Research Article

$Y(nS) \rightarrow B^*_c \pi, B^*_c K$ Decays with Perturbative QCD Approach

Junfeng Sun,1 Yueling Yang,1 Qin Chang,1 Gongru Lu,1 and Jinshu Huang2

1Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China
2College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

Correspondence should be addressed to Yueling Yang; yangyueling@htu.edu.cn

Received 23 March 2016; Accepted 17 May 2016

1. Introduction

The upsilon $Y(nS)$ meson is the spin-triplet S-wave state of bottomonium (bound state consisting of bottom quark b and antibottom quark \bar{b}) with well-established quantum number of $I^GJ^{PC} = 0^+1^{--}$ [1]. The characteristic narrow decay widths of $Y(nS)$ mesons for $n = 1, 2, 3$ provide insight into the study of strong interactions (see Table 1, and note that, for simplicity, $Y(nS)$ will denote $Y(1S), Y(2S)$, and $Y(3S)$ mesons in the following content if not specified definitely). The mass of $Y(nS)$ meson is below B meson pair threshold. $Y(nS)$ meson decays into bottomed hadrons through strong and electromagnetic interactions are forbidden by the law of conservation of flavor number. The bottom-changing $Y(nS)$ decays can occur only via the weak interactions within the standard model, although with tiny incidence probability. Both constituent quarks of upsilon can decay individually, which provide an alternative system for investigating the weak decay of heavy-flavored hadrons. In this paper, we will study the nonleptonic $Y(nS) \rightarrow B^*_c P$ ($P = \pi$ and K) weak decays with perturbative QCD (pQCD) approach [2–4].

Experimentally, (1) over $10^8 Y(nS)$ data samples have been accumulated at Belle and BaBar experiments [5]. More and more upsilon data samples will be collected at the running hadron collider LHC and the forthcoming e^+e^- collider SuperKEKB (the SuperKEKB has started commissioning test run (http://www.kek.jp/en/NewsRoom/Release/)). There seems to exist a realistic possibility to explore $Y(nS)$ weak decay at future experiments. (2) Signals of $Y(nS) \rightarrow B^*_c \pi, B^*_c K$ decays should be easily distinguished with “charge tag” technique, due to the facts that the back-to-back final states with different electric charges have definite momentum and energy in the rest frame of $Y(nS)$ meson. (3) B^*_c meson has not been observed experimentally by now. B^*_c meson production via the strong interaction is suppressed due to the simultaneous presence of two heavy quarks with different flavors and higher order in QCD coupling constant α_s. $Y(nS) \rightarrow B^*_c \pi, B^*_c K$ decays provide a novel pattern to study B^*_c meson production. The identification of a single explicitly flavored B^*_c meson could be used as an effective selection criterion to detect upsilon weak decays. Moreover, the radiative decay of B^*_c meson provides a useful extra signal and a powerful constraint (the investigation on the radiative decay of B^*_c meson can be found in, e.g., [6], with QCD sum rules). Of course, any discernible evidences of an anomalous production rate of single bottomed meson from upsilon decays might be a hint of new physics.

Theoretically, many attractive QCD-inspired methods have been developed recently to describe the exclusive
Table 1: Summary of mass, decay width, on(off)-peak luminosity, and numbers of Υ(nS).

<table>
<thead>
<tr>
<th>Meson</th>
<th>Mass (MeV)</th>
<th>Width (keV)</th>
<th>Luminosity (fb⁻¹)</th>
<th>Numbers (10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y(1S)</td>
<td>9460.30 ± 0.26</td>
<td>54.02 ± 1.25</td>
<td>Belle 5.7 (1.8) BaBar ··</td>
<td>102 ± 2 BaBar ··</td>
</tr>
<tr>
<td>Y(2S)</td>
<td>10023.26 ± 0.31</td>
<td>31.98 ± 2.63</td>
<td>Belle 24.9 (1.7) BaBar 13.6 (1.4)</td>
<td>158 ± 4 BaBar 98.3 ± 0.9</td>
</tr>
<tr>
<td>Y(3S)</td>
<td>10355.2 ± 0.5</td>
<td>20.32 ± 1.85</td>
<td>Belle 2.9 (0.2) BaBar 28.0 (2.6)</td>
<td>11 ± 0.3 BaBar 121.3 ± 1.2</td>
</tr>
</tbody>
</table>

nonleptonic decay of heavy-flavored mesons, such as the pQCD approach [2–4], the QCD factorization approach [7–9], and soft and collinear effective theory [10–13], and have been applied widely to vindicate measurements on B meson decays. The upsilon weak decay permits one to further constrain parameters obtained from B meson decay, and cross comparisons provide an opportunity to test various phenomenological models. The upsilon weak decay possesses a unique structure due to the Cabibbo-Kobayashi-Maskawa (CKM) matrix properties which predicts that the channels with one $B^*(+)$ meson are dominant. Y(nS) → B^*P decay belongs to the favorable $b \rightarrow c$ transition, which should, in principle, have relatively large branching ratio among upsilon weak decays. However, there is still no theoretical study devoted to Y(nS) → B^*P decay for the moment. In this paper, we will present a phenomenological analysis of HME based on operator product expansion of all participating hadrons, which is expressed as

$$
\int dk C_i (t) T(t,k) \Phi(k) e^{-S},
$$

(4)

where k is the momentum of valence quarks and e^{-S} is the Sudakov factor.

2.2. Hadronic Matrix Elements. Based on Lepage-Brodsky approach for exclusive processes [20], HME is commonly expressed as a convolution integral of hard scattering subamplitudes containing perturbative contributions with universal wave functions reflecting nonperturbative contributions. In order to effectively regulate endpoint singularities and provide a naturally dynamical cutoff on nonperturbative contributions, transverse momentum of valence quarks is retained and the Sudakov factor is introduced within the pQCD framework [2–4]. Phenomenologically, pQCD’s decay amplitude could be divided into three parts: the Wilson coefficients C_i, incorporating the hard contributions above typical scale of t, process-dependent rescattering subamplitudes T accounting for the heavy quark decay, and wave functions Φ of all participating hadrons, which is expressed as

$$
\int dk C_i (t) T(t,k) \Phi(k) e^{-S},
$$

where α and β are color indices and the sum over repeated indices is understood.

The scale μ factorizes physics contributions into short- and long-distance dynamics. The Wilson coefficients $C_i(\mu)$ summarize the physics contributions at scale higher than μ and are calculable with the renormalization group improved perturbation theory. The hadronic matrix elements (HME), where the local operators are inserted between initial and final hadron states, embrace the physics contributions below scale of μ. To obtain decay amplitudes, the remaining work is to calculate HME properly by separating from perturbative and nonperturbative contributions.

2. Theoretical Framework

2.1. The Effective Hamiltonian. Theoretically, Y(nS) → $B^*\pi$, B^*K weak decays are described by an effective bottom-changing Hamiltonian based on operator product expansion [19]:

$$
\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_{q=d,s} V_{cb} V^*_{ub} \left[C_1 (\mu) O_1 (\mu) + C_2 (\mu) O_2 (\mu) \right]
$$

(1)

+ h.c.,

where $G_F = 1.166 \times 10^{-5}$ GeV⁻² [1] is the Fermi coupling constant; the CKM factors $V_{cb} V^*_{ub}$ and $V_{ub} V^*_{us}$ correspond to Y(nS) → $B^*\pi$ and B^*K decays, respectively; with the Wolfenstein parameterization, the CKM factors are expanded as a power series in a small Wolfenstein parameter $\lambda \sim 0.2$ [1]:

$$
V_{cb} V^*_{ub} = A \lambda^3 - \frac{1}{2} A \lambda^4 - \frac{1}{8} A \lambda^5 + \delta \left(\lambda^2 \right),
$$

(2)

$$
V_{ub} V^*_{us} = A \lambda^3 + \delta \left(\lambda^2 \right).
$$

The local tree operators $Q_{1,2}$ are defined as

$$
O_1 = \left[\bar{\xi}_a y_{\mu} (1 - \gamma_5) P_L \right] \left[\bar{\eta}_b y^\mu (1 - \gamma_5) u_{\beta} \right],
$$

$$
O_2 = \left[\bar{\xi}_a y_{\mu} (1 - \gamma_5) b_{\beta} \right] \left[\bar{\eta}_b y^\mu (1 - \gamma_5) u_{\alpha} \right],
$$

(3)

where α and β are color indices and the sum over repeated indices is understood.

The scale μ factorizes physics contributions into short- and long-distance dynamics. The Wilson coefficients $C_i(\mu)$ summarize the physics contributions at scale higher than μ and are calculable with the renormalization group improved perturbation theory. The hadronic matrix elements (HME), where the local operators are inserted between initial and final hadron states, embrace the physics contributions below scale of μ. To obtain decay amplitudes, the remaining work is to calculate HME properly by separating from perturbative and nonperturbative contributions.

2.2. Hadronic Matrix Elements. Based on Lepage-Brodsky approach for exclusive processes [20], HME is commonly expressed as a convolution integral of hard scattering subamplitudes containing perturbative contributions with universal wave functions reflecting nonperturbative contributions. In order to effectively regulate endpoint singularities and provide a naturally dynamical cutoff on nonperturbative contributions, transverse momentum of valence quarks is retained and the Sudakov factor is introduced within the pQCD framework [2–4]. Phenomenologically, pQCD’s decay amplitude could be divided into three parts: the Wilson coefficients C_i, incorporating the hard contributions above typical scale of t, process-dependent rescattering subamplitudes T accounting for the heavy quark decay, and wave functions Φ of all participating hadrons, which is expressed as

$$
\int dk C_i (t) T(t,k) \Phi(k) e^{-S},
$$

(4)

where k is the momentum of valence quarks and e^{-S} is the Sudakov factor.

2.3. Kinematic Variables. The light cone kinematic variables in Y(nS) rest frame are defined as follows:

$$
p_\gamma = p_1 = \frac{m_1}{\sqrt{2}} (1,1,0),
$$

$$
p_{\gamma T} = p_2 = (p^+_2, p^-_2, 0),
$$

$$
p_3 = (p^-_3, p^+_3, 0),
$$

$$
p^*_i = \frac{(E_i \pm p_i)}{\sqrt{2}},
$$

$$
k_i = x_i p_1 + (0,0,k_{i\perp}),
$$

$$
e^*_i = \frac{p_1}{m_1} - \frac{m_1}{p_1 \cdot n_i} n_i.
$$

where α and β are color indices and the sum over repeated indices is understood.
\[\epsilon_1^2 = \frac{p_1^2 - m_1^2}{2p_1} \cdot n_-, \]
\[\epsilon_{1,2}^\perp = (0, 0, \bar{1}), \]
\[n_+ = (1, 0, 0), \]
\[n_- = (0, 1, 0), \]
\[s = 2p_2 \cdot p_3, \]
\[t = 2p_1 \cdot p_3 = 2m_1 E_2, \]
\[u = 2p_1 \cdot p_3 = 2m_1 E_3, \]
\[\rho = \frac{\sqrt{[m_2^2 - (m_2 + m_3)^2]} [m_2^2 - (m_2 - m_3)^2]^{3/2}}{2m_1}, \]

where \(x_i \) and \(\bar{k}_{ij} \) are the longitudinal momentum fraction and transverse momentum of valence quarks, respectively; \(\epsilon_i^L \) and \(\epsilon_i^T \) are the longitudinal and transverse polarization vectors, respectively, and satisfy relations \(\epsilon_i^2 = -1 \) and \(\epsilon_i \cdot p_j = 0; \) the subscript \(i \) on variables \(p_i, E_i, m_i, \) and \(\epsilon_i \) corresponds to participating hadrons; namely, \(i = 1 \) for \(Y(nS) \) meson, \(i = 2 \) for the recoiled \(B_c^+ \) meson, and \(i = 3 \) for the emitted pseudoscalar meson; \(n_+ \) and \(n_- \) are positive and negative null vectors, respectively; \(s, t, \) and \(u \) are the Lorentz-invariant variables; \(p \) is the common momentum of final states. The notation of momentum is displayed in Figure 2(a).

2.4. Wave Functions. With the notation in [16, 21], wave functions are defined as

\[\langle 0 | b_i(z) \bar{b}_j(0) | Y(p_1, \epsilon_i^L) \rangle = \frac{f_{B_i}}{4} \cdot \int \, dk_1 e^{i k_1 \cdot z} \{ g_i^l \left[m_1 \Phi_i^L(k_1) \right] - p_i \Phi_i^T(k_1) \} \}, \]
\[\langle 0 | b_i(z) \bar{b}_j(0) | Y(p_1, \epsilon_i^T) \rangle = \frac{f_{B_i}}{4} \cdot \int \, dk_1 e^{i k_1 \cdot z} \{ g_i^l \left[m_1 \Phi_i^T(k_1) \right] - p_i \Phi_i^L(k_1) \} \}, \]
\[\langle B_i^c(p_2, \epsilon_i^L) | \bar{c}_j(z) b_j(0) | 0 \rangle = \frac{f_{B_i^c}}{4} \cdot \int_0^1 \, dk_2 e^{i k_2 \cdot z} \left\{ g_i^l \left[m_2 \Phi_{B_i^c}^L(k_2) \right] + p_i \Phi_{B_i^c}^T(k_2) \right\}, \]
\[\langle B_i^c(p_2, \epsilon_i^T) | \bar{c}_j(z) b_j(0) | 0 \rangle = \frac{f_{B_i^c}}{4} \cdot \int_0^1 \, dk_2 e^{i k_2 \cdot z} \left\{ g_i^l \left[m_2 \Phi_{B_i^c}^T(k_2) \right] + p_i \Phi_{B_i^c}^L(k_2) \right\}, \]
\[\langle P(p_3) | u_t(0) \bar{q}_j(z) | 0 \rangle = i f_p \cdot \int \, dk_3 e^{i k_3 \cdot z} \left\{ g_i^l \left[m_3 \Phi_{P}^L(k_3) \right] + p_i \Phi_{P}^T(k_3) \right\} + \mu_p \left(\bar{u}_t \gamma_5 \gamma_5 \right) \Phi_{P}^L(k_3) \}, \]

where \(f_{B_i}, f_{B_i^c}, \) and \(f_p \) are decay constants of \(Y(nS), B_c^+, \) and \(P \) mesons, respectively.

Considering mass relations of \(m_{Y(nS)} \approx 2m_b \) and \(m_{B_c^+} = m_b + m_c, \) it might assume that the motion of heavy valence quarks in \(Y(nS) \) and \(B_c^+ \) mesons is nearly nonrelativistic. The wave functions of \(Y(nS) \) and \(B_c^+ \) mesons could be approximately described with nonrelativistic quantum chromodynamics (NRQCD) [22–24] and time-independent Schrödinger equation. For an isotropic harmonic oscillator potential, the eigenfunctions of stationary state with quantum numbers \(nL \) are written as [17]

\[\phi_{1S}(k) \sim e^{-k^2/2\beta^2}, \]
\[\phi_{2S}(k) \sim e^{-k^2/2\beta^2} (2k^2 - 3\beta^2), \]
\[\phi_{3S}(k) \sim e^{-k^2/2\beta^2} (4k^4 - 20k^2\beta^2 + 15\beta^4), \]

where parameter \(\beta \) determines the average transverse momentum; that is, \(\langle nS | k^2_n | nS \rangle \sim \beta^2. \) Employing the substitution ansatz [25],

\[k^2 \rightarrow \frac{1}{4} \sum_i k^2_{ij} + m_a^2, \]

where \(x_i \) and \(m_a \) are the longitudinal momentum fraction and mass of valence quark, respectively; then integrating out \(\bar{k}_{ij} \) and combining with their asymptotic forms, the distribution amplitudes (DAs) for \(Y(nS) \) and \(B_c^+ \) mesons can be written as [17]
\[
\phi_{B'_c} (x) = G r^2 \exp \left\{ -\frac{\bar{x} m_c^2 + x m_b^2}{8 \beta_s^2 x \bar{x}} \right\},
\]
\[
\phi_{B'_c}^V (x) = H \left(1 - t^2 \right) \exp \left\{ -\frac{\bar{x} m_c^2 + x m_b^2}{8 \beta_s^2 x \bar{x}} \right\},
\]

(9)

where \(\bar{x} = 1 - x; t = x - \bar{x} \). According to NRQCD power counting rules [22], \(\beta_s = \xi_c \alpha_s (\xi_b) \) with \(\xi_b = m_b/2 \) and QCD coupling constant \(\alpha_s \). The exponential function represents momentum fractions \(x \rightarrow \bar{x} \), and DAs for \(B'_c \) meson are symmetric under the interchange of momentum fractions \(x \leftrightarrow \bar{x} \), and DAs for \(B'_c \) meson are basically consistent with the feature that valence quarks share momentum fractions according to their masses.

Our study shows that only the leading twist (twist-2) DAs of the emitted light pseudoscalar meson \(P \) are involved in decay amplitudes (see Appendix). The twist-2 DAs have the expansion [16],

\[
\phi^i_P (x) = 6x \bar{x} \sum_{i=0}^{1} a_i C_i^{3/2} (t),
\]

(11)

and are normalized as

\[
\int_0^1 \phi^i_P (x) \, dx = 1,
\]

(12)

where \(C_i^{3/2} (t) \) are Gegenbauer polynomials:

\[
C_0^{3/2} (t) = 1,
\]
\[
C_1^{3/2} (t) = 3t,
\]
\[
C_2^{3/2} (t) = \frac{3}{2} \left(5t^2 - 1 \right),
\]

(13)

and each term corresponds to a nonperturbative Gegenbauer moment \(a_i \); note that \(a_0 = 1 \) due to the normalization condition equation (12); G-parity invariance of the pion DAs requires Gegenbauer moment \(a_i = 0 \) for \(i = 1, 3, 5, \ldots \).

2.5. Decay Amplitudes. The Feynman diagrams for \(Y(nS) \to B'_c \pi \) weak decay are shown in Figure 2. There are two types. One is factorizable emission topology where gluon attaches to quarks in the same meson, and the other is nonfactorizable emission topology where gluon connects to quarks between different mesons.

With the pQCD master formula equation (4), the amplitude for \(Y(nS) \to B'_c P \) decay can be expressed as [26]

\[
\mathcal{A} (Y(nS) \to B'_c P) = \mathcal{A}_L \left(e^1, e^1_\perp \right) + \mathcal{A}_V (e^1_\perp, e^1_\parallel)
\]

(14)

\[
+i \mathcal{A}_T \epsilon_{\mu \nu \rho \sigma} e^\mu_1 e^\rho_1 P_\sigma P_\nu,
\]

which is conventionally written as the helicity amplitudes [26]:

\[
\mathcal{A}_0 = -C_0 \sum_j \mathcal{A}_L^j (e^1_\perp, e^1),
\]
\[
\mathcal{A}_1 = \sqrt{2} C_1 \sum_j \mathcal{A}_L^j (e^1_\perp, e^1_\parallel),
\]
\[
\mathcal{A}_L = \sqrt{2} C_0 \sum_j \mathcal{A}_L^j (e^1_\perp, e^1_\parallel),
\]
\[
C_0 = i V_{cb} V_{us}^* \frac{G_F C_F}{\sqrt{2} \sqrt{N_c}} f_{B'_c} f_{P},
\]

where \(C_F = 4/3 \) and the color number \(N_c = 3 \); the subscript \(i \) on \(A_i^j \) corresponds to three different helicity amplitudes; that is, \(i = L, N, T \); the superscript \(j \) on \(A_i^j \) denotes indices of Figure 2. The explicit expressions of building blocks \(\mathcal{A}_i^j \) are collected in Appendix.

3. Numerical Results and Discussion

In the center-of-mass of \(Y(nS) \) meson, branching ratio \(\mathcal{B} \) for \(Y(nS) \to B'_c P \) decay is defined as

\[
\mathcal{B} = \frac{1}{12 \pi m_{P}} \left[\left| \mathcal{A}_0 \right|^2 + \left| \mathcal{A}_1 \right|^2 + \left| \mathcal{A}_L \right|^2 \right].
\]

(16)

The input parameters are listed in Tables 1 and 2. If not specified explicitly, we will take their central values as the default inputs. Our numerical results are collected in Table 3, where the first uncertainty comes from scale \((1 \pm 0.1) t_i \) and the expression of \(t_i \) is given in (A.4) and (A.5); the second uncertainty is from mass of \(m_b \) and \(m_c \); the third uncertainty is from hadronic parameters including decay constants and Gegenbauer moments; the fourth uncertainty is from CKM parameters. The followings are some comments:

(1) Branching ratio for \(Y(nS) \to B'_c \pi \) decay is about \(10^{-10} \) with pQCD approach, which is well within the measurement potential of LHC and SuperKEKB. For example, experimental studies have showed that production cross sections for \(Y(nS) \) meson in \(p-p \) and \(p-Pb \) collisions are a few \(\mu \) at the LHCb [27, 28] and ALICE [29, 30] detectors. Consequently, there will be more than 10^{12} \(Y(nS) \) data samples per \(ab^{-1} \) data collected by the LHCb and ALICE, corresponding to a few hundreds of \(Y(nS) \to B'_c \pi \) events. Branching ratio for \(Y(nS) \to B'_c K \) decay, \(10^{-11} \), is generally
Figure 1: The normalized distribution amplitudes for $\Upsilon(nS)$ and B^*_c mesons.

Figure 2: Feynman diagrams for $\Upsilon(nS) \to B^*_c \pi$ decay with the pQCD approach, including factorizable emission diagrams (a, b) and nonfactorizable emission diagrams (c, d).

less than that for $\Upsilon(nS) \to B^*_c \pi$ decay by one order of magnitude due to the CKM suppression, $|V_{us}/V_{ud}|^2 \sim \lambda^2$.

(2) As it is well known, due to the large mass of B^*_c, the momentum transition in $\Upsilon(nS) \to B^*_c P$ decay may be not large enough. One might naturally wonder whether the pQCD approach is applicable and whether the perturbative calculation is reliable. Therefore, it is necessary to check what percentage of the contributions comes from the perturbative region. The contributions to branching ratio for $\Upsilon(nS) \to B^*_c \pi$ decay from different α_s/π region are shown in Figure 3. It can be clearly seen that more than
Table 2: The numerical values of input parameters.

<table>
<thead>
<tr>
<th>The Wolfenstein parameters</th>
<th>Mass, decay constant, and Gegenbauer moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = 0.814^{+0.023}_{-0.024}$ [1],</td>
<td>$\lambda = 0.22537 \pm 0.00061$ [1],</td>
</tr>
<tr>
<td>$m_b = 4.78 \pm 0.06$ GeV [1],</td>
<td>$f_\pi = 130.41 \pm 0.20$ MeV [1],</td>
</tr>
<tr>
<td>$m_c = 1.67 \pm 0.07$ GeV [1],</td>
<td>$f_K = 156.2 \pm 0.7$ MeV [1],</td>
</tr>
<tr>
<td>$m_{B^*_c} = 6332 \pm 9$ MeV [14],</td>
<td>$f_{B^*_c} = 422 \pm 13$ MeV [15]c,</td>
</tr>
<tr>
<td>$a_1^K (1$ GeV$) = -0.06 \pm 0.03$ [16],</td>
<td>$f_{Y(1S)} = 676.4 \pm 10.7$ MeV [17],</td>
</tr>
<tr>
<td>$a_2^K (1$ GeV$) = 0.25 \pm 0.15$ [16],</td>
<td>$f_{Y(2S)} = 473.0 \pm 23.7$ MeV [17],</td>
</tr>
<tr>
<td>$a_2^K (1$ GeV$) = 0.25 \pm 0.15$ [16],</td>
<td>$f_{Y(3S)} = 409.5 \pm 29.4$ MeV [17].</td>
</tr>
</tbody>
</table>

cThe decay constant $f_{B^*_c}$ cannot be extracted from the experimental data because of no measurement on B^*_c weak decay at the present time. Theoretically, the value of $f_{B^*_c}$ has been estimated, for example, in [18], with the QCD sum rules. From Table 3 of [18], one can see that the value of $f_{B^*_c}$ is model-dependent. In our calculation, we will take the latest value given by the lattice QCD approach [15] just to offer an order of magnitude estimation on branching ratio for $Y(nS) \to B^*_c P$ decays.

Table 3: Branching ratio for $Y(nS) \to B^*_c P$ decays.

<table>
<thead>
<tr>
<th>Modes</th>
<th>$Y(1S) \to B^*_c \pi$</th>
<th>$Y(2S) \to B^*_c \pi$</th>
<th>$Y(3S) \to B^*_c \pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{15} \times Br$</td>
<td>$4.35^{+0.29}_{-0.24} \times 10^{-19}$</td>
<td>$2.28^{+0.13+0.26}_{-0.03-0.35} \times 10^{-19}$</td>
<td>$2.14^{+0.12+0.09}_{-0.13-0.41} \times 10^{-19}$</td>
</tr>
<tr>
<td>Modes</td>
<td>$Y(1S) \to B^*_c K$</td>
<td>$Y(2S) \to B^*_c K$</td>
<td>$Y(3S) \to B^*_c K$</td>
</tr>
<tr>
<td>$10^{15} \times Br$</td>
<td>$3.45^{+0.23}_{-0.21} \times 10^{-19}$</td>
<td>$1.91^{+0.11+0.07}_{-0.09-0.35} \times 10^{-19}$</td>
<td>$1.65^{+0.09+0.08}_{-0.21-0.33} \times 10^{-19}$</td>
</tr>
</tbody>
</table>
93% (97%) contributions come from $\alpha_s/\pi \leq 0.2$ (0.3) region, implying that $Y(nS) \rightarrow B_c^+\pi$ decay is computable with the pQCD approach. As the discussion in [2–4], there are many factors for this, for example, the choice of the typical scale, retaining the quark transverse moment and introducing the Sudakov factor to suppress the nonperturbative contributions, which deserve much attention and further investigation.

(3) Because of the relations among masses $m_{Y(3S)} > m_{Y(1S)} > m_{Y(1S)}$ resulting in the fact that phase space increases with the radial quantum number n in addition to the relations among decay widths $\Gamma_{Y(3S)} < \Gamma_{Y(1S)}$, in principle, there should be relations among branching ratios $\mathcal{B}(Y(3S) \rightarrow B_c^+P) > \mathcal{B}(Y(2S) \rightarrow B_c^+P) > \mathcal{B}(Y(1S) \rightarrow B_c^+P)$ for the same pseudoscalar meson P. But the numerical results in Table 3 are beyond such expectation. Why? The reason is that the factor of $p/m_{Y(nS)}^2$ in (16) has almost the same value for $n \leq 3$, so branching ratio is proportional to factor $f_{Y(nS)}^2/\Gamma_{Y(nS)}$ with the maximal value $f_{Y(3S)}^2/\Gamma_{Y(3S)}$ for $n \leq 3$. Besides, contributions from $\alpha_s/\pi \in [0.2, 0.3]$ regions decrease with n (see Figure 3), which enhance the decay amplitudes.

(4) Besides the uncertainties listed in Table 3, other factors, such as the models of wave functions, contributions of higher order corrections to HME, and relativistic effects, deserve the dedicated study. Our results just provide an order of magnitude estimation.

4. Summary

$Y(nS)$ decay via the weak interaction, as a complementary to strong and electromagnetic decay mechanism, is allowable within the standard model. Based on the potential prospects of $Y(nS)$ physics at high-luminosity collider experiment, $Y(nS)$ decay into $B_c^+\pi$ and B_c^+K final states is investigated with the pQCD approach firstly. It is found that (1) the dominant contributions come from perturbative regions $\alpha_s/\pi \leq 0.3$, which might imply that the pQCD calculation is practicable and workable; (2) there is a promising possibility of searching for $Y(nS) \rightarrow B_c^+\pi (B_c^+K)$ decay with branching ratio about 10^{-10} (10^{-11}) at the future experiments.

Appendix

Building Blocks for $Y \rightarrow B_c^+P$ Decays

The building blocks \mathcal{A}_i, where the superscript j corresponds to indices of Figure 2 and the subscript i relates to different helicity amplitudes, are expressed as follows:

$$\mathcal{A}_L = \int_0^1 dx_1 \int_0^1 dx_2 \int_0^{\infty} b_1 db_1$$

$$\cdot \int_0^{\infty} b_2 db_2 H_{ab}(\alpha_c, \beta_a, b_1, b_2) E_{ab}(t_a) \phi^V_{\eta}(x_1)$$

$$\cdot \alpha_s(t_a) a_1(t_a) \phi^V_{\eta}(x_2) \left[m_1^2 s - (4m_1^2 p^2 + m_2^2 u) \mathbf{x}_2 \right]$$

$$+ \phi^T_{\eta}(x_2) m_1 m_2 \left(u x_1 - s x_2 - 2m_2^2 \mathbf{x}_3 \right)$$

$$\cdot \delta(b_1 - b_2),$$
The function \(H_t \) is defined as follows [17]:
\[H_{ab} (\alpha_x, \beta, b_1, b_f) = K_0 \left(\sqrt{-\alpha_x b_1} \right) \]
\[\cdot \left\{ \theta (b_f - b_1) K_0 \left(\sqrt{-\beta b_1} \right) I_0 \left(\sqrt{-\beta b_1} \right) \right\}, \quad \text{ } (A.2) \]

where \(I_0 \) and \(Y_0 \) \((I_0 \text{ and } K_0)\) are the (modified) Bessel function of the first and second kind, respectively; \(\alpha_x \) \((\alpha_y)\) is the gluon virtuality of the emission (annihilation) topological diagrams; the subscript of the quark virtuality \(\beta_1 \) corresponds to the indices of Figure 2. The definition of the particle virtuality is listed as follows [17]:
\[\alpha = x_1^2 m_1^2 + x_2^2 m_2^2 - x_i x_j \]
\[\beta_a = m_1^2 - m_b^2 + x_3^2 m_2^2 - x_3 t, \quad \beta_b = m_1^2 - m_b^2 + x_1^2 m_2^2 - x_1 t, \quad \beta_c = x_1^2 m_1^2 + x_2^2 m_2^2 + x_3^2 m_3^2 - x_1 x_2 t - x_1 x_3 u \]
\[+ x_2 x_3 s, \quad \beta_d = x_1^2 m_1^2 + x_2^2 m_2^2 + x_3^2 m_3^2 - x_1 x_2 t - x_1 x_3 u \]
\[+ x_2 x_3 s. \] \quad \text{ } (A.3) \]

The typical scale \(t_i \) and the Sudakov factor \(E_i \) are defined as follows, where the subscript \(i \) corresponds to the indices of Figure 2:
\[t_{a(b)} = \max \left(\sqrt{-\alpha}, \sqrt{-\beta_{a(b)}}, \frac{1}{b_1}, \frac{1}{b_2} \right), \quad \text{ } (A.4) \]
\[t_{c(d)} = \max \left(\sqrt{-\alpha}, \sqrt{|\beta_{c(d)}|}, \frac{1}{b_1}, \frac{1}{b_2} \right), \quad \text{ } (A.5) \]
\[E_{a(b)} (t) = \exp \left\{ -S_{a(b)} (t) \right\}, \quad \text{ } (A.6) \]
\[E_{c(d)} (t) = \exp \left\{ -S_{c(d)} (t) \right\}, \quad \text{ } (A.7) \]
\[S_{a} (t) = s \left(x_1, p_1^{+}, \frac{1}{b_1} \right) + 2 \int_{1/b_1} \frac{d\mu}{\mu} \gamma_q, \quad \text{ } (A.8) \]
\[S_{b} (t) = s \left(x_2, p_2^{+}, \frac{1}{b_2} \right) + 2 \int_{1/b_2} \frac{d\mu}{\mu} \gamma_q, \quad \text{ } (A.9) \]

where \(x_i = 1 - x_j \); variable \(x_i \) is the longitudinal momentum fraction of the valence quark; \(b_i \) is the conjugate variable of the transverse momentum \(k_{i,2} \); and \(\alpha (t) \) is the QCD coupling at the scale of \(t \); \(\alpha_i = C_1 + C_2 / N_c \).
\[S_{\pi, K}(t) = s\left(x_3, p^s_3, \frac{1}{b_3}\right) + s\left(x_3, p^s_3, \frac{1}{b_3}\right) + 2 \int_{1/b_3}^{t} \frac{d\mu}{\mu} \gamma_3^{s} \] (A.10)

where \(\gamma_3 = -\alpha_e/\pi \) is the quark anomalous dimension; the explicit expression of \(s(x, Q, 1/b) \) can be found in the appendix of [2].

Competition Interests
The authors declare that there are no competing interests related to this paper.

Acknowledgments
The work is supported by the National Natural Science Foundation of China (Grant nos. 11547014, 11475055, U1332103, and 11275057).

References