Research Article

Cosmological Implications of the Generalized Entropy Based Holographic Dark Energy Models in Dynamical Chern-Simons Modified Gravity

M. Younas,1 Abdul Jawad1, Saba Qummer,1 H. Moradpour2, and Shamaila Rani1

1Department of Mathematics, COMSATS University Islamabad, Lahore Campus-54000, Pakistan
2Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha, Iran

Correspondence should be addressed to Abdul Jawad; abduljawad@cuilahore.edu.pk

Received 28 August 2018; Revised 8 November 2018; Accepted 5 December 2018; Published 8 January 2019

Copyright © 2019 M. Younas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed) and cosmological plane ($\omega_d - \omega'\omega$, where $\omega'\omega$ is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The $\omega_d - \omega'\omega$ plane represents the thawing region for all dark energy models.

1. Introduction

In the last few years, remarkable progress has been achieved in the understanding of the universe expansion. It has been approved by current observational data that the universe undergoes an accelerated expansion. The observations of type Ia Supernovae (SNeIa) [1–4], large scale structure (LSS) [5–8], and Cosmic Microwave Background Radiation (CMBR) [9, 10] determined that the expansion of the universe is currently accelerating. There is also consensus that this acceleration is generally believed to be caused by a mysterious form of energy or exotic matter with negative pressure so called dark energy (DE) [11–21].

The discovery of accelerating expansion of the universe is a milestone for cosmology. It is considered that 95% of our universe is composed of two components, that is DE and dark matter [16]. The dark matter constitutes about 25% of the total energy density of the universe. The existence of the universe is proved by astrophysical observation but the nature of dark matter is still unknown. Mainly the DE is also a curious component of our universe. It is responsible for current accelerating universe and DE is entirely different from baryonic matter. DE constitutes almost 70% of the total energy density of our universe.

In order to describe the accelerated expansion phenomenon, two different approaches have been adopted. One is the proposal of various dynamical DE models such as family of Chaplygin gas, holographic dark energy, quintessence, K-essence, and ghost [16]. A second approach for understanding this strange component of the universe is modifying the standard theories of gravity, namely, general relativity (GR). Several modified theories of gravity are $f(R)$, $f(T)$ [17], $f(R, T)$ [18], and $f(G)$ [19], where R is the curvature scalar, T denotes the torsion scalar, T is the trace of the energy-momentum tensor, and G is the invariant of Gauss-Bonnet.

Holographic DE (HDE) model is favorable technique to solve DE mystery which has attracted much attention and is based upon the holographic principle that states the number of degrees of freedom of a system scales with its area instead of its volume. In fact, HDE relates the energy
density of quantum fields in vacuum (as the DE candidate) to the infrared and ultraviolet cut-offs. In addition, HDE is an interesting effort in exploring the nature of DE in the framework of quantum gravity. Cohen et al. [22] reported that the construction of HDE density is based on the relation with the vacuum energy of the system whose maximum amount should not exceed the black hole mass. Cosmological consequences of some HDE models in the dynamical Chern-Simons framework, as a modified gravity theory, can be found in [23].

By considering the long term gravity with the nature of spacetime, different entropy formalism has been used to observe the gravitational and cosmological effects [24–29]. The HDE models such as Tsallis HDE (THDE) [27], Rényi HDE model (RHDE) [28], and Sharma-Mittal HDE (SMHDE) [29] have been recently proposed. In the standard cosmology framework and from the classical stability view of point, while THDE is not stable [27], RHDE is stable during the cosmic evolution [28] and SMHDE is stable only whenever it becomes dominant in the world [29]. In the present work, we use the Tsallis, Sharma-Mittal, and Rényi entropies in the framework of dynamical Chern-Simons modified gravity and consider an interaction term. We investigate the different cosmological parameters such as equation of state parameter and the cosmological constant, cosmological plane, and squared of sound speed for THDE and SMHDE models, respectively. In the last section, we conclude the results.

2. Dynamical Chern-Simons Modified Gravity

In this section, we give a review of dynamical Chern-Simons modified gravity. The action which describes the Chern-Simons modified gravity is given as

\[
S = \frac{1}{16\pi G} \left[d^4 x \left[\sqrt{-g} R + \frac{1}{4} \theta^2 R_{\mu
u}^\rho_{\mu
u} \right. \right. \\
- \left. \left. \frac{1}{2} g^{\mu
u} \theta \nabla_{\mu} \theta + V(\theta) \right] + S_{\text{mat}} \right],
\]

(1)

where \(R \) represents the Ricci scalar, \(R_{\mu
u}^\rho_{\mu\nu} \) is a topological invariant called the Pontryagin term, \(\theta \) is a coupling constant, \(V(\theta) \) is the potential term. In the case of string theory, we use \(V(\theta) = 0 \). By varying the action equation with respect to \(g_{\mu\nu} \) and the scalar field \(\theta \), we get the following field equations:

\[
G_{\mu\nu} + IC_{\mu\nu} = 8\pi G T_{\mu\nu},
\]

\[
g^{\alpha\beta} \nabla_{\alpha} \nabla_{\beta} \theta = -\frac{1}{64\pi} * R^{\rho\mu\nu \rho_{\mu\nu}}.
\]

(2)

Here, \(G_{\mu\nu} \) and \(C_{\mu\nu} \) are Einstein tensor and Cotton tensor, respectively. The Cotton tensor \(C_{\mu\nu} \) is defined as

\[
C_{\mu\nu} = -\frac{1}{2\sqrt{-\theta}} \left((\nabla_{\alpha} \theta) e^{\theta \gamma \delta \nu \nabla_{\gamma} R_{\delta}^{\beta} \right) + \left(\nabla_{\alpha} \nabla_{\beta} \theta \right) * R^{\rho(\mu\nu)}.
\]

(3)

The energy-momentum tensor is given by

\[
\tilde{T}_{\mu\nu} = \nabla_{\mu} \nabla_{\nu} \theta - \frac{1}{2} g_{\mu\nu} \nabla^{\sigma} \nabla_{\sigma} \theta,
\]

\[
T_{\mu\nu} = (\rho + p) u_{\mu} u_{\nu} + p g_{\mu\nu},
\]

(4)

where \(T_{\mu\nu} \) shows the scalar field contribution and \(\tilde{T}_{\mu\nu} \) represents the pressure contribution, while \(P \) and \(\rho \) represent the pressure and energy density, respectively. Furthermore, \(u_{\mu} = (1, 0, 0, 0) \) is the four velocity. In the framework of Chern-Simons gravity, we get the following Friedmann equation:

\[
H^2 = \frac{1}{3} (\rho_m + \rho_d) + \frac{1}{6} \dot{\theta}^2,
\]

(5)

where \(H = \dot{a}/a \) is the Hubble parameter and the dot represents the derivative of \(a \) with respect to \(t \) and \(8\pi G = 1 \). For FRW spacetime, the ponying term \(\star RR \) vanishes identically; therefore, the scalar field in (2) takes the following form:

\[
g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \theta = g^{\mu\nu} \left[\partial_{\mu} \partial_{\nu} \theta \right] = 0.
\]

(6)

We set \(\theta = \theta(t) \) and get the following equation:

\[
\ddot{\theta} + 3H \dot{\theta} = 0,
\]

(7)

which implies that \(\dot{\theta} = b a^{-3} \), \(b \) is a constant of integration. Using this result in (5), we have

\[
H^2 = \frac{1}{3} (\rho_m + \rho_d) + \frac{1}{6} b^2 a^{-6}.
\]

(8)

We consider the interacting scenario between DE and dark matter and thus equation of continuity turns to the following equations:

\[
\dot{\rho}_m + 3H\rho_m = Q,
\]

\[
\dot{\rho}_d + 3H(\rho_d + p_d) = -Q.
\]

(9)

(10)

Here, \(\rho_d \) is the energy density of the DE, \(\rho_m \) is the energy density of the pressureless matter, and \(Q \) is the interaction term. Basically, \(Q \) represents the rate of energy exchange between DE and dark matter. If \(Q > 0 \), it shows that energy...
is being transferred from DE to the dark matter. For \(Q < 0 \),
the energy is being transferred from dark matter to the DE.
We consider a specific form of interaction which is defined
as \(Q = 3H\dot{d}^2\rho_m + d^2 \) interacting parameter which shows
the energy transfers between CDM and DE. If we take \(d = 0 \),
then it shows that each component, that is, the nonrelativistic
matter and DE, is self-conserved. Using the value of \(Q \) in (9)
we have
\[
\rho_m = \rho_0 a^{-3(1 - d^2)}, \tag{11}
\]
where \(\rho_0 \) is an integration constant. Hence, (10) finally leads
to the expression for pressure as follows:
\[
\rho_d = -\left(d^2 \rho_m + \rho_d + \frac{\dot{\rho}_d}{3H} \right), \tag{12}
\]

The **EoS parameter** is used to categorize the decelerated
and accelerated phases of the universe. This parameter is defined
as
\[
\omega = \frac{\rho_d}{\rho_m}. \tag{13}
\]
If we take \(\omega = 0 \), it corresponds to nonrelativistic matter
and the decelerated phase of the universe involves radiation era
\(0 < \omega < 1/3 \), \(\omega = -1 \), \(-1 < \omega < -1/3 \), and \(\omega < -1 \) correspond
to the cosmological constant, quintessence, and phantom
eras respectively. To analyze the dynamical properties of the
DE models, we use \(\omega = \omega' \) plane [30]. This plane describes
the evolutionary universe with two different cases, freezing
region and thawing region. In the freezing region the values
of EoS parameter and evolutionary parameter are negative
(\(\omega < 0 \) and \(\omega' < 0 \)), while for the thawing region, the value
of EoS parameter is negative and evolutionary parameter is
positive (\(\omega < 0 \) and \(\omega' > 0 \)). In order to check the stability of
the DE models, we need to evaluate the squared sound speed
which is given by
\[
v_s^2 = \frac{dp}{d\rho} = \frac{dp}{d\rho} = \frac{\dot{\rho}}{\rho}. \tag{14}
\]
The sign of \(v_s^2 \) decides its stability of DE models, when \(v_s^2 > 0 \),
the model is stable; otherwise, it is unstable.

3. Tsallis Holographic Dark Energy

The definition and derivation of standard HDE density are
given by \(\rho_d = 3c^2m_p^2/L^2 \), where \(m_p^2 \) represents reduced
Plank mass and \(L \) denotes the infrared cut-off. It depends
upon the entropy area relationship of black holes, i.e., \(S \sim A \sim L^2 \),
where \(A = 4\pi L^2 \) represents the area of the horizon.
Tsallis and Cirta [31] showed that the horizon entropy of
the black hole can be modified as
\[
S_\delta = \gamma L^{A}, \tag{15}
\]
where \(\delta \) is the nonadditivity parameter and \(\gamma \) is an unknown
constant [31]. Cohen at al. [22] proposed the mutual relation-
ship between IR (L) cut-off, system entropy (S), and UV (A)
cut-off as
\[
L^3 A^3 \leq (S)^{3/4}. \tag{16}
\]

\[\text{Figure 1: Plot of } \omega_\delta \text{ versus } z \text{ for THDE model where } \delta = 1.1, \rho_0 = 1, d^2 = 0.001, B = -1.3, b = 0.5.\]

After combining (15) and (16), we get the following relation:
\[
\Lambda^4 \leq \gamma (4\pi)^{\delta} L^{3-2\delta}, \tag{17}
\]
where \(\Lambda^4 \) is vacuum energy density and \(\rho_d \sim \Lambda^4 \). So, the
Tsallis HDE density [29] is given as
\[
\rho_d = BL^{2-2\delta}. \tag{18}
\]
Here, \(B \) is an unknown parameter and IR cut-off is taken as
Hubble radius which leads to \(L = 1/H \), where \(H \) is Hubble
parameter. The density of Tsallis HDE model along with its
derivative by using (18) becomes
\[
\rho_d = BH^{4-2\delta}, \tag{19}
\]
Here, \(H \) is the derivative of Hubble parameter w.r.t. \(t \). The
value of \(H \) is calculated in terms of \(z \) using \(a = 1/(1 + z) \)
which is given as follows.
\[
\frac{dH}{dz} = \frac{(1/z)\left(a_0 \left(1 - d^2 \right) (1 + z)^{3(1-d^2)} + b^2 (1 + z)^6 \right)}{\left(1 - (1/3) B (4 - 2\delta) H^{3-2\delta} H (1 + z) \right)} \tag{20}
\]
Inserting these values in (12) yields
\[
\rho_d = \frac{1}{3} \left[-3d^2 \rho_0 \sigma^{3(1-d^2)} - B H^{2-2\delta} \left(3H^2 + (4 - 2\delta) \dot{H} \right) \right]. \tag{21}
\]
The EoS is obtained from (13):
\[
\omega_d = \frac{\rho_d}{\rho_m} = -1 - \frac{d^2 \rho_0 \sigma^{3(1-d^2)} H^{2-2\delta}}{B} + \frac{(2\delta - 4) \dot{H}}{3H^2}. \tag{22}
\]
The plot of \(\omega_d \) versus \(z \) is shown in Figure 1. In this parameter
and further results, the function \(H(z) \) is being utilized
numerically. The other constant parameters are mentioned...
in Figure 1. The trajectory of EoS parameter remains in quintessence region at early, present, and latter epoch. The square of the sound speed is given by
\[V_s^2 = \frac{1}{6B(\delta - 2)a^4H^2} \left(9d^2(\delta^2 - 1)\rho_m a^3\delta^2 H^2d \right.
- \left. 2B(\delta - 2)a^4H \right)
\times \left(3H^2H - 2(\delta - 1)H^2 + H\dot{H} \right). \] (23)

The plot of squared sound speed versus \(z \) is shown in Figure 2 for different parametric values. This graph is used to analyze the stability of this model. We can see that \(V_s^2 > 0 \), for \(-0.6 < z < 1\) which corresponds to the stability of THDE model. However, the model shows instability for \(z < -0.6 \).

Taking the derivative of the EoS parameter with respect to \(\ln a \), we get \(\omega_d' \) as follows.

\[\omega_d' = \frac{1}{3Ba^4H^3} \left(-3a^2\delta^2\rho_m H^2(3(\delta^2 - 1)H\dot{a}
+ (2\delta - 4)\dot{H}) + 2B(\delta - 2)\times a^4H^2(-2\dot{H}^2
+ H\ddot{H}) \right). \] (24)

The graph of \(\omega_d \) versus \(\omega_d' \) is shown in Figure 3, for which \(\omega_d' \) depicts positive behavior. Hence, for \(\omega_d < 0 \), the evolution parameter shows \(\omega_d' > 0 \), which represents the thawing region of evolving universe.

4. Rényi Holographic Dark Energy Model

We consider a system with \(W \) states with probability of getting \(i^{th} \) state \(P_i \) and satisfying the condition \(\sum_{i=1}^{W} P_i = 1 \). Rényi and Tsallis entropies are defined as

\[S = \frac{1}{\delta} \ln \sum_{i=1}^{W} P_i^{1-\delta}, \]

\[S_T = \frac{1}{\delta} \sum_{i=1}^{W} \left(P_i^{1-\delta} - P_i \right). \] (25)

where \(\delta \equiv 1 - U \), where \(U \) is a real parameter. Now, combining the above equations, we find their mutual relation given as

\[\delta = \frac{1}{\delta} \ln \left(1 + \delta S_T \right). \] (26)

This equation shows that \(\delta \) belongs to the class of most general entropy functions of homogenous system. Recently, it has been observed that Bekenstein entropy, \(S = A/4 \), is in fact Tsallis entropy which gives the expression

\[S = \frac{1}{\delta} \ln \left(1 + \frac{A}{4} \right), \] (27)

which is the Rényi entropy of the system. Now for the RHDE, we focus on WMAP data for flat universe. Using the assumption \(\rho_d dV \propto TdS \), we can get RHDE density

\[\rho_d = \frac{3C^2H^2}{8\pi(1 + \delta\pi/\dot{H}^2)}. \] (28)

Considering the term \(8\pi = 1 \) and substituting in (28), we get the expression for density as

\[\rho_d = \frac{3C^2H^2}{1 + \delta\pi/\dot{H}^2}. \] (29)

Now, \(dH/dz \) is given by the following.

\[\frac{dH}{dz} = \frac{(1/2)\left(\rho_m(1 - d^2)(1 + z)^{3(1-d^2)} + b^2(1 + z)^6 \right)
- (1 - 2\delta H^2(z^2 + \delta\pi) - c^2H^4) / (H^2 + \delta\pi^2) H (1 + z) \}
\times (1 + \delta\pi/\dot{H}^2). \] (30)

The pressure for this case is obtained as

\[p_d = -d^2\rho_m a^{-3(1-d^2)}
+ \frac{c^2H^2(\pi\delta + H^2)^2 - 2(2\pi\delta + H^2)\dot{H}}{(\pi\delta + H^2)^2} \] (31)
The expressions for EoS parameter ω_d can be evaluated from (12) as follows:

$$
\omega_d = \left(\pi \delta + H^2 \right) \left(\frac{-d^2 \rho_{m0} a^{-3(1-d^2)}}{3c^2 H^4} \right)
$$

$$
- \left(\frac{3H^2 (\pi \delta + H^2) + 2(2\pi \delta + H^2) H}{3H^2 (\pi \delta + H^2)^2} \right).
$$

Figure 4 shows the plot of ω_d versus z. The trajectory of EoS parameter evolves the universe from quintessence region towards the ΛCDM limit. The squared sound speed of this RHDE model is given by using (13) as

$$
V_s^2 = \frac{3H \left(1 - d^2 \right) d^2 \rho_{m0} a^{-3(1-d^2)} (\pi \delta + H^2)^2}{6c^2 H^3 (2\pi \delta + H^2) H}
$$

$$
- \frac{1}{3H^2 (2\pi \delta + H^2) (\pi \delta + H^2)}
$$

$$
\times \left[H \left(6\pi^2 \delta^2 H^2 + 9\pi \delta H^4 + 3H^6 + 4\pi^2 \delta^2 H \right)
+ H\hat{H} \left(\pi \delta + H^2 \right) \times \left(2\pi \delta + H^2 \right) \right].
$$

The graph of squared sound speed is shown in Figure 5 versus z. In this case, we have $V_s^2 > 0$ for all ranges of z, which shows the stability of RHDE model at the early, present, and latter epoch of the universe.

The expression for ω_d' is evaluated as

$$
\omega_d' = \frac{1}{3c^2 d^4 H^6 (\pi \delta + H^2)^2} \left[-d^2 \rho_{m0} a^{-3d^2} (\pi \delta + H^2)^2 \right]
$$

$$
\times \left(3H \hat{a} \left(-1 + d^2 \right) \right)
$$

$$
\times \left(\pi \delta + H^2 \right) \times \left(2\pi \delta + H^2 \right)
$$

$$
+ 2c^2 a^4 H^2 \left(4\pi^2 \delta^2 + 8\pi \delta H^2 + 2H^4 \right) H^2 - 2H \left(\pi \delta + H^2 \right) \hat{H}. \right]
$$

In Figure 6, we plot the EoS parameter with its evolution parameter to discuss $\omega_d - \omega_d'$ plane for RHDE model. The graph shows that, for $\omega_d < 0$, the evolutionary parameter remains positive at the early, present, and latter epoch. This type of behavior depicts the thawing region of the evolving universe.

5. Sharma-Mittal Holographic Dark Energy Model

From the Rényi entropy, we have the generalized entropy content of the system. Using (26), Sharma-Mittal introduced a two-parametric entropy which is defined as

$$
S_{SM} = \frac{1}{1 - r} \left(\left(\sum_{i=1}^{W} p_i^{1-r/\delta} \right)^{1/r/\delta} - 1 \right), \quad (35)
$$

where r is a new free parameter. We can observe that Rényi and Tsallis entropies can be recovered at the proper limits; using (25) in (35), we have

$$
S_{SM} = \frac{1}{R} \left(1 + \delta S_{r}, \right)^{r/\delta} - 1, \quad (36)
$$
where \(R \equiv 1 - r \). Using the argument that Bekenstein entropy is the proper candidate for Tsallis entropy by using \(S = A/4 \), where \(A \) is horizon entropy, we get the following expression:

\[
S_{\text{SM}} = \frac{1}{R} \left(1 + \frac{\delta A}{4} \right)^{R/\delta} - 1,
\]

(37)

and the relation of UV (\(\Lambda \)) cut-off, IR (\(L \)) cut-off, and system horizon (\(S \)) is given as follows.

\[
A^4 \propto \frac{S}{L^4}
\]

(38)

Now, taking \(L \equiv 1/H = \sqrt{A/4\pi} \), then the energy density of DE given by Sharma-Mittal [29] is considered as

\[
\rho_d = \frac{3c^2 H^4}{8\pi R} \left[1 + \left(\frac{\delta \pi}{H^2} \right)^{R/\delta} - 1 \right],
\]

(39)

where \(c^2 \) is an unknown free parameter. Using \(8\pi = 1 \) in above equation, we get the following expression for energy density

\[
\rho_d = \frac{3c^2 H^4}{R} \left[1 + \left(\frac{\delta \pi}{H^2} \right)^{R/\delta} - 1 \right].
\]

(40)

The differential equation of \(H \) is given by the following.

\[
\frac{dH}{dz} = \frac{(1/2) \left(\rho_{m0} \left(1 - d^2 \right)(1 + z)^{3(1-d^2)} + b^2 (1 + z)^6 \right)}{1 + c^2 \pi \left(1 + (\delta \pi/H^2) \right)^{R/\delta} - 1 - (2c^2 H^2/R) \left((1 + \delta \pi/H^2)^{R/\delta} - 1 \right) H (1 + z)}
\]

(41)

The pressure can be evaluated by energy conservation (11) as follows:

\[
p_d = -d^2 \rho_{m0} a^{-3(1-d^2)}
\]

\[
- c^2 \left(3 \left(1 + \frac{\pi \delta}{H^2} \right)^{R/\delta} - 1 \right) H^4
\]

\[
- 2\pi \dot{H} \left(1 + \frac{\pi \delta}{H^2} \right)^{R/\delta - 1}
\]

\[
+ 4 \left(1 + \frac{\pi \delta}{H^2} \right)^{R/\delta} \frac{H^2 \ddot{H}}{R}
\]

\[
\times \left. \left. \left(3H^2 \left(\pi \delta + H^2 \right) \left(-\pi R + 2\pi \delta + 2H^2 \right) + 2H \left(\pi^2 (R - 2\delta) (R - \delta) - 2H^2 \pi (R - 2\delta) H^2 + 2H^4 \right) \right) \right) \ddot{H} \right) \times \left(-\pi R + 2\pi \delta + 2H^2 \right).
\]

(42)
In Figure 8, we draw v^2_z versus z which shows the unstable behavior of the SMHDE model as $v^2_z < 0$ at early, present, and latter epoch.

\[
\omega_d' = -\frac{1}{3 \left(1 + \pi \delta / H^2\right)^{R,H^2} - 1} \left(\frac{1}{H^6} \left(\frac{1}{(\pi \delta + H^2)} \right)^2 \cdot 2H^2 \left(2 \left(-2 (\pi \delta + H^2)^2 + \left(1 + \frac{\pi \delta}{H^2}\right)^{2R,H^2} \cdot (\pi^2 (R - 2 \delta) \delta + 2 \pi (R - 2 \delta) H^2 - 2 H^4) \right)
ight) \right.

\left. \cdot H^2 + \left(\pi \delta + H^2\right) \times \left(\frac{1 + \frac{\pi \delta}{H^2}}{R,H^2}\right) - 1 \right) \cdot H \left(-2 (\pi \delta + H^2) + \left(1 + \frac{\pi \delta}{H^2}\right)^{R,H^2} \right.

\left. \times \left(-\pi R + 2 \pi \delta + 2 H^2\right) \right) + \frac{3d^2 (-1 + d^2)}{c^2}

\right) + \frac{2d^2}{\rho m_0 R a^{3(1-\delta^2)}} H^2 \times \left(\frac{1 + \frac{\pi \delta}{H^2}}{R,H^2}\right) - 1 \right) \left((\pi (R - 2 \delta) - 2 H^2) \times \left(\frac{1 + \frac{\pi \delta}{H^2}}{R,H^2}\right) + 2 \left(\pi \delta + H^2\right) \right) H \right) \right.

\left. + \frac{\pi \delta}{H^2} \left(\frac{1 + \frac{\pi \delta}{H^2}}{R,H^2}\right) - 1 \right) \left(\frac{1 + \frac{\pi \delta}{H^2}}{R,H^2}\right)

\right)

Figure 9 shows the plot of $\omega_d - \omega_d'$ plane to classify the dynamical region for the given model. We can see that $\omega_d' > 0$ for $\omega_d < 0$, which indicates the thawing region of the universe.

<table>
<thead>
<tr>
<th>DE models</th>
<th>ω_d</th>
<th>v^2_z</th>
<th>$\omega_d - \omega_d'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>THDE</td>
<td>quintessence-to-vacuum</td>
<td>partially stability</td>
<td>thawing region</td>
</tr>
<tr>
<td>RHDE</td>
<td>quintessence-to-vacuum</td>
<td>stability</td>
<td>thawing region</td>
</tr>
<tr>
<td>SMHDE</td>
<td>quintessence</td>
<td>un-stable</td>
<td>thawing region</td>
</tr>
</tbody>
</table>

6. Conclusion

In this paper, we have discussed the THDE, RHDE, and SMHDE models in the framework of Chern-Simons modified theory of gravity. We have taken the flat FRW universe, and linear interaction term is chosen for the interacting scenario between DE and dark matter. We have evaluated the different cosmological parameters (equation of state parameter and squared sound speed), $\omega_d - \omega_d'$ cosmological plane. The trajectories of all these models have been plotted with different constant parametric values.

We have summarized our results in Table 1. Jawad et al. [32] have explored various cosmological parameters (equation of state, squared speed of sound, Om-diagnostic) and cosmological planes in the framework of dynamical Chern-Simons modified gravity with the new holographic dark energy model. They observed that the
equation of state parameter gives consistent ranges by using different observational schemes. They also found that the squared speed of sound shows a stable solution. They suggested that the results of cosmological parameters show consistency with recent observational data. Jawad et al. [33] have also considered the power law and the entropy corrected HDE models with Hubble horizon in the dynamical Chern-Simons modified gravity. They have also explored various cosmological parameters and planes and found consistent results with observational data. Nadeem et al. [34] have also investigated the interacting modified QCD ghost DE and generalized ghost pilgrim DE with cold dark matter in the framework of dynamical Chern-Simons modified gravity. It is found that the results of cosmological parameters as well as planes explain the accelerated expansion of the universe and are compatible with observational data. However, the present work is different from the above-mentioned works in which we have recently proposed DE models along with nonlinear interaction term and found interesting and compatible results regarding current accelerated expansion of the universe.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The work of H. Moradpour has been supported financially by Research Institute for Astronomy & Astrophysics of Maragha (RIAAM) under research project No. 1/5237−8.

References

