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For the first time the Schrödinger equation with more general exponential cosine screened Coulomb potential in the presence of
external electric field is solved approximately and analytically by applying an ansatz to eigenfunction of correspondingHamiltonian
and then energy values and wave functions are obtained. Since this potential turns into four different potential cases when
considering different cases of the parameters in the potential, energies and eigenfunctions for these four different potentials are
already to be found by solving Schrödinger equation withMGECSC potential. Energy values and wave functions obtained by using
different values of potential parameters for each of these four different potential are compared with the results of other studies.
Since the obtained general solutions in this study have been found in the presence of external electric field, the external electric
field effects on systems with the mentioned four different potentials are also easily investigated. One of advantages of the present
results and method is that if external electric field is equal to zero, general mathematical structure of corresponding equations does
not change and then electric field effect can be eliminated. The presence or absence of electric field does not prevent solving the
Schrödinger equation analytically.

1. Introduction

Exponential Coulomb potentials with and without cosine
term are used to investigate important interactions in various
fields of physics such as plasma physics, nuclear physics,
condensed matter physics, and atomic physics. Exponential
Coulomb (EC) potential also called Screened Coulomb (SC)
potential is expressed as

𝑉
1
(𝑟) = −

𝐴

𝑟
𝑒
−𝛼
1
𝑟
, (1)

where 𝛼
1
is screening parameter and 𝐴 is strength coupling

constant. EC potential that is also known as Yukawa-type
potential acts between two particles and this is well known in
nuclear physics as dominant central part of nucleon-nucleon
interaction [1]. However, this potential is considered as
Thomas-Fermi potential in applications of condensed matter
and atomic physics [2, 3]. In addition, EC (or SC) poten-
tial is the well-known Debye-Hückel potential for plasma
physics applications and used to study Debye plasma [4–20].

For some specific cases of potential screening parameters,
exponential cosine screened Coulomb potential (ECSC) (or
generalized exponential cosine screened Coulomb potential)
can be reduced Yukawa and Pure Coulomb (PC) potentials
and it has the following form:

𝑉
2
(𝑟) = −

𝐵

𝑟
𝑒
−𝛼
2
𝑟 Cos (𝛽

2
𝑟) , (2)

where 𝛼
2
is screening parameter and 𝐵 is constant. This

potential can be also used for some specific cases of poten-
tial screening parameters in studies of nuclear and atomic
physics. But ECSC potential is considered to model quantum
plasma rather than using in studies of nuclear and atomic
physics. Investigation of relativistic and nonrelativistic sys-
tems including ECSC potential is very difficult analytically
due to cosine term in the potential and used methods up
to now in order to obtain corresponding solutions have
been performed numerically. The Schrödinger equation with
ECSC potential was solved numerically within framework
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Ritz variation method in considering hydrogenic wave func-
tion as a trial wave function [21]. As an alternative method,
the same problem has been examined numerically using
asymptotic iteration method (AIM) and only bound states
energies could be obtained. The numerical methods such
as SUSY-perturbation, perturbation, variational, and hyper-
virial Pade scheme method have been applied on mentioned
problem [22, 23]. The more general exponential cosine
screenedCoulomb (MGECSC) potential has been considered
to model Debye and quantum plasma for the first time [24].
MGECSC potential has more complex form compared to EC,
PC and ECSC potentials and to obtain its numerical solutions
ismore difficult than that of EC, PC and ECSC potentials.The
MGECSC potential is expressed in the following form:

𝑉
3
(𝑟) = −

𝐶

𝑟
(1 + 𝑏𝑟) 𝑒

−𝛼
3
𝑟 Cos (𝛽

3
𝑟) , (3)

where 𝛼
3
, 𝛽
3
, and 𝑏 are screening parameters and 𝐶 is a

constant. For the first time in [24], this potential has been
suggested to investigate plasma screening effects on hydrogen
atom in Debye and quantum plasmas and bound states
energies of hydrogen atom have been obtained numerically
within framework AIM. However, in [24], it was not possible
to find wave functions of hydrogen atom in plasmas due
to the nature of using numerical AIM. There are important
differences between all abovementioned potentials in terms
of screening effects exhibited by potential parameters. To put
it more clearly, ECSC potential exhibits a stronger screening
effect than that of SC and PC potentials because it contains
cosine term in the structure. It should be pointed out that
SC potential can be reduced to PC potential under suitable
conditions [25].TheMGECSCpotential used in present study
is more operable and important according to SC, PC, and
ECSCpotentials in both the physical andmathematical sense,
one of the justifications in which is that MGECSC potential
exhibits stronger screening effect than that of SC, PC, and
ECSC potential. Note that mentioned stronger screening
effect arises fromboth cosine term and 𝑏 screening parameter
in the MGECSC potential. In addition to this, it should be
particularly noted that since it has a more complex form than
other potentials serving the same purpose,more different and
specific methods are needed in order to be able to investigate
systems with MGECSC potential. One of the advantages of
MGECSC potential is also that this can be reduced SC, PC,
and ECSC potentials in consideration of different cases of
screening parameters in the structure. By this means, when
examining relativistic and nonrelativistic systems including
MGECSC potential, solutions of other systems with SC, PC,
and ECSC potential would also be obtained already. It is an
important point to mention that since the Schrödinger equa-
tion including MGECSC potential in presence of external
electric field has been considered in present study, solutions
obtained in here include all results of studies with SC, PC, and
ECSC potential in presence and absence of external electric
field. The most crucial point of present study is that for the
first time the Schrödinger equation with MGECSC potential
in presence and absence of external electric field has been
solved analytically by applying an ansatz to eigenfunction

of corresponding Hamiltonian. Applying an ansatz to cor-
responding eigenfunction is operable method for relativistic
and nonrelativistic quantummechanical systemswith certain
central potentials [26–31].

The paper is organized as follows. In Section 2, in the
presence of external electric field, the Schrödinger equation
withMGECSCpotential is briefly outlined and applied ansatz
to corresponding eigenfunction is introduced. Later, bound
states and eigenfunctions are obtained. In Section 3, the
obtained results are given and discussed. Section 4 is assigned
to summary and conclusion of present study.

2. The Schrödinger Equation with
MGECSC Potential in Presence of
External Electric Field

If the MGECSC potential form is considered for hydrogen-
like atoms, the MGECSC potential in this case has the
following form:

𝑉 (𝑟) = −
𝑍𝑒
2

𝑟
(1 + 𝑏𝑟) 𝑒

−𝑟/𝜆 Cos(𝑐𝑟
𝜆
) , (4)

where 𝑏, 𝑐, and 𝜆 are the screening parameters of MGECSC
potential. In order to use MGECSC potential in plasma
physics, for example, if this potential will be used to model
Debye plasma, 𝜆 is taken into consideration as Debye
screening parameter.When applying external electric field on
hydrogen atom in theMGECSC potential, the corresponding
radial Schrödinger equation is established in the following
form:
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ℓ
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(5)

where ℓ(ℓ + 1)/𝑟
2 is centrifugal potential and 𝐹 is external

electric field and 𝑒𝐹𝑟 is contribution of external electric field
on system. Here, it should be noted that 𝜃 is angle between
𝐹 and 𝑟 and external electric field contribution is obtained as
𝐹𝑟Cos(𝜃) by using �⃗� ⋅ ⃗𝑟. In (5), 𝐹𝑟 means 𝜃 = 0 case. When
using atomic units𝑚 = ℎ = 𝑒 = 1 as well as𝑍 = 1, (5) is given
by
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2.1. Approximate Analytical Solutions. The part with cosine
term of (6) can be expanded in the power series of 𝑟 up to
the second term. Therefore, the part with cosine term of (6)
becomes

2 (1 + 𝑏𝑟) 𝑒
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𝜆
)
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(7)

Inserting (7) into (6),
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is obtained, where ansatzs are in the following form:

𝜀 = 2𝐸
ℓ
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2
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To solve (8), applying an ansatz to the radial wave function
𝑅
ℓ
(𝑟) should be performed as follows:

𝑅
ℓ
(𝑟) = exp [𝛽𝑟 +

𝛾

2
𝑟
2
]

∞

∑

𝑛=0

𝑎
𝑛
𝑟
𝑛+𝛿
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where 𝛽, 𝛾, and 𝛿 are constants that will be determined later.
If (12) is inserted into (8), (8) becomes
∞
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where 𝐴
𝑛
, 𝐵
𝑛
, and 𝐶

𝑛
are given by
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2𝛽𝛾 = −𝛼
1
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𝛾
2
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Equations (17)-(18) are constraint conditions which are used
to obtain (13). Using (13),

(𝑎
0
𝐵
0
+ 𝑎
1
𝐶
1
) 𝑟
𝛿−1

+ 𝑎
0
𝐶
0
𝑟
𝛿−2

+

∞

∑

𝑛=0

(𝑎
𝑛
𝐴
𝑛
+ 𝑏
𝑛+1

𝐵
𝑛+1

+ 𝑎
𝑛+2

𝐶
𝑛+2

) 𝑟
𝑛+𝛿

= 0

(19)

is obtained. Considering applied ansatz to the radial wave
function 𝑅

ℓ
(𝑟), it is clear that 𝑎

0
̸= 0; otherwise bound states

do not consist in the quantum system. Therefore, 𝐶
0
must be

equal to zero in accordance with

𝐶
0
= 𝛿 (𝛿 − 1) − ℓ (ℓ + 1) = 0. (20)

Given (20) leads to attaining 𝛿 parameter as 𝛿 = ℓ + 1 that is
physically acceptable solution. Moreover, in order to be able
to confirm (19), it should be implemented that

𝑎
0
𝐵
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1
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(21)

Serial in (12) should be convergent due to fact that (12) must
be physically acceptable solution. So, if it is considered that
𝑝th nonvanishing coefficient is 𝑎

𝑝
̸= 0, it is clear that 𝑎

𝑝+1
=

𝑎
𝑝+2

= ⋅ ⋅ ⋅ = 0. Then, it is clear that 𝐴
𝑝
= 0. Namely, it is

𝐴
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2
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If the above form of 𝐴
𝑝
is considered, bound energy eigen-

values can be obtained. It is noted that𝐴
𝑛
, 𝐵
𝑛
, and𝐶

𝑛
should

satisfy the following determinant relation for a nontrivial
solution:
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= 0. (23)

In order to generalize this method and thus obtain bound
states and wave functions of hydrogen atom in MGECSC
potential in presence of external electric field, which is used
as a model in the present study, the approximate analytical
solutions are presented for the cases 𝑝 = 0,1 as follows.

If 𝑝 = 0, it is true according to (23) that det |𝐵
0
| = 0 and

𝐵
0
= 0. In that case,

𝐵
0
= 2𝛽𝛿 + 2 = 0 ⇒ 𝛽 =

−1

ℓ + 1
. (24)

The corresponding energy values are calculated using (22),
but it should not be ruled out that restrictions created in (14)–
(18) on the parameters should be taken into account when
calculating corresponding energy values.

The corresponding eigenfunction for 𝑝 = 0 is given by
using (12) as

𝑅
0

ℓ
(𝑟) = 𝑎

0
exp [𝛽𝑟 +

𝛾

2
𝑟
2
] 𝑟
𝛿
, (25)

where 𝑎
0
is normalization constant.

When 𝑝 = 1, considering (23), it is obtained that
det 
𝐵
0
𝐶
1

𝐴
0
𝐵
1


= 0. Due to this determinant relation, a restriction

on the parameters is obtained as

[2 + (6 + 4ℓ) 𝛽 + (3 + 5ℓ + 2ℓ
2
) (𝛽
2
− 𝛾) − 𝜀 (1 + ℓ)] = 0.

(26)
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If this and restrictions in (17) and (18) are considered together
with (22), corresponding energy values are obtained. The
corresponding eigenfunction for 𝑝 = 1 is given by using (12)
as

𝑅
1

ℓ
(𝑟) = exp [𝛽𝑟 +

𝛾

2
𝑟
2
] (𝑎
0
+ 𝑎
1
𝑟) 𝑟
𝛿
, (27)

where 𝑎
1
can be calculated by using normalization condition

together with obtained 𝑎
0
from (25). In order to obtain

corresponding energy values for other 𝑝 = 2, 3, . . ., the same
way applied above should be repeated. More clearly, if 𝑎

𝑝
̸= 0,

𝑎
𝑝+1

= 𝑎
𝑝+2

= ⋅ ⋅ ⋅ = 0. In this case, the energy eigenvalues 𝐸
𝑝

are obtained by using (22). But, it should be pointed out that
when calculating energy eigenvalues 𝐸

𝑝
, there are two issues

to be considered: for corresponding parameters, restrictions
created in (17)-(18) and constraints that would be obtained
from (23). So, the corresponding eigenfunction for 𝑝th case
is

𝑅
𝑝

ℓ
(𝑟) = exp [𝛽𝑟 +

𝛾

2
𝑟
2
] (𝑎
0
+ 𝑎
1
𝑟 + ⋅ ⋅ ⋅ + 𝑎

𝑝
𝑟
𝑝
) 𝑟
𝛿
, (28)

where 𝑎 terms can be calculated using normalization condi-
tion.

3. Results and Discussions

3.1. Case of 𝑏 = 𝑐 = 0. Since approximation in (7) is
used in order to bound states and eigenfunctions of quantum
systems with MGECSC potential in presence of external
electric field, new form of MGECSC potential obtained by
using mentioned approximation is given by

𝑉 (𝑟) ≅ (−𝑏 +
1

𝜆
) −

1

𝑟
+ (

−1 + 𝑐
2
+ 2𝑏𝜆

2𝜆2
) 𝑟

+ (
1 − 3𝑐

2
− 3𝑏𝜆 + 3𝑏𝑐

2
𝜆

6𝜆3
) 𝑟
2
.

(29)

As mentioned previously, MGECSC potential reduces to
SC potential when using 𝑏 = 𝑐 = 0 case, which is
considered to model hydrogen atom in Debye plasma in
plasma physics.The corresponding Schrödinger equation has
been solved analytically by applying ansatz to eigenfunction
and using approximation in (29), and the energy eigenvalues
of 1𝑠 and 2𝑝 quantum states have been obtained for 𝜆 =

70, 100, 150, 200 in Rydberg units, as can be seen in Table 1.
In 𝑏 = 𝑐 = 0 case, in Table 1 comparison of 1𝑠 and 2𝑝

energy eigenvalues in the present study with results of [21, 32]
in Rydberg units is shown. The obtained results in Table 1
of [21, 32] were calculated numerically and when comparing
the results of [21, 32] with the present results obtained by
using analytical method, it is seen that there is a very good
agreement between each of the three results. However, it
should be pointed out that energy eigenvalues obtained in the
present study with results of [21, 32] become more consistent
in larger values of 𝜆 screening parameters as can be seen
in Table 1, reason of which can be understood better when
investigating Figures 1(a) and 1(b).When 𝜆 = 10 and 𝜆 = 200,
in 𝑏 = 𝑐 = 0 case, comparison of MGECSC potential 𝑉(𝑟)

Table 1: When 𝑏 = 𝑐 = 0, comparison of 1𝑠 and 2𝑝 energy
eigenvalues obtained in the present study with results of [21, 32] for
different 𝜆 parameters in Rydberg units.

𝜆 [21] [32] Present results
1𝑠

70 −0.971731 −0.971732 −0.971733

100 −0.980149 −0.980149 −0.980150

150 −0.986733 −0.986733 −0.986733

200 −0.990037 −0.990037 −0.990037

2𝑝

70 −0.222421 −0.222421 −0.222444

100 −0.230490 −0.230490 −0.230498

150 −0.236886 −0.236886 −0.236888

200 −0.240123 −0.240124 −0.240125

and 𝑉(𝑟) potential in (29) obtained by using corresponding
approximation on MGECSC potential is seen in Figures 1(a)
and 1(b), respectively. As can be also seen in Figures 1(a) and
1(b), while a very good agreement has been obtained between
𝑉(𝑟) and 𝑉(𝑟) in case of 𝜆 = 200, the same agreement
between potential profiles for case of 𝜆 = 10 can not be
obtained, which is the cause of trivial difference between
obtained energy values in the present study with results of
[21, 32].

3.2. Case of 𝑏 = 0, 𝑐 = 1. In 𝑏 = 0, 𝑐 = 1 case,
MGECSC potential reduces to ECSC potential which is used
to model hydrogen atom in quantum plasma in plasma
physics. The corresponding Schrödinger equation has been
solved analytically by applying ansatz to eigenfunction and
using corresponding approximation, and the energy eigen-
values of 1𝑠 quantum state have been obtained for 1/𝜆 =

0.01, 0.02, 0.03, 0.04 and 0.05 in Rydberg units, as can be
seen in Table 2. In 𝑏 = 𝑐 = 0 case, in Table 2 comparison
of ground state energy eigenvalues obtained in the present
study with results of [23, 24, 33] in atomic units has been
shown. However, it should be pointed out that ground state
energy eigenvalues obtained in the present study with results
of [23, 24, 33] becomemore consistent in smaller values of 1/𝜆
as can be seen in Table 2, reason of which can be understood
better when investigating Figures 2(a) and 2(b). When 𝜆 =

15 and 𝜆 = 100, in 𝑏 = 0, 𝑐 = 1 case, comparison of
MGECSC potential 𝑉(𝑟) and potential in (29) obtained by
using corresponding approximation on MGECSC potential
is seen in Figures 2(a) and 2(b), respectively. While a very
good agreement has been obtained between 𝑉(𝑟) and 𝑉(𝑟)
in case of 𝜆 = 100, the same agreement between potential
profiles for case of 𝜆 = 15 can not be obtained as can be
also seen in Figures 2(a) and 2(b), which is the cause of trivial
difference shown in Table 2 between energy values obtained
in the present study with results of [23, 24, 33].

3.3. Case of 𝑏 ≠ 0, 𝑐 = 0. When 𝑏 ̸= 0, 𝑐 = 0 case inMGECSC
potential is considered, it is reduced to the following form:

𝑉 (𝑟) = −
𝑍𝑒
2

𝑟
(1 + 𝑏𝑟) 𝑒

−𝑟/𝜆
, (30)
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Figure 1: (a) Comparison of 𝑉(𝑟) and 𝑉(𝑟) potentials in case of 𝑏 = 𝑐 = 0 and 𝜆 = 10 (in arbitrary units). (b) Comparison of 𝑉(𝑟) and 𝑉(𝑟)
potentials in case of 𝑏 = 𝑐 = 0 and 𝜆 = 200 (in arbitrary units).

Table 2: When 𝑏 = 0, 𝑐 = 1, comparison of 1𝑠 energy eigenvalues
obtained in the present study with results of [23, 24, 33] for different
1/𝜆 in atomic units.

1𝑠

1/𝜆 [23] [24] [33] Present results
0.01 −0.490000 −0.490000 −0.490001 −0.490001

0.02 −0.480007 −0.480007 −0.480008 −0.480004

0.03 −0.470025 −0.470026 −0.470026 −0.470014

0.04 −0.460060 −0.460060 −0.460061 −0.460032

0.05 −0.450117 −0.450117 −0.450117 −0.450063

where 𝜆 is considered as Debye screening parameter if
hydrogen atom will be investigated in Debye plasma. In 𝑏 ̸=

0, 𝑐 = 0 case, in Table 3 effect of 𝑏 screening parameter
(𝑏 = 0.1, 0.2, 0.3, 0.5 and 0.7) on the energy eigenvalues
for two different quantum states (1𝑠 and 2𝑝) at 𝜆 = 200

is shown. There is also a very good agreement between the
present results and numerical results obtained by using AIM
in [24]. But it should be mentioned that smaller 𝑏 screening
parameter leads to getting a better consistency between
numerical and analytical results as can be seen in Table 3.
In order to analyze influence of 𝑏 screening parameter on
𝑉(𝑟) and 𝑉(𝑟), in other words, to examine trivial differences
between numerical and analytical results, Figures 3(a) and
3(b) can be investigated. However, it is seen that although
effect of 𝑏 screening parameter on used approximation in
the present study is less than that of 𝜆 screening parameter,
this effect of 𝑏 screening parameter changes analytically
obtained results in the present study. More clearly, SC, ECSC,
and MGECSC potentials and the potential in (30) are more
effective in the shorter range. However, if Figures 3(a) and
3(b) are plotted in the larger range, the difference between
profiles of 𝑉(𝑟) and 𝑉(𝑟) can be clearly seen. In this manner,
the energies of ground state are obtained more precisely

Table 3: When 𝑐 = 0, 𝑏 ̸= 0, and 𝜆 = 200, comparison of 1𝑠 and 2𝑝
energy eigenvalues obtained in the present study with results of [24]
for different 𝑏 screening parameters in Rydberg units.

𝑏
1𝑠 2𝑝

[24] Present results [24] Present results
0.1 −1.188545 −1.188540 −0.435223 −0.435143

0.2 −1.387055 −1.387050 −0.630376 −0.630170

0.3 −1.585566 −1.585550 −0.825578 −0.825211

0.5 −1.982592 −1.982570 −1.216118 −1.215330

0.7 −2.379624 −2.379580 −1.606823 −1.605500

compared to that of other states, due to the approximation
in (7).

3.4. Case of 𝑏 ≠ 0, 𝑐 ≠ 0. The 𝑏 ̸= 0, 𝑐 ̸= 0 case is
the MGECSC potential, which is also used to investigate
interaction of hydrogen atom in quantum plasma in plasma
physics. In 𝑏 ̸= 0, 𝑐 = 1 case and 𝜆 = 200, energy
eigenvalues of 1𝑠 and 2𝑝 quantum states for 0, 0.1, 0.2, 0.3,
and 0.4 values of 𝑏 screening parameter have been calculated
in Rydberg units and they have been shown in Table 4. In
Table 4, comparison of energy values obtained in the present
study with results of [24] for different 𝑏 screening parameters
in Rydberg units is seen. Moreover, the consistency between
the results in the present study and results of [24] is better
in smaller values of 𝑏 screening parameter as can be seen in
Table 4. However, energy values obtained in Table 4 have also
a very good agreement with results of [24]. When 𝑐 = 1,
in order to examine screening effect of 𝑏 parameter on 𝑉(𝑟)
and 𝑉(𝑟), Figures 4(a) and 4(b) can be investigated. This
investigation enables examining trivial difference between
numerical results of other studies and analytical results in
the present study as previously emphasized. Smaller values
of 𝑏 screening parameter cause obtaining a better agreement
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Figure 2: (a) Comparison of 𝑉(𝑟) and 𝑉(𝑟) potentials in case of 𝑏 = 0, 𝑐 = 1, and 𝜆 = 15 (in arbitrary units). (b) Comparison of 𝑉(𝑟) and
𝑉(𝑟) potentials in case of 𝑏 = 0, 𝑐 = 1, and 𝜆 = 100 (in arbitrary units).
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Figure 3: (a) Comparison of 𝑉(𝑟) and 𝑉(𝑟) potentials in case of 𝑏 = 0.1, 𝑐 = 0, and 𝜆 = 200 (in arbitrary units). (b) Comparison of 𝑉(𝑟) and
𝑉(𝑟) potentials in case of 𝑏 = 0.7, 𝑐 = 0, and 𝜆 = 200 (in arbitrary units).

between exact and approximate results obtained by using
numerical or analytical methods. In Table 5, in 𝑏 = 0.1 and
𝑐 = 1 case, comparison of 1𝑠 and 2𝑝 energy eigenvalues
obtained in the present study with results of [24] for 𝜆 =

100, 150, 200, 250, 500 in Rydberg units has been shown. If
the used approximation in the present study is considered,
it is clear that larger 𝜆 parameter provides obtaining a better
approximation for solution, which is confirmed by examining
of Figures 1(a), 1(b), 2(a), 2(b), 5(a), and 5(b).

3.5. Case of 𝑏 ≠ 0, 𝑐 ≠ 0 in Presence of External Electric Field.
In 𝑐 = 0.5, 𝑏 = 0.3, and 𝜆 = 300 case, energy eigenvalues

Table 4: When 𝑐 = 1, 𝑏 ̸= 0, and 𝜆 = 200, comparison of 1𝑠 and 2𝑝
energy eigenvalues obtained in the present study with results of [24]
for different 𝑏 screening parameters in Rydberg units.

𝑏
1𝑠 2𝑝

[24] Present results [24] Present results
0 −0.990000 −0.990000 −0.240002 −0.240001

0.1 −1.188501 −0.188501 −0.435033 −0.435003

0.2 −1.387003 −1.387003 −0.630119 −0.630022

0.3 −1.585507 −1.585506 −0.825258 −0.825050

0.4 −1.784012 −1.784011 −1.020445 −1.020090



Advances in High Energy Physics 7

0 50 100 150 200 250

0.00

−0.04

−0.03

−0.02

−0.01

V(r)

V(r)

r

Po
te
nt
ia
l

b = 0, c = 1, 𝜆 = 200

(a)

V(r)

V(r)

r

Po
te
nt
ia
l

b = 0.7, c = 1, 𝜆 = 200

0 50 100 150 200 250

0.0

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

(b)

Figure 4: (a) Comparison of 𝑉(𝑟) and 𝑉(𝑟) potentials in case of 𝑏 = 0, 𝑐 = 1, and 𝜆 = 200 (in arbitrary units). (b) Comparison of 𝑉(𝑟) and
𝑉(𝑟) potentials in case of 𝑏 = 0.7, 𝑐 = 1, and 𝜆 = 200 (in arbitrary units).
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Figure 5: (a) Comparison of 𝑉(𝑟) and 𝑉(𝑟) potentials in case of 𝑏 = 0.1, 𝑐 = 1, and 𝜆 = 100 (in arbitrary units). (b) Comparison of 𝑉(𝑟) and
𝑉(𝑟) potentials in case of 𝑏 = 0.1, 𝑐 = 1, and 𝜆 = 500 (in arbitrary units).

Table 5: When 𝑏 = 0.1, 𝑐 = 1, comparison of 1𝑠 and 2𝑝 energy
eigenvalues obtained in the present study with results of [24] for
different 𝜆 screening parameters in Rydberg units.

𝜆
1𝑠 2𝑝

[24] Present results [24] Present results
100 −1.177005 −1.177000 −0.420145 −0.420025

150 −1.184668 −1.184669 −0.430061 −0.430010

200 −1.188501 −1.188500 −0.435033 −0.435006

250 −1.190800 −1.190800 −0.438020 −0.438004

500 −1.195400 −1.195400 −0.444005 −0.444001

of 1𝑠 and 2𝑝 quantum states for 0.0001, 0.001, 0.01, 0.5, and
2 values of external electric field strengths are calculated in
atomic units and corresponding results have been shown in
Table 6.

3.6. Plot of Wave Functions for 1𝑠 and 2𝑝 States. The wave
functions of 1𝑠 and 2𝑝 states for different cases of 𝑏 and 𝑐

screening parameters are seen in Figures 6 and 7. As can be
seen in Figures 6 and 7, plot of 1𝑠 and 2𝑝 wave functions
and that in [32] are the same, which is an expected result.
However, it should be pointed out that radial eigenfunction
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Table 6: When 𝑏 = 0.3, 𝑐 = 0.5, and 𝜆 = 300, 1𝑠 and 2𝑝 energy
eigenvalues for different external electric field strengths in atomic
units.

𝐹 1𝑠 2𝑝

0.0001 −0.795325 −0.417202

0.001 −0.796675 −0.421694

0.01 −0.810236 —
0.5 −2.22977 —
2 — —
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Figure 6: When 𝜆 = 500, plot of wave functions of 1𝑠 state for
different cases of 𝑏 and 𝑐 screening parameters (in arbitrary units).
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Figure 7: When 𝜆 = 500, plot of wave functions of 2𝑝 state for
different cases of 𝑏 and 𝑐 screening parameters (in arbitrary units).

of corresponding Hamiltonian in [32] was taken as 𝑃
𝑛ℓ
(𝑟) =

𝑟𝑅
𝑛ℓ
(𝑟) in order to solve Schrödinger equation.

4. Conclusion

In this study, the Schrödinger equation with MGECSC
potential has been analytically solved approximately by
applying an ansatz to radial eigenfunction of corresponding

Hamiltonian, and the energy values of bound states and
eigenfunctions have been obtained, to the best of author’s
knowledge, which has been carried out in this study for
the first time. The MGECSC potential is more complex and
important in the physical sense compared to SC, ECSC,
and PC potentials, because if the different cases of 𝑏 and 𝑐

screening parameters are considered, the bound states and
wave functions for SC and ECSC potentials are obtained,
as performed in the present study. The studied potentials
in Section 3 play important role to model some interactions
in plasma physics. The analytically obtained results in this
study were compared with the numerically obtained results
in corresponding references and it was observed that all
the results have a very good agreement. The importance of
this study can be outlined in four main points. Firstly, since
for the first time the Schrödinger equation with MGECSC,
ECSC, SC, and PC potentials has been analytically solved
in the present study, the importance of obtained analytical
solutions in this study is better understood if applications
of each of these potentials are considered for plasma and
nuclear physics. Secondly, to obtain analytical solution is
very difficult for relativistic quantum systems with MGECSC
and ECSC potential. For this reason, numerical methods
such as perturbation, DPT, and variational calculus are used
in order to investigate relativistic systems with MGECSC,
ECSC, or SC potentials [34]. However, the ground state
solutions need to be able to make perturbative calculus. Since
the energy values of bound states and corresponding wave
functions in analytical form have been obtained for quantum
systems with MGECSC and ECSC potentials, results in this
study make it possible to investigate relativistic quantum
systemswithMGECSC and ECSCpotentials.Thismentioned
investigation was not possible because analytical solutions of
nonrelativistic systems with MGECSC and ECSC potential
have not been made up to now. Thirdly, the external electric
field effect on MGECSC potential has been also considered
in the present study. It should be noted that external electric
field effect on energy values of bound states can be removed
or taken into account on request as can be seen in (10). Finally,
in this study, since the external electric field can be included
in calculations, relativistic systems with MGECSC and ECSC
potential under external electric field can be studied by using
perturbative calculus.
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