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In nonzero magnetic field, the magnetic properties and thermodynamics of the quantum-chromodynamic (QCD) matter are
studied in the hadron resonance gas and the Polyakov linear-sigma models and compared with recent lattice calculations. Both
models are fairly suited to describe the degrees of freedom in the hadronic phase.The partonic ones are only accessible by the second
model. It is found that the QCD matter has paramagnetic properties, which monotonically depend on the temperature and are
not affected by the hadron-quark phase transition. Furthermore, raising the magnetic field strength increases the thermodynamic
quantities, especially in the hadronic phase, but reduces the critical temperature, that is, inverse magnetic catalysis.

1. Introduction

In peripheral heavy-ion collisions, a strong and very localized
magnetic field is likely generated. The opposite relativistic
motion of the spectator’s positive charges and the imbalance
in the momentum of the participants together contribute to
generating such short-lived and huge magnetic field (𝐵 ∼
10
19 Gauss), which apparently should come up with signifi-

cant effects on the quantum-chromodynamic (QCD) matter.
These effects can be coupled to experimental observables; for
instance, in the STAR experiment at the relativistic heavy-ion
collider (RHIC), |𝑞|𝐵 ∼ 𝑚2

𝜋
[1, 2], and in ALICE experiment

at the large hadron collider (LHC), |𝑞|𝐵 ∼ 10–15𝑚2
𝜋
[1, 2],

where |𝑞| is the net electric charge and𝑚
𝜋
is the pionmass [3].

Only in heavy-ion collisions do the self-generating magnetic
fields play an essential role.The early universe andmagnetors
(special types of neutron stars), for instance, should extremely
be affected by such fields, which are conjectured to influence
even the acceleration of various cosmic rays and the creation
of stars [4]. They can mediate important processes affecting
the dynamics, the distribution, and even the composition of
the galactic plasmas, for instance [4].

The influences of magnetic fields on the hadronic matter
and on the phase-space structure of quark-gluon plasma
(QGP) are included in various models, such as hadron reso-
nance gas (HRG) [5, 6], and estimated in lattice QCD simula-
tions [7–12]. The Polyakov-Nambu-Jona-Lasinio (PNJL) and
NJLmodels are examples onQCD-like models in which such
magnetic effects were estimated [13–16]. Coupling Polyakov
loops to the linear-sigma model (PLSM) introduces color
charge interactions to the pure gauge field. PLSM reveals
interesting features about the response of QCD matter to
finite magnetic field [17, 18]. Recently, electric conductivity
in thermal medium and the phase structure of the strongly
interacting matter in presence of magnetic field have been
reported [19–22].

In the present work, we plan to utilize the HRG and
PLSM approaches in finite magnetic field in order to study
the QCD equation-of-state (EoS). Furthermore, it intends
to estimate different thermodynamic observables including
pressure, entropy, energy densities, and magnetization by
using the modified energy-momentum dispersion relations
which arise from finite magnetic field. Also, we verify that
the thermal QCD medium is paramagnetic, especially at
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the critical temperature. Our calculations are confronted to
recent lattice QCD simulations [12]. A quite good agreement
is observed.

The present paper is organized as follows. We summarize
the fundamentals of Landau quantizations in Section 2.1.
The HRG model in nonzero magnetic field is discussed in
Section 2.2. PLSM is briefly introduced in Section 2.3. The
obtained results are confronted to recent lattice QCD in
Section 3. The conclusions are outlined in Section 4.

2. Formalism

2.1. General Remarks on Landau Quantization. In nonzero
magnetic field, the eigenenergy can be given as

𝐸 = (𝑛 +
1

2
ℏ𝜔
𝐻
) +
𝑝
2

𝑧

2𝑚
− 𝜇
𝑆
𝑧

𝑠
𝐻, (1)

where the angular frequency 𝜔
𝐻
= |𝑒|𝐻/𝑚𝑐 and discrete

values with integer quantum number 𝑛 = 0, 1, 2, . . . called
Landau levels are assigned to the first term [23, 24]. This
describes the motion in a plane perpendicular to the mag-
netic field, which is directed towards the 𝑧-axis. Accordingly,
the dispersion relation should be modified [23–25]:

𝐸
ℓ𝑆
𝑧

= [𝑝
2

𝑧
+ 𝑚
2
+ 2
𝑞
 (𝑛 − 𝑆𝑧 +

1

2
)𝐵]

1/2

, (2)

where 𝑆
𝑧
is the component of the spin in the 𝑧-direction, 𝑛

being the index to label the Landau levels, and |𝑞| > 0 is
the electric charge of the 𝑖th hadron. In PLSM, the dispersion
relation also becomes modified:

𝐸
𝐵,𝑓
(𝐵) = [𝑝

2

𝑧
+ 𝑚
2

𝑓
+

𝑞
𝑓


(2𝑛 + 1 − 𝜎) 𝐵]

1/2

, (3)

where the quantization number (𝑛) known as the Landau
quantum number, 𝜎, is related to the spin quantum number,
𝜎 = ±𝑆

𝑧
/2 and 𝑞

𝑓
(𝑚
𝑓
) being quark electric charge (mass).

The quark masses are directly coupled to the 𝜎-fields through
Yukawa coupling 𝑔 as

𝑚
𝑙
= 𝑔
𝜎
𝑙

2
,

𝑚
𝑠
= 𝑔
𝜎
𝑠

√2

,

(4)

where the subscript 𝑙 refers to degenerate light up and down
quarks.

It is worthwhile to notice that 2𝑛 + 1 − 𝜎 can be replaced
by sum over the Landau levels 0 ≤ ] ≤ ]max

𝑓

. The lower
value refers to the lowest Landau level (LLL), while the higher
one stands for themaximumLandau level (MLL), ]max, which
contributes to the maximum quantization number (]max

𝑓

→

∞). For the sake for completeness, we mention that 2 − 𝛿
0]

represents degenerate Landau levels.

2.2. Hadron Resonance Gas Model in NonzeroMagnetic Field.
Treating hadron resonances as a collision-free gas [26–30]
allows the estimation of thermodynamic partition function.
For a recent review, the readers can consult [31]. Even for
an interacting system, such ideal gas, which is composed
of hadron resonances with masses ≤2GeV [29, 32], where
the inclusion of heavy resonances effectively introduces
interactions and correlations to the system, can be described
by grand canonical partition function that gives a quite
satisfactory description for the particle production in heavy-
ion collisions and the lattice QCD thermodynamics [26–
28, 33, 34]

ln𝑍 (𝑇,𝑉, 𝜇)

= ∑

𝑖

±
𝑉𝑑
𝑖

2𝜋2
∫

∞

0

𝑝
2 ln[1 ± exp[

(𝜇
𝑖
− 𝐸
𝑖
)

𝑇
]] 𝑑𝑝,

(5)

where ± stands for fermions and bosons, respectively, and 𝑉
is the volume and 𝑑

𝑖
is the degeneracy for the 𝑖th hadron.

As discussed earlier, the dispersion relation (𝐸
𝑖
) for charged

hadrons in nonzeromagnetic field is a subject ofmodification
(2) while, for neutral hadrons, 𝐸

𝑖
= √𝑝2 + 𝑚

2

𝑖
.

In finite magnetic field, the phase-space integral in (5)
is to be expressed as a one-dimensional integral (dimension
reduction). The partition function for the 𝑖th particle in
presence of magnetic field can be written as

ln𝑍 (𝑇,𝑉, 𝜇)

= ±
𝑉𝑑
𝑖

2𝜋2
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𝑇
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𝑧
,
(6)

where 𝑝
𝑧
is the component of the particle momentum along

the direction of themagnetic field.The spin in the 𝑧-direction
(𝑆
𝑧
) is running as −𝑆

𝑧
, −𝑆
𝑧
+ 1, . . . , +𝑆

𝑧
, where 𝑆

𝑧
is the

resonance spin in the 𝑧-direction. For the 𝑖th particle, the
pressure, energy density, and entropy, respectively, read

𝑃
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= ±
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Themagnetization (20) is a vector field indicating the creation
of magnetic dipole moments resulting from the response of
the material to nonzero magnetic field.

The dependence of hadron masses on nonzero magnetic
field is still questionable [35]. In LHC, the magnetic field of
noncentral heavy-ion collisions can reach up to 10–15𝑚2

𝜋
.

This value is almost identical to ΛQCD [1, 36]. At high
momentum transfer, that is, asymptotic freedom, the QCD
strength becomes very small at short distances, and the
leading order running strong coupling reads [37]

1

𝛼
𝑠

≃ 𝛽
0
ln[ |𝑒𝐵|
Λ
2

QCD
] , (10)

where 𝛽
0
= (11𝑁

𝑐
−2𝑁
𝑓
)/12𝜋 and the QCD phase transition

might take place at ΛQCD ∼ 0.2GeV or 𝐵 ∼ 0.2GeV2. In this
respect, the magnetic field can be categorized into

(i) |𝑒𝐵| ≫ Λ2QCD, strong magnetic field,

(ii) |𝑒𝐵| ≪ Λ2QCD, weak magnetic field.

On the other hand, in a finite magnetic field, the lattice
QCD calculations refer to mass hierarchy [36]. It has been
found that 𝑚

𝜌
0 ∼ 𝑚

𝜋
+ > 𝑚

𝜌
+ ∼ 𝑚

𝜋
0 at 𝑒𝐵 ≫ Λ2QCD [35].

Thus, the strong magnetic field is the one at which Λ2QCD ≪

|𝑒𝐵| ≲ (10TeV)2. This means that the value of Λ2QCD is small
to contribute to the dynamical quark masses or the hadron
constituents; that is, QCD represents an intermediate regime
[36].

2.3. Polyakov Linear-Sigma Model in Nonzero Magnetic Field.
In SU(3)

𝐿
× SU(3)

𝑅
symmetries, the Lagrangian of LSM for

𝑁
𝑓
= 3 flavors (𝑢-, 𝑑-, and 𝑠-quarks) with 𝑁

𝑐
= 3 color

degrees of freedom is given as

L =Lchiral −U (𝜙, 𝜙
∗
, 𝑇) , (11)

where the chiral Lagrangian consists of two parts: fermionic
and mesonic. Both couple to each other with a flavor-blind
Yukawa coupling constant 𝑔 [38]:

L
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(12)

where 𝑇
𝑎
= 𝜆
𝑎
/2 with 𝑎 = 0, 1, . . . , 8 are the nine generators

of the 𝑈(3) symmetry group and 𝜆
𝑎
are the eight Gell-Mann

matrices [39]. 𝜎
𝑎
are the scalar and 𝜋

𝑎
are the pseudoscalar

mesons,

Φ = 𝑇
𝑎
𝜙
𝑎
= 𝑇
𝑎
(𝜎
𝑎
+ 𝑖𝜋
𝑎
) . (13)

The spontaneous and explicit chiral symmetry breaking is
given in more detail in [40–42].

The second term in (11), U(𝜙, 𝜙∗, 𝑇), represents the
Polyakov-loop effective potential [43], where the Polyakov-
loop fields, 𝜙 and 𝜙∗, are the order parameters for decon-
finement phase transition [44, 45]. In the present work, we
implement a polynomial expansion in 𝜙 and 𝜙∗ [44–47]:
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(14)

where 𝑏
2
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2
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2
+ 𝑎
3
(𝑇
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𝑎
0
= 6.75, 𝑎

1
= −1.95, 𝑎

2
= 2.625, 𝑎

3
= −7.44, 𝑏

3
= 0.75, and

𝑏
4
= 7.5 [44]. The deconfinement temperature 𝑇

0
is fixed at

270MeV.
In the mean field approximation, the thermodynamic

potential estimates the energy exchange between quarks
and antiquarks at temperature (𝑇) and baryon chemical
potential (𝜇

𝑓
), where 𝑓 runs over the quark flavors. The

thermodynamic potential,Ω = −𝑇 lnZ/𝑉, reads

Ω = 𝑈 (𝜎
𝑙
, 𝜎
𝑠
) +U (𝜙, 𝜙

∗
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, (15)

where the first term represents the pure mesonic part
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(16)

This potential can be constructed from 𝜎
𝑥
for light flavors (𝑢-

and 𝑑-quark) and 𝜎
𝑦
for 𝑠-quark.

In finitemagnetic field (and finite𝑇 and𝜇
𝑓
) and bymeans

of Landau quantization and magnetic catalysis, the quark-
antiquark potential is given as

Ω
𝑞𝑞
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Finally, we should assume global minimization of the ther-
modynamic potential,
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in order to fix the remaining parameters 𝜎
𝑙
= 𝜎
𝑙
, 𝜎
𝑠
= 𝜎
𝑠
,

𝜙 = 𝜙, and 𝜙∗ = 𝜙∗ and their dependencies on 𝑇, 𝜇
𝑓
, and 𝑒𝐵

[17, 18].
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Figure 1: (a) The dependence of normalized pressure on temperature calculated from HRG model, (7) at different values of magnetic fields,
𝑒𝐵 = 0.0, 0.1, 0.2, 0.3, and 0.4GeV2 compared with recent lattice calculations [12] (symbols). (b)The same as in (a) but the calculations from
PLSM (17).

3. Results and Discussion

Based on the remarkable success of the HRG model in
reproducing lattice QCD thermodynamics, for instance, it
is straightforward to perform similar analysis in nonzero
magnetic field [6, 8]. In peripheral heavy-ion collisions, the
magnetic field can be as much as 𝑒𝐵 = 3.25GeV2 [48].
We also utilize PLSM in studying various QCD properties
and phenomena [12]. The magnetization and different ther-
modynamic quantities are calculated from both models at
𝑒𝐵 = 0.0–0.4GeV2 and compared with recent lattice QCD
calculations [12].

Figure 1 presents the normalized pressure 𝑝/𝑇4 as a
function of temperature at 𝑒𝐵 = 0.0 (solid), 0.2 (dashed),
0.3 (double-dot-dashed), and 0.4GeV2 (dot-dashed curve).
The results are compared with recent lattice calculations [12]
at 𝑒𝐵 = 0.0 (open square), 𝑒𝐵 = 0.1 (closed square), 0.2
(circle), 0.3 (triangle), and 0.4GeV2 (asterisk). (a) shows the
calculations from the HRG model (curves), while the PLSM
calculations are depicted in (b). It is apparent that the pressure
increases with increasing magnetic field, especially at low
temperatures. At high temperatures, 𝑝/𝑇4 is limited to the
Stefan-Boltzmann limits, which apparently is not affected by
the magnetic field.

In (a), we notice that the pressure calculated from HRG
slightly deviates from the lattice calculations, although the
temperature dependence is preserved. For HRG, 𝑝(𝑇, 𝑒𝐵) is
calculated from (7) without corrections due to lattice 𝜙- and
𝐵-schemes [12]. Figure 1(b) shows the same as in (a) but
for calculations from PLSM. Our results agree well with the
lattice simulations [12] at a wide range of temperatures. The
pressure is directly deduced from PLSM potential (17) in
mean field approximation; that is, no corrections with respect
to themagnetic flux (𝜙 = 𝑒𝐵⋅𝐿

𝑥
𝐿
𝑦
) and/or themagnetic field

(𝐵) have been done in lattice simulations, respectively.

It is obvious that the HRG calculations at low mag-
netic fields (≲0.2GeV2) disagree with the corresponding lat-
tice simulations. They are almost temperature independent,
which contradicts even the same calculations in vanishing
magnetic field and becomes radical at large temperatures
(near the critical temperature). It is worthwhile to recall
that, in vanishing magnetic field, the partition function
is given by integral over six-dimensional phase-space and
the dispersion relations follow Lorentz invariance principle.
But, in finite magnetic field, the integral dimensionality is
drastically reduced and simultaneously accompanied by a
considerable modification in the dispersion relation.

In finite magnetic field 𝐵, the velocity of a test particle
with momentum 𝑃 can be deduced from the dispersion
relations, (2) and (3), respectively (V = 𝜕𝜖total/𝜕𝑃):

V
𝑝
= 𝑐 [

𝑐𝑝

𝑐𝑝 + 2
𝑞
 (𝜅 + 1/2 − 𝑆𝑧) 𝐵

] , for HRG,

V
𝑝
= 𝑐 [

𝑐𝑝

𝑐𝑝 + 2

𝑞
𝑓


(𝜅 + 1/2 − 𝜎/2) 𝐵

] , for PLSM,
(19)

where 𝜎 = ±𝑆/2. Then the causality is guaranteed for V
𝑝
not

exceeding the speed of light 𝑐, that is, as long as the 𝐵-term is
finite positive, which should be estimated, quantitatively, as
a function of temperature and magnetic field strength. This
might give an explanation as to why HRG fails to reproduce
lattice pressure at low magnetic field, while PLSM does not.

For a reliable comparison with the lattice calculations
[12], an additional constant magnetic term should be added
to the free energy, so that [5]

M = −
1

𝑉
𝑇
𝜕 lnZ
𝜕 (𝑒𝐵)

. (20)
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Figure 2: The magnetizationM is given as a function of temperature at 𝑒𝐵 = 0.0–0.4GeV2 and compared with lattice results (symbols) [12].
The HRG results are depicted in (a), while those from PLSM are in (b).

Accordingly, one should distinguish between two setups
where either magnetic field 𝐵 (𝐵-scheme) or magnetic flux
Φ is kept constant during the expansion [12], where 𝐿

𝑥

and 𝐿
𝑦
are system extensions in the 𝑥- and 𝑦-direction,

respectively. The response of QCD matter (hadrons and
partons) to nonzeromagnetic field can be estimated from the
magnetization.

In 𝐵-scheme, the pressure 𝑝 becomes isotropic but
anisotropic in 𝜙-scheme.The compressing force in 𝜙-scheme
is directed oppositely to the magnetic field. The longitudinal
pressure 𝑝

𝑧
does not depend on the scheme. The good

agreement with lattice calculations, in Figure 1, especially at
large magnetic fields, is obtained where the calculations are
simply uncorrected or scheme-independent free-energies are
assumed.

Sign ofM defines the magnetic property of the system of
interest. Paramagnetic property refers to attraction of QCD
matter in external magnetic field. Diamagnetic QCD matter
is slightly repelled by the magnetic field and does not retain
its magnetic properties when the field is removed. Positive
magnetization refers to paramagnetism, while negative M
refers to diamagnetism. In Figure 2, the dependence of M
on temperature is depicted at various 𝑒𝐵. We notice that M
has very small but positive values which indicate that the
QCD matter has paramagnetic property and this behavior
monotonically remains with increasing temperature. The
phase transition at 𝑇/𝑇

𝑐
= 1 seems not affecting it.

The magnetization from HRG fairly agrees with the lattice
calculations, while PLSM excellently reproduces the lattice
magnetization. The slight difference in both models should
contribute to further thermodynamic quantities, Figure 3.

Figures 3(a) and 3(b) present the same as in Figure 1 but
for total energy density

𝜖
total
= 𝜖 + 𝑒𝐵 ⋅M, (21)

where 𝜖 = −𝛽𝜕𝑃/𝜕𝛽 with 𝛽 = 1/𝑇 is the thermodynamic
energy density. It is obvious that the agreement betweenHRG
(a) and the lattice calculations is excellent, especially below
𝑇
𝑐
. Also, we observe that 𝑇

𝑐
declines with increasing 𝑒𝐵, that

is, inverse magnetic catalysis in the hadronic matter, while
𝜖
total
/𝑇
4 remarkably increases with 𝑒𝐵. In other words, we

observe that increasing 𝑒𝐵 leads to decreasing 𝑇
𝑐
. The values

of 𝑇
𝑐
can be deduced from the graphs. (b) shows the same

but for calculations from PLSM. Here is fair agreement that is
extended to a wider range of temperatures covering hadronic
and partonic phases, simultaneously.

Figures 3(c) and 3(d) are the same as in Figure 1 but for
entropy density 𝑠 = (𝜖total + 𝑝

𝑧
)/𝑇. In HRG, the increase in

𝑠/𝑇
3 with increasing 𝑒𝐵 is larger than in lattice calculations.

The best agreement is found near 𝑇
𝑐
. In (d), entropy from

PLSM is confronted to the lattice simulations. There is a nice
agreement in both hadronic and partonic phases.

4. Conclusions

The introducing of finite magnetic field is accompanied with
two types of modifications: first the phase-space should be
changed due to inversemagnetic catalysis and second the dis-
persion relation as well as the distribution function should be
modified. Inmean field approximation, both Polyakov linear-
sigma model (PLSM) and hadron resonance gas (HRG)
model are considered to study QCD thermodynamics in
vanishing and finite magnetic field. The results from both
models are confronted to recent lattice QCD calculations. In
doing this, the temperature dependence of the magnetization
should be determined. It seems that both models are fairly
suited in describing the degrees of freedom in the hadronic
phase, in which only PLSM contains the partonic degrees of
freedom.
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Figure 3: The same as in Figure 1 but for normalized total energy density (21) in (a, b) and normalized entropy density in (c, d).

In presence of finite magnetic field, both HRG and PLSM
are individually compared with recent LQCD calculations at
𝑒𝐵 = 0.0–0.4GeV2. PLSM shows an excellent agreement
with the lattice QCD results at vanishing and nonvanishing
magnetic field.The construction of the PLSMplays an impor-
tant role. The inclusion of the magnetic field can be partly
modelled by changing both dispersion relations equations
(2) and (3) for HRG and PLSM approaches, respectively. In
this doing, the momentum phase-space should be reduced as
given in (6) and (18) and also scaled to the quark and hadron
electric charges and the magnetic field. This latter process is
known as dimension reduction or magnetic catalysis effect. In
inserting the magnetic field to both lattice and PLSM, the
procedure implemented is almost the same. The agreement
between HRG and lattice is fairly good, especially below the
critical temperature.Themodified dispersion relation follows
Lorentz invariance principle, where an extra term (due to
magnetic energy) is added to the total energy. Accordingly,

the entropy should be modified. The sign of the magnetiza-
tion depends on the magnetic property of the QCD matter.
From both models and lattice calculations, we conclude that
the QCD matter is likely paramagnetic. The temperature
dependence is monotonic. The magnetization from HRG
fairly qualitatively agreeswith the latticemagnetization,while
PLSM excellently reproduces it (quantitatively agrees). The
phase transition at critical temperature seems not affecting
the paramagnetic property.

Furthermore, we conclude that raising the magnetic field
strength increases the thermodynamic quantities, especially
in the hadronic phase. At high temperatures (partonic phase),
the thermodynamics is apparently limited to the Stefan-
Boltzmann limits. The latter are likely slightly affected by the
magnetic field strength. At high temperatures, PLSM overes-
timated lattice magnetization and energy density. This might
be explained from the limitation of PLSM at such high tem-
peratures.The latter can be fine-tunedwhile estimating chiral
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condensates, 𝜎
𝑙
and 𝜎
𝑠
, and deconfinement order parameters,

𝜙 and 𝜙∗, respectively. The possible thermal-modifications
of various thermodynamic quantities calculated from both
HRG and PLSM approaches lead to the conclusion that
increasing the magnetic field strength reduces the critical
temperature, that is, inverse magnetic catalysis.
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