(B^*)$ until now. Because of the fact that the QED radiative processes $B^* \rightarrow By$ dominate the decays of B^* mesons, we will take the approximation $\Gamma_{tot}(B^*) = \Gamma(B^* \rightarrow By)$. The theoretical predictions on $\Gamma(B^* \rightarrow By)$ have been widely evaluated in various theoretical models, such as relativistic quark model [29, 30], QCD sum rules [31], light cone QCD sum rules [32], light front quark model [33], heavy quark effective theory with vector meson dominance hypothesis.

<table>
<thead>
<tr>
<th>Transition</th>
<th>$V(0)$</th>
<th>$A_1(0)$</th>
<th>$A_2(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^* \rightarrow D$</td>
<td>0.76</td>
<td>0.75</td>
<td>0.62</td>
</tr>
<tr>
<td>$B^* \rightarrow K$</td>
<td>0.41</td>
<td>0.42</td>
<td>0.35</td>
</tr>
<tr>
<td>$B^* \rightarrow \pi$</td>
<td>0.35</td>
<td>0.38</td>
<td>0.30</td>
</tr>
<tr>
<td>$B^*_1 \rightarrow D_i$</td>
<td>0.72</td>
<td>0.69</td>
<td>0.59</td>
</tr>
<tr>
<td>$B^*_1 \rightarrow K$</td>
<td>0.30</td>
<td>0.29</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Table 2: The CP-averaged branching fractions of nonleptonic B^* weak decays.

<table>
<thead>
<tr>
<th>Decay modes</th>
<th>Class</th>
<th>CKM factors</th>
<th>\mathcal{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^{} \rightarrow D^0D^{}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(3.9^{+0.2+1.3+1.0+0.7}_{-0.2-1.1-0.5-0.8}) \times 10^{-10}$</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow D^+D^{**}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(1.2^{+0.1+0.1+0.2}_{-0.1-0.1-0.1}) \times 10^{-9}$</td>
</tr>
<tr>
<td>$B^{**} \rightarrow D^0D^*$</td>
<td>T, P, and P_{ew}</td>
<td>λ^2</td>
<td>$(1.1^{+0.1+0.0+0.2}_{-0.1-0.1-0.1}) \times 10^{-8}$</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow D^0\rho^*$</td>
<td>T, P, and P_{ew}</td>
<td>λ^2</td>
<td>$(3.6^{+0.2+0.2+0.3}_{-0.2-0.2-0.2}) \times 10^{-8}$</td>
</tr>
<tr>
<td>$B \rightarrow D^0\rho^*$</td>
<td>T, P, and P_{ew}</td>
<td>λ^2</td>
<td>$(2.0^{+0.2+0.6+0.2}_{-0.2-0.6-0.2}) \times 10^{-8}$</td>
</tr>
<tr>
<td>$B^{} \rightarrow \rho^-D^{}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(7.6^{+0.4+0.1+0.2}_{-0.4-0.1-0.2}) \times 10^{-10}$</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow D^0\rho^*$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(1.4^{+0.1+0.1+0.2}_{-0.1-0.1-0.2}) \times 10^{-9}$</td>
</tr>
<tr>
<td>$B \rightarrow D^0\rho^*$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(1.3^{+0.1+0.1+0.2}_{-0.1-0.1-0.2}) \times 10^{-8}$</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow K^*D^{**}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(8.1^{+0.2+0.2+0.3}_{-0.2-0.2-0.2}) \times 10^{-11}$</td>
</tr>
<tr>
<td>$B \rightarrow K^*D^{**}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(7.4^{+0.2+0.1+0.2}_{-0.2-0.1-0.2}) \times 10^{-13}$</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow K^*D^{**}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(1.7^{+0.1+0.1+0.2}_{-0.1-0.1-0.2}) \times 10^{-11}$</td>
</tr>
<tr>
<td>$B \rightarrow K^*D^{**}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^3</td>
<td>$(2.3^{+0.2+0.2+0.3}_{-0.2-0.2-0.2}) \times 10^{-12}$</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow K^*D^{**}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^2</td>
<td>$(4.3^{+0.1+0.1+0.2}_{-0.1-0.1-0.2}) \times 10^{-12}$</td>
</tr>
<tr>
<td>$B \rightarrow K^*D^{**}$</td>
<td>T, P, and P_{ew}</td>
<td>λ^2</td>
<td>$(1.4^{+0.1+0.1+0.2}_{-0.1-0.1-0.2}) \times 10^{-13}$</td>
</tr>
</tbody>
</table>

Table 3: The polarization fractions f_1 and f_8 (in the units of percent).

<table>
<thead>
<tr>
<th>Decay modes</th>
<th>f_1</th>
<th>f_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \rightarrow D^0D^{**}$</td>
<td>54^{+2}_{-2}</td>
<td>40^{+2}_{-2}</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow D^0D^{**}$</td>
<td>54^{+2}_{-2}</td>
<td>40^{+2}_{-2}</td>
</tr>
<tr>
<td>$B^{**} \rightarrow D^0D^*$</td>
<td>52^{+1}_{-1}</td>
<td>43^{+2}_{-2}</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow D^0D^*$</td>
<td>52^{+1}_{-1}</td>
<td>43^{+2}_{-2}</td>
</tr>
<tr>
<td>$B \rightarrow D^0\rho^*$</td>
<td>54^{+2}_{-2}</td>
<td>40^{+2}_{-2}</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow D^0\rho^*$</td>
<td>52^{+2}_{-2}</td>
<td>42^{+2}_{-2}</td>
</tr>
<tr>
<td>$B \rightarrow D^+K^*$</td>
<td>85^{+1}_{-1}</td>
<td>13^{+1}_{-1}</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow D^+K^*$</td>
<td>85^{+1}_{-1}</td>
<td>13^{+1}_{-1}</td>
</tr>
<tr>
<td>$B \rightarrow D^\lambda\rho^*$</td>
<td>88^{+1}_{-1}</td>
<td>10^{+1}_{-1}</td>
</tr>
<tr>
<td>$\overline{B} \rightarrow D^\lambda\rho^*$</td>
<td>88^{+1}_{-1}</td>
<td>10^{+1}_{-1}</td>
</tr>
</tbody>
</table>

[34], or covariant model [35]. In this paper, the most recent results [33, 35]

\[
\Gamma\left(B^{**} \rightarrow B^+\gamma\right) = (468^{+73}_{-75}) \text{ eV}, \quad (24)
\]

\[
\Gamma\left(B^{*0} \rightarrow B^0\gamma\right) = (148 \pm 20) \text{ eV}, \quad (25)
\]

\[
\Gamma\left(B_s^{*0} \rightarrow B_s^0\gamma\right) = (68 \pm 17) \text{ eV}, \quad (26)
\]

which agree with the other theoretical results, are approximately treated as Γ_{tot} in our numerical estimate.

With the aforementioned values of input parameters and the theoretical formula, we present theoretical predictions for the observables of $\overline{B}^+ \rightarrow DD^{**}$, $D\rho$, DK^*, πD^*, and KD^* decays, in which only the (color-suppressed) tree induced decay modes are evaluated due to the fact that the branching fractions of loop induced decays are very small and hard to be measured soon. Our numerical results for the branching fractions and the polarization fractions are summarized in Tables 2 and 3. In Table 2, the first, second, and third theoretical errors are caused by uncertainties of the CKM parameters, hadronic parameters (decay constants and form factors), and total decay widths, respectively. From Tables 2 and 3, the following could be found:

(1) The hierarchy of branching fractions is clear. (i) The branching fractions of $\overline{B}^+ \rightarrow \pi D^*$ and KD^* decays are much smaller than the ones of $\overline{B}^+ \rightarrow DD^{**}$, $D\rho$, and DK^* decays, which is caused by the fact that the form factors of $\overline{B}^+ \rightarrow D$ transition are much larger than those of $B^* \rightarrow \pi$ and $B^* \rightarrow K$ transitions. (ii) For $\overline{B} \rightarrow DD^{**}$, $D\rho$, and DK^* decays, the hierarchy is induced by two factors: one is the CKM factor (see the third column of Table 2), and the other is $\Gamma_{\text{tot}}(B^{**}) > \Gamma_{\text{tot}}(B^{*0}) > \Gamma_{\text{tot}}(B_s^{*0})$ (see (24), (25), and (26)).

(2) Besides small form factors, the $\overline{B}^+ \rightarrow \pi D^*$, KD^* decays are either color suppressed or the CKM factors suppressed. So they have very small branching fractions (see Table 2) and are hardly measured soon. Most of the CKM-favored and tree-dominated $\overline{B} \rightarrow DD^{**}$, $D\rho$, and DK^* decays, enhanced by the relatively large $\overline{B} \rightarrow D$ transition form factors, have large branching fractions, $\geq 10^{-8}$, and thus could be measured in the near future. In particular, branching ratios for $\overline{B}_q \rightarrow D_q^\dagger T_{s}$ and $D_{q\rho}^* \rho$ decays can reach up to 10^{-8} and hence should be sought for with priority and firstly observed at the high statistics LHC and Belle-II experiments.

The numerical results and above analyses are based on the NF, in which the QCD corrections are not included. Fortunately, for the color-allowed tree amplitude α_1, the NF estimate is stable due to the relatively small QCD corrections [15]. For instance, in $B \rightarrow \pi\pi$ and $B \rightarrow D^* L$ decays, the results $\alpha_1(\pi\pi) = (1.020)_{LO} + (0.018 + 0.018i)_{NF} [14]$ and $\alpha_1(D^* L) = (1.025)_{LO} + (0.019 + 0.013i)_{NF}$ [15] indicate clearly that the $\theta(\alpha_1)$ correction is only about 2% and thus trivial numerically. For the color-suppressed decay modes listed in Table 2, even though the NF estimates would suffer significant $\theta(\alpha_1)$ correction (about 46% in $B \rightarrow \pi\pi$ decays, e.g., [36]), they still escape
the experimental scope due to their small branching fractions $<10^{-9}$ and thus will not be discussed further. In the following analyses, we will pay our attention only to the color allowed tree-dominated $\bar{B}^* \to D\bar{D}^\prime, D\rho,$ and DK^* decays.

(3) For the $B^- \to D^0 D_s^- (0)\bar{s}$ and $B^0 \to D_s^0 D_s^- (0)$ decays, the $SU(3)$ flavor symmetry implies the relations

$$\mathcal{M}(B^- \to D_s^0 D_s^-) = \mathcal{M}(\bar{B}_s^0 \to D_s^+ D_s^-),$$

$$\mathcal{M}(B^- \to D_s^0 D_s^-) = \mathcal{M}(\bar{B}_s^0 \to D_s^+ D_s^-).$$

Further considering the theoretical prediction $\Gamma(B_s^+ \to B_s^0 \gamma)/\Gamma(B_s^+ \to B_s^0 \rho) \approx 3$ (see (24) and (25)) and assumption $\Gamma_{\text{iso}}(B_s^+) = \Gamma(B_s^+ \to B_s^0 \gamma)$, one may find the ratios

$$R_{d\bar{s}} = \frac{\Gamma(B_s^+ \to D_s^0 D_s^-)}{\Gamma(B_s^+ \to D_s^+ D_s^-)} \approx \frac{\Gamma(B_s^+ \to B_s^0 \gamma)}{\Gamma(B_s^+ \to B_s^0 \rho)} \approx 3,$$

$$R_{d\bar{s}^0} = \frac{\Gamma(B_s^+ \to D_s^0 D_s^-)}{\Gamma(B_s^+ \to D_s^+ D_s^-)} = \frac{\Gamma(B_s^+ \to B_s^0 \gamma)}{\Gamma(B_s^+ \to B_s^0 \rho)}.$$ (29)

which are satisfied in our numerical evaluations. Experimentally, the first relation (28) is hopefully to be tested soon due to the large branching fractions.

For the potentially detectable $\bar{B}_s^0 \to D\bar{D}^\prime, D\rho,$ and DK^* decay modes, with branching fractions $\geq 10^{-9}$, the U-spin symmetry implies relations

$$\mathcal{M}(\bar{B}_s^0 \to D^+ D^-) = \mathcal{M}(\bar{B}_s^0 \to D_s^+ D_s^-),$$

$$\mathcal{M}(\bar{B}_s^0 \to D^+ D^-) = \mathcal{M}(\bar{B}_s^0 \to D_s^+ D_s^-),$$

$$\mathcal{M}(\bar{B}_s^0 \to D^* K^-) = \mathcal{M}(\bar{B}_s^0 \to D_s^* K^-),$$

$$\mathcal{M}(\bar{B}_s^0 \to D^* \rho^-) = \mathcal{M}(\bar{B}_s^0 \to D_s^* \rho^-).$$

As similar to $R_{d\bar{s}^0}$, one also could get the ratio and relation

$$R_{ds} = \frac{\Gamma(\bar{B}_s^0 \to D^* K^-)}{\Gamma(\bar{B}_s^0 \to D^* \rho^-)} = \frac{\Gamma(\bar{B}_s^0 \to B_s^0 \gamma)}{\Gamma(\bar{B}_s^0 \to B_s^0 \rho)} \approx 2,$$

which is also satisfied in our numerical evaluation. So, it is obvious that such ratios, $R_{d\bar{s}}$ and R_{ds}, are useful for probing τ_{B^s}/τ_{B^*} and $\tau_{B^s}/\tau_{B^*}^0$, respectively, and further testing the theoretical predictions of $\Gamma(B_s^+ \to B_s^0 \gamma)/\Gamma(B_s^0 \to B_s^0 \rho)$ and $\Gamma(B_s^0 \to B_s^0 \gamma)/\Gamma(B_s^0 \to B_s^0 \rho)$ in various models, such as the results in [29–35].

(4) Besides branching fraction, the polarization fractions $f_{L\bar{A}}^L$ are also important observables. For the potentially detectable decay modes with branching fractions $\geq 10^{-9}$, our numerical results of $f_{L\bar{A}}^L$ are summarized in Table 3. For the helicity amplitudes λ^L, the formal hierarchy pattern

$$\lambda_A : \lambda_- : \lambda_+ = 1 : \frac{\Lambda_{\text{QCD}}}{m_b} : \left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)^2$$

is naively expected. Hence, $\bar{B}^+ \to PV$ decays are generally dominated by the longitudinal polarization state and satisfy $f_{L\bar{A}} \sim 1 - 1/m_b^2$. [37]. For $\bar{B}^+ \to DV (V = K^*, \rho)$ decays, in the heavy quark limit, the helicity amplitudes $H^{L\bar{A}}$, given by (9), could be simplified as

$$H_{PV}^0 = i f_V \left[\frac{(m_{B^*} - m_D) (m_{B^*} + m_D)}{2m_{B^*}} A_1 \right],$$

$$+ \frac{(m_{B^*} + m_D) (m_{B^*} - m_D)^2}{2m_{B^*}} A_2 \right],$$

$$H_{PV}^+ = i f_V \left[\frac{(m_{B^*} - m_D) (m_{B^*} + m_D)}{2m_{B^*}} A_1 \right],$$

$$+ \frac{2m_{B^*} m_V}{m_{B^*} - m_D} \right],$$

The transversity amplitudes could be gotten easily through (19). Obviously, due to the helicity suppression factor $2m_{B^*} m_V/(m_{B^*}^2 - m_D^2) \sim 2m_{B^*} m_V \sim \Lambda_{\text{QCD}}/m_b$, the relation of (32) is roughly fulfilled. As a result, the longitudinal polarization fractions of $\bar{B}^+ \to DK^*$ and $D\rho$ decays are very large (see Table 3 for numerical results).

It should be noted that the above analyses and (33) are based on the case of $m_V \ll m_D$, and thus possibly no longer satisfied by $\bar{B}^+ \to D\bar{D}^\prime$ decays because of the unnegligible vector mass m_V. In fact, for the $\bar{B}^+ \to D\bar{D}^\prime$ decays, (9) are simplified as

$$H_{PV}^0 = i f_D \left[\frac{(m_{B^*} + m_D) m_{B^*}}{2} A_1 \right],$$

$$+ \frac{m_{B^*}}{2(m_{B^*} + m_D)} (m_{B^*}^2 - 4m_D^2) A_2 \left],$$

$$H_{PV}^+ = i f_D \left[\frac{(m_{B^*} + m_D) m_{B^*}}{2} A_1 \right],$$

$$+ \frac{2m_{D\rho}}{2(m_{B^*} + m_D) m_{B^*} \sqrt{m_{B^*}^2 - 4m_D^2} V \cdot 2m_{D\rho}^2}{m_{B^*}^2}.$$
in which, due to \((m^2_{D^*} - m^2_D) \ll m^2_B\), the approximation
\(x = (m^2_{D^*} - m^2_D + m^2_D)/2m_D m_{D^*} = m^2_D/2m_{D^*}\) is used. Because the so-called helicity suppression factor
\(2m_{D^*}/m_D \sim 0.8\) is not small, which is different from the case of \(B^0 \to DV\) decays, it could be easily found that the relation of (32) does not follow. Further considering that \(H_{nV}\) are dominated by the term of \(A_1\) in (35) due to its large coefficient, the relation
\(f_L(DD^*) \sim f_L(DD^*) \gg f_L(DD^*)\) could be easily gotten. Above analyses and findings are confirmed by our numerical results in Table 3, which will be tested by future experiments.

As known, there are many interesting phenomena in B meson decays, so it is worth to explore the possible correlation between B and B* decays. Taking \(\bar{B}^0 \to D^+ \rho^-\) and \(\bar{B}^0 \to D^{*+} \rho^-\) decays as examples, we find that the expressions of their helicity amplitudes (the former one has been given by (33)) are similar to each other except for the replacements \(\bar{B}^0 \to \bar{B}^0\) and \(D \leftrightarrow D^*\) everywhere in (33). As a result, our analyses in item (4) are roughly suitable for \(\bar{B}^0 \to D^{*+} \rho^-\) decay, and the relation
\[f_L (\bar{B}^0 \to D^+ \rho^-) = f_L (\bar{B}^0 \to D^{*+} \rho^-) \] (36)
is generally expected. Interestingly, our prediction
\[f_L^{NSR}(\bar{B}^0 \to D^+ \rho^-) = (88 \pm 1)\% \] is consistent with the result
\[f_L^{WSR}(\bar{B}^0 \to D^{*+} \rho^-) = 87\% \] [38], which is in a good agreement with the experimental data
\[f_L^{exp}(\bar{B}^0 \to D^{*+} \rho^-) = (88.5 \pm 1.6 \pm 1.2)\% \] [39]. The relation equation (36) follows. In addition, the similar correlation as (36) also exists in the other B* and corresponding B decays.

4. Summary

In this paper, motivated by the experiments of heavy flavor physics at the running LHC and forthcoming SuperKEKB/Belle-II, the nonleptonic \(\bar{B} \to D\bar{D}^*, D\rho, D\bar{K}^*, \pi D^*,\) and \(K\bar{D}^*\) weak decay modes are evaluated with factorization approach, in which the transition form factors are calculated with the BSW model and the approximation \(\Gamma_{\bar{B}}(B^*) = \Gamma(B^* \to B\gamma)\) is used to evaluate the branching fractions. It is found that (i) there are some obvious hierarchies among branching fractions, in which the \(\bar{B}^0 \to D\bar{D}^*_q\) and \(D\rho\) decays have large branching fractions \(\sim 10^{-8}\) and hence should be sought for with priority at LHC and Belle-II experiments. (ii) With the implication of \(SU(3)\) (or U-spin) flavor symmetry, some useful ratios, \(R_{D\rho}\) and \(R_{D\pi}\), are suggested to be verified experimentally. (iii) The \(\bar{B}^0 \to DK^*\) and \(DP\) decays are dominated by the longitudinal polarization states; numerically, \(f_L \sim [80\%, 90\%]\). While the parallel polarization fractions of \(\bar{B}^0 \to DD^*\) decays are comparable with the longitudinal ones; numerically, \(f_L : f_L = 5 : 4\).

In addition, comparing with \(B \to VV\) decays, the relation
\[f_L (\bar{B}^0 \to DV) = f_L (\bar{B}^0 \to DV) \] is generally expected. These results and findings are waiting for confirmation from future LHC and Belle-II experiments.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grants nos. 11475055, 11275057, U1232101, and U2032103). Qin Chang is also supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant no. 201317), the Program for Science and Technology Innovation Talents in Universities of Henan Province (Grant no. 14HASTIT036), and the Funding Scheme for Young Backbone Teachers of Universities in Henan Province (Grant no. 2013GGJ5-058).

References

Advances in High Energy Physics

Submit your manuscripts at
http://www.hindawi.com