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Abstract. 
We investigate the validity of generalized second law of thermodynamics of a physical system comprising newly proposed dark energy model called Ricci-Gauss-Bonnet and cold dark matter enveloped by apparent horizon and event horizon in flat Friedmann-Robertson-Walker (FRW) universe. For this purpose, Bekenstein entropy, Renyi entropy, logarithmic entropy, and power law entropic corrections are used. It is found that this law exhibits the validity on both apparent and event horizons except for the case of logarithmic entropic correction at apparent horizon. Also, we check the thermodynamical equilibrium condition for all cases of entropy and found its vitality in all cases of entropy.



1. Introduction
The revelation of black holes thermodynamics motivated the physicist to examine the thermodynamics of cosmological models in accelerated expanding universe [1–3]. Bekenstein and Hawking determined that the entropy of black hole is proportional to its event horizon [4, 5] which leads to important law named generalized second law of thermodynamics (GSLT) for black hole physics. This law can be defined as the entropy of black hole and its exterior is always increasing. The primitive level of thermodynamics properties of horizons is exhibited by considering Einstein field equations as an alternate of first law of thermodynamics [6, 7]. Gibbons and Hawking developed the Beckenstein’s idea for cosmological system by exhibiting that the entropy of cosmological event horizon is proportional to horizon area [8]. They represented the equality of apparent horizon and event horizon for de Sitter universe. The validity of GSLT was deeply studied later [9–11]. GSLT in cosmological scenario implies that the rate of change of entropy of horizon along with that of fluid inside it will always be greater than or equal to zero. Its mathematical expression is
In addition, the holographic dark energy (HDE) is an interesting effort in exploring the nature of dark energy in the framework of quantum gravity. This model is motivated from the fundamental holographic principle that arises from black hole thermodynamics and string theory [12–15]. HDE fascinated a large amount of research despite some objections [16, 17]. The choice of the length scale  appearing in the holographic dark energy density  gives rise to different dark energy models. One of the crucial models is holographic Ricci dark energy model which is developed by assuming IR length scale as the average radius of Ricci scalar curvature,  [18–20]. Moreover, its modified form is also presented and discussed widely [21–23].
Further, Wang et al. [24] observed that GSLT is verified at apparent horizon but not at event horizon for a specific model of dark energy. In case of new holographic dark energy, GSLT is valid fully on apparent horizon but partially on event horizon of universe [25]. The breakdown of GSLT was argued in case of event horizon enveloping the universe as compared to apparent horizon [26]. Setare [27] has derived the constraints on deceleration parameter in order to fulfill GSLT in case of nonflat universe enveloped by event horizon. The GSLT of thermodynamics has also been analyzed in case of Braneworld [28, 29] and generally Levelock gravity [30].
Moreover, modified matter part of Einstein Hilbert action results in dynamical models such as cosmological constants, quintessence, -essence, Chaplygin gas, and holographic dark energy (HDE) models [31–39]. Moreover, several modified theories of gravity are ,   [40–42],  [43, 44],  [45–47],  [48–53], and  [54, 55] (where  is the curvature scalar,  denotes the torsion scalar,  is the trace of the energy momentum tensor, and  is the invariant of Gauss-Bonnet defined as ). For clear review of DE models and modified theories of gravity, see [39]. Some authors [56–66] have also discussed various DE models in different frameworks and found interesting results.
Recently, Saridakis [67] proposed Ricci-Gauss-Bonnet holographic dark energy in which Infrared cutoff consists of both Ricci scalar and the Gauss-Bonnet invariant. Such a construction has the significant advantage that the Infrared cutoff and consequently the HDE density do not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. This model has IR cutoff form as  where  and  are model parameters. In flat FRW geometry, the Ricci scalar  and the Gauss-Bonnet invariant () are given as  and , respectively [67].
In the present work, we examine the validity of GSLT by assuming various forms of entropy on apparent and event horizons. We have also examined whether each entropy attain maximum (thermodynamic equilibrium) by satisfying the condition . The plan of the paper is as follows. In Sections 2 and 3, we have examined the validity of GSLT as well as thermal equilibrium condition at apparent and event horizons, respectively. The results are summarized in the last section.
2. Generalized Second Law of Thermodynamics at Apparent Horizon
According to GSLT, the entropy of horizon and entropy of matter resources inside horizon does not decrease with respect to time. Following (1), we can writeHere  gives entropy of horizon and entropy of matter inside horizon is represented by . Now considering spatially flat FRW universe, the first Friedmann equation isHere  and  are effective density and pressure, respectively. We have made the following two assumptions: (i) an entropy is associated with the horizon in addition to the entropy of the universe inside the horizon and (ii) according to the local equilibrium hypothesis, there is no spontaneous exchange of energy between the horizon and fluid inside. Moreover, Gibb’s equation can be written asHere ,  , and  which modified the above equation as follows:For flat FRW universe, the Hubble horizon can be defined asBy utilizing the above horizon,  (for cold dark matter ) and  in (5), we can getFrom conservation equation, one can obtainSubstituting the value of  in (7), we getMoreover, Ricci-Gauss Bonnet dark energy can be defined as follows [67]:Here  and  are the model parameters. Standard Ricci dark energy can be obtained by substituting  and  yields a pure Gauss-Bonnet HDE. The density parameters can be introduced asAccording to first Friedman equation, we can obtainAlso,  can be evaluated by using conservation equation as follows:with . By using this value of ,   takes the following form:Using (12) and (14), we can find  asDifferentiating , we obtainwhere prime denotes the differentiation with respect to . Also, differentiation of  with respect to  leads toWe get the following value of  by differentiating (11):Now,  takes the formAlso, Friedman first equation gives  and hence we can writeBy inserting (6) in above equation, we haveBy using value of  from (19), we get Next, we will discuss the various expressions of entropy-area relations in order analyze the validity of GSLT on Hubble horizon.
2.1. Bekenstein Entropy
The Bekenstein entropy is given byBy using , and  being the area of horizon, we getBy using the expressions of  and , we haveEquations (22) and (25) join to form where  represents the total entropy; that is, .
Now, we assume the power law form of scale factor; that is, , where  and  appear as constant parameters. Under this assumption, the values of  and  turn out to be ,   respectively. In this way,  reduces to where . In order to analyze the clear picture of validity of GSLT for this entropy on the Hubble horizon, we plot  against cosmic time  by fixing constant parameters as ,  , and  as shown in Figure 1. This shows that  remains positive with increasing value of  which confirms the validity of GSLT at apparent horizon with Bekenstein entropy.




	
	
		
		
			
		
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
				
	


Figure 1: Plot of  by taking Bekenstein entropy as entropy at apparent horizon, where time is measured in seconds.


To examine the thermodynamic equilibrium, we differentiate (27) to get  given below We plot  versus  in Figure 2 which shows that  for the selected range of . Hence, thermal equilibrium condition is satisfied for Bekenstein entropy at apparent horizon.




	
	
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
	


Figure 2: Plot of  by taking Bekenstein entropy as entropy at apparent horizon.


2.2. Logarithmic Corrections to Entropy
Logarithmic corrections arises from loop quantum gravity due to thermal equilibrium and quantum fluctuations [68–74]. The entropy on apparent horizon can be defined as follows:where , , and  are dimensionless constants. Differentiating with respect to , we getwhich takes the following form by inserting value of  from (19):
In the presence of logarithmic entropy,  can be obtained by using (22) and (31):
 By substituting value of scale factor, the above equation reduces to Differentiating the above equation, we getFigure 3 presents the plot of  at apparent horizon by taking logarithmic entropy at apparent horizon. Here we have taken  and  along with the same values of ,  , and  as in the above-mentioned case. Here  remains negative for  while it moves in positive direction . Hence, validity of GSLT is verified for  at apparent horizon with logarithmic entropy. Figure 4 shows that  with increasing value of  and . Hence, for logarithmic entropy at apparent horizon, the condition of thermal equilibrium is satisfied.




	
	
		
			
		
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
				
			
				
		
		
			
		
			
	


Figure 3: Plot of  by taking Logarithmic entropy as entropy at apparent horizon, where time is measured in second.






	
	
		
			
		
		
			
				
			
			
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
				
			
			
				
			
				
		
		
			
		
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
			
			
				
			
				
		
		
			
		
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
		
		
			
		
			
	


Figure 4: Plot of  by taking Logarithmic entropy as entropy at apparent horizon, where time is measured in second.


2.3. Renyi Entropy
A novel type of Renyi entropy was recommended by Biro and Czinner [75] on black hole horizons by considering Bekenstein-Hawking entropy as nonextensive Tsalis entropy. The modified Renyi entropy can be defined as [76]It behaves as Bekenstein entropy for . Differentiating with respect to , we obtainUsing (19) in the above equation, we getCombine (22) and (37) to get For power law scale factor, we obtain The plot of  by taking Renyi entropy at apparent horizon is presented by Figure 5. Here ,  , and  have the same values like previous case and . In this case,  behaves positively with the passage of time which verifies the validity of GSLT for the present case. Further, differentiating the above equation, we getThe plot of this expression is shown in Figure 6 which shows that  for  with the passage of time. Hence, the condition for thermal equilibrium is satisfied in case of Renyi entropy at apparent horizon.




	
	
		
			
		
		
			
				
			
				
			
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
			
			
			
			
			
			
			
			
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
	


Figure 5: Plot of  by taking Renyi entropy as entropy at apparent horizon, where time is measured in seconds.






	
	
		
			
		
		
			
				
			
				
			
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
			
				
			
				
			
				
			
				
		
		
			
		
			
				
		
		
			
		
		
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
				
			
				
			
				
		
		
			
		
		
			
				
			
				
			
				
			
		
		
			
		
		
			
			
				
			
				
			
		
		
			
		
		
			
			
			
			
			
			
			
			
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
			
				
		
		
			
	


Figure 6: Plot of  by taking Renyi entropy as entropy at apparent horizon, where time is measured in seconds.


2.4. Power Law Entropic Correction
The power law corrections to entropy appear in dealing with entanglement of quantum fields in and out of the horizon [77]. The corrected entropy takes the form [78]with ;   is crossover length and  appears as a constant.Utilization of (19) in the above equation leads to Join (22) and (43) to obtain In the presence of scale factor, the above expression turns out to be By taking power Law entropy at apparent horizon,  is plotted at apparent horizon as shown in Figure 7. With the same values for ,  , and , we have taken  and . Here the effectiveness of GSLT at apparent horizon is certified by positive moves of  with increasing . Differentiating the above equation, we get Just like the above-mentioned three cases, in case of power law entropy at apparent horizon, the condition for thermal equilibrium is satisfied with the passage of cosmic time as shown in Figure 8.




	
	
		
		
			
		
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 7: Plot of  by taking power law entropy as entropy at apparent horizon, where time is measured in seconds.






	
	
		
		
			
		
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 8: Plot of  by taking power law entropy as entropy at apparent horizon, where time is measured in seconds.


3. Generalized Second Law of Thermodynamics at Event Horizon
In this section, we study GSL of thermodynamics at event horizon which is defined as . Its derivative with respect to time is given by . The temperature we used in this section is , where  is a constant. For the present case, rewriting (4) by using value of  and , we have the following equation for entropy inside horizon:
3.1. Bekenstein Entropy
Under this scenario, (24) can be written asThe equation for  can be obtained by using (43) and (48) as follows:By putting values of scale factor and  in the above equation, we haveDifferentiating the above equation with respect to , we get
Figure 9 contains the plot of  by taking Bekenstein entropy at event horizon. Here we have taken ,  , and . It is clear from figure that  remains positive with increasing value of . This confirms the validity of GSLT at event horizon with Bekenstein entropy. Figure 10 shows that  for increasing values of . Hence, at event horizon, the Bekenstein entropy fulfilled the condition of thermodynamic equilibrium.




	
	
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 9: Plot of  by taking Bekenstein entropy as entropy at event horizon, where time is measured in seconds.






	
	
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
		
			
		
		
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
			
		
			
	


Figure 10: Plot of  by taking Bekenstein entropy as entropy at event horizon.


3.2. Logarithmic Entropy
For this entropy at event horizon, (29) leads toBy using (47) and (52), the expression of  can be written asThe following equation is obtained by using values of scale factor and Differentiating the above equation with respect to , we obtain
Figure 11 presents the plot of  by taking logarithmic entropy at event horizon. Here we have taken  and  along with the same values of ,  , and  as in the above-mentioned case. Clearly,  moves in positive direction as value of  increases. The validity of GSLT is verified at event horizon in the presence of logarithmic entropy. From Figure 12, we can see that  for . Hence, for this case, thermodynamic equilibrium condition holds.




	
	
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 11: Plot of  by taking logarithmic entropy as entropy at event horizon, where time is measured in seconds.






	
	
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 12: Plot of  by taking logarithmic entropy as entropy at event horizon, where time is measured in seconds.


3.3. Renyi Entropy
The following form is obtained from (34), by substituting value for :Joining (47) and (56), we getBy using values of scale factor and , the above equation reduces toDifferentiating the above equation with respect to , we getThe plot of  for Renyi entropy at event horizon is presented in Figure 13.




	
	
		
		
			
		
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 13: Plot of  by taking Renyi entropy as entropy at event horizon.


Here ,  , and  have the same values like the previous case while . In this case,  behaves positively with the passage of time which verifies the validity of GSLT. Figure 14 shows that the trajectories of  remain negative for increasing of  with . This means that the present scenario obeys the condition for thermodynamic equilibrium.




	
	
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 14: Plot of  by taking Renyi entropy as entropy at event horizon.


3.4. Power Law Entropy
Under conditions of present section, (41) reduces toJoining (47) and (60), we get the following equation:Inserting conditions for scale factor and  in the above equation, we get
 The plot of this expression is displayed in Figure 15 with the same values for ,  , and  while  and . Here the effectiveness of GSLT at event horizon is certified by positive moves of  with increasing . Differentiating with respect to , we obtainFigure 16 shows that the present scenario fulfils the thermodynamic equilibrium condition for power law entropy at event horizon.




	
	
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 15: Plot of  by taking power law entropy as entropy at event horizon.






	
	
		
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
			
	


Figure 16: Plot of  by taking power law entropy as entropy at event horizon.


4. Conclusion
The concept of thermodynamics in cosmological system originates through black hole physics. It was suggested [79] that the temperature of Hawking radiations emitting from black holes is proportional to their corresponding surface gravity on the event horizon. Jacobson [80] found a relation between thermodynamics and the Einstein field equations. He derived this relation on the basis of entropy-horizon area proportionality relation along with first law of thermodynamics (also called Clausius relation) , where , , and  indicate the exchange in energy, temperature, and entropy change for a given system. It was shown that the field equations for any spherically symmetric spacetime can be expressed as  (, and  represent the internal energy, pressure, and volume of the spherical system) for any horizon [81]. By utilizing this relation, GSLT has been studied extensively in the scenario of expanding behavior of the universe. In order to discuss GSLT, horizon entropy of the universe can be taken as one quarter of its horizon area [82] or power law corrected [83–85] or logarithmic corrected [86] forms. Many people have explored the validity of GSLT of different systems including interaction of two fluid components like DE and dark matter [87–90], as well as interaction of three components of fluid [91–93] in the FRW universe by using simple horizon entropy of the universe. The thermodynamical analysis was widely performed in modified theories of gravity [94–97].
Motivated by the above-mentioned works, we have considered a newly proposed DE model named Ricci-Gauss-Bonnet DE in flat FRW universe. We have developed thermodynamical quantities and analyzed the validity of GSLT and thermodynamic equilibrium. For dense elaboration of thermodynamics of present DE model, we have assumed various entropy corrections such as Bekenstein entropy, logarithmic corrected entropy, Renyi entropy, and power law entropy at apparent horizon as well as event horizon of the universe. We have found that GSLT holds for all cases of entropies as well as horizons. Also, thermal equilibrium condition was satisfied under certain conditions on constant parameters. The detailed results are as follows.
On Apparent Horizon. By utilizing usual entropy, GSLT on the apparent horizon was shown in Figure 1 which shows that  remains positive with increasing value of  and confirms its validity. Figure 2 has also indicated that thermal equilibrium condition is satisfied for Bekenstein entropy at apparent horizon. For logarithmic corrected entropy, GSLT on apparent horizon was displayed in Figure 3 which exhibits that GSLT remains valid for . However, Figure 4 shows that  with increasing value of  and . Hence, for logarithmic entropy at apparent horizon, the condition of thermal equilibrium is satisfied.
The plot of  by taking Renyi entropy at apparent horizon was displayed in Figure 5 which behaves positively with the passage of time and exhibits the validity of GSLT. Also, for this entropy, the condition for thermal equilibrium has been satisfied in case of Renyi entropy at apparent horizon (Figure 6). By taking power law entropy at apparent horizon,  is plotted at apparent horizon as shown in Figure 7. Here the effectiveness of GSLT at apparent horizon is certified by positive moves of  with increasing . Just like the above-mentioned three cases, in case of power law entropy at apparent horizon, the condition for thermal equilibrium is satisfied with the passage of cosmic time as shown in Figure 8.
On Event Horizon. It has been observed from Figure 9 that GSLT remains valid at event horizon with Bekenstein entropy. Also, at event horizon, the Bekenstein entropy fulfilled the condition of thermodynamic equilibrium (Figure 10). The validity of GSLT is verified at event horizon in the presence of logarithmic entropy (Figure 11). From Figure 12, we can see that  for  which leads to the validity of thermal equilibrium condition.
The plot of  for Renyi entropy at event horizon is presented in Figure 13. It is observed that  behaves positively with the passage of time which verifies the validity of GSLT. Figure 14 shows that the trajectories of  remain negative for increasing of  with . This means that the present scenario obeys the condition for thermodynamic equilibrium. The plot of  for power law corrected entropy is displayed in Figure 15 and observe that GSLT holds in this case. Figure 16 shows that the present scenario fulfils the thermodynamic equilibrium condition for power law entropy at event horizon.
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