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Studies about a formal analogy between the gravitational and the electromagnetic fields lead to the notion of
Gravitoelectromagnetism (GEM) to describe gravitation. In fact, the GEM equations correspond to the weak-field approximation
of the gravitation field. Here, a non-abelian extension of the GEM theory is considered. Using the Thermo Field Dynamics (TFD)
formalism to introduce temperature effects, some interesting physical phenomena are investigated. The non-abelian GEM Stefan-
Boltzmann law and the Casimir effect at zero and finite temperatures for this non-abelian field are calculated.

1. Introduction

The Standard Model (SM) is a non-abelian gauge theory with
symmetry group Uð1Þ × SUð2Þ × SUð3Þ. SM describes the-
oretically and experimentally three of the four fundamental
forces of nature, i.e., the electromagnetic, weak, and strong
forces. The electromagnetism is a Uð1Þ abelian gauge theory
which has been tested to a high precision. The generalization
of an abelian gauge theory to the non-abelian gauge theory
was proposed by Yang and Mills [1]. The last one
describes the electroweak unification and quantum chro-
modynamics. The electroweak interaction is described by an
SUð2Þ ×Uð1Þ group and while the SUð3Þ group satisfies
the quantum chromodynamics [2–4].

Gravity is not a part of SM. This implies that the SM is
not a fundamental theory that describes all fundamental
interactions of nature. In this paper, an extension of non-
abelian gravity is discussed. Some applications of such a the-
ory are developed. The gravitational theory studied here is
the Gravitoelectromagnetism (GEM). GEM is an approach
based on describing gravity in a way analogous to the electro-
magnetism [5–7]. Several studies about the GEM theory have
been developed [8–14]. These ideas arise from the analogy-

between equations for the Newton and Coulomb laws
and the interest has increased with the discovery of the
Lense-Thirring effect, where a rotating mass generates a
gravitomagnetic field [15–17]. Some experiments that
study this effect have been developed, such as LAGEOS
(Laser Geodynamics Satellites) and LAGEOS 2 [18], the
Gravity ProbeB [19], and themission LARES (Laser Relativity
Satellite) [20, 21].

The GEM theory may be analyzed by three different
approaches: (i) using the similarity between the linearized
Einstein and Maxwell equations [22], (ii) a theory based on
an approach using tidal tensors [23], and (iii) the decompo-
sition of the Weyl tensor (Cijkl) into ℬij = 1/2∈iklCkl

0j and
ℰ ij = −C0i0j, the gravitomagnetic and gravitoelectric compo-
nents, respectively [24]. In this paper, the Weyl tensor
approach is used. A Lagrangian formulation for GEM is
developed [25], and a gauge transformation in GEM is stud-
ied [26]. Here, an extension to non-abelian GEM fields is
introduced. Applications of the non-abelian GEM at finite
temperature are investigated. The temperature effects are
introduced using Thermo Field Dynamics (TFD) formalism.

There are two ways to introduce the temperature effect:
(i) using the imaginary time formalism [27] and (ii) using
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the real-time formalism [28–36]. In this paper, TFD formal-
ism is chosen. It is a real-time finite temperature formalism.
In this formalism, a thermal state is developed where the
main objective is to interpret the statistical average of an
arbitrary operator as an expectation value in a thermal vac-
uum. Two elements are necessary to construct this thermal
state: (i) doubling of the original Hilbert space and (ii) the
use of Bogoliubov transformations. These are two Hilbert
spaces, the original space S and the tilde space ~S, which are
related by a mapping, called the tilde conjugation rules,
while the Bogoliubov transformation consists in a rotation
involving these two spaces that ultimately introduce the
temperature effects.

The Stefan-Boltzmann law and the Casimir effect for the
non-abelian GEM field at finite temperature are calculated.
The Stefan-Boltzmann law describes the power radiated from
a black body in terms of its temperature. The Casimir effect,
proposed by H. Casimir [37], is a quantum phenomenon that
appears due to vacuum fluctuations of any quantum field.
The results in this case may be at zero or finite temperatures.

This paper is organised as follows. In section II, a brief
introduction to the abelian GEM Lagrangian formalism is
presented. In section III, an extension to non-abelian GEM
field is developed. The energy-momentum tensor associated
to the non-abelian gauge field is calculated. In section IV,
the TFD formalism is introduced. In section V, some applica-
tions considering the non-abelian GEM field at finite temper-
ature are analysed. (i) The Stefan-Boltzmann law is calculated.
(ii) The Casimir effect at zero temperature is obtained, and
(iii) the Casimir effect at finite temperature is calculated. In
section VI, some concluding remarks are presented.

2. Lagrangian Formulation of Abelian Gem

In this section, an introduction to the Lagrangian formula-
tion of abelian GEM is presented. The GEM field equations,
Maxwell-like equations, are

∂iℰ ij = −4πGρj,
∂iℬij = 0,

∈ iklh ∂kℬl ji + 1
c
∂ℰ ij

∂t
= −

4πG
c

Jij,

∈ iklh ∂kℰ l ji + 1
c
∂ℬij

∂t
= 0,

ð1Þ

where G is the gravitational constant, εikl is the Levi-Civita
symbol, ρj is the vector mass density, Jij is the mass current
density, and c is the speed of light. The quantities ℰ ij, ℬij,
and Jij are the gravitoelectric field, the gravitomagnetic field,
and the mass current density, respectively. The symbol h⋯i
denotes symmetrization of the first and last indices, i.e., i
and j.

The fields ℰ ij and ℬij are expressed in terms of a
symmetric rank-2 tensor field, ~A , with components A ij,
such that

ℬ = curl ~A ,

ℰ + 1
c
∂ ~A
∂t

= − grad φ,
ð2Þ

where φ is the GEM counterpart of the electromagnetic
(EM) scalar potential ϕ.

Defining ℱ μνα as the gravitoelectromagnetic tensor, the
GEM field equations become

∂μℱ
μνα = 4πG

c
J να,

∂μG
μ ναh i = 0,

ð3Þ

where J να depends on quantities ρi and Jij that are the mass
and the current density, respectively. In addition, the gravi-
toelectromagnetic tensor is defined as

ℱ μνα = ∂μAνα − ∂νAμα, ð4Þ

and the dual GEM tensor is defined as

Gμνα = 1
2 ∈

μνγσηαρ −ℱ γσρ: ð5Þ

Using these definitions, the GEM Lagrangian density is
given as [25].

ℒ G = −
1

16πℱ μναℱ
μνα −

G
c
J ναAνα: ð6Þ

This Lagrangian allows considering several gravitational
applications involving the graviton, such as interactions with
other fundamental particles. This makes it possible to study
several related topics.

In this way, the GEM theory is described by two fields ℰ ij

and ℬij, which are symmetric and traceless tensors of the
second order. These fields can be expressed in terms of the
symmetric gravitoelectromagnetic potential Aμν [25, 26],
analogous to that of electromagnetism Aμ. Thus, Aμν is the
fundamental field in GEM and naturally, it has two indices
[25, 26].

It is important to note that GEM equations correspond to
the weak-field approximation of General Relativity. They do
not describe strong fields and, therefore, do not include the
full Einstein equations. To be more specific, the abelian
GEM corresponds to the linear part of Einstein equations
and the non-abelian GEM corresponds up to the second
order in the weak-field approach.

3. Non-Abelian Gem

Let us consider an extension of the GEM field to include the
non-abelian gauge transformations [38]. Then, in this sec-
tion, the Lagrangian for the non-abelian GEM field is pre-
sented and the energy-momentum tensor associated to the
non-abelian field is calculated.
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In order to obtain the non-abelian gauge transformation
for the GEM field, let us investigate the Dirac Lagrangian
under global and local gauge transformations. The free Dirac
Lagrangian is given as

ℒD = −i�ψ xð Þγμ∂μψ xð Þ +m�ψ xð Þψ xð Þ, ð7Þ

where ψðxÞ is a two-component column vector. This
Lagrangian is invariant under global SUð2Þ gauge transfor-
mation given as

ψ′ xð Þ =Uψ xð Þ, ð8Þ

with U being a 2 × 2 unitary matrix that is written as U = eiH ,
whereH is a hermitian matrix. To study local gauge transfor-
mation, more details are necessary.

Let us assume that the local gauge transformation is

ψ′ xð Þ =U xð Þψ xð Þ = eigH xð Þψ xð Þ, ð9Þ

where g is the coupling constant and HðxÞ is the hermitian
2 × 2 matrix given by

H xð Þ = σ · a xð Þ, ð10Þ

with aðxÞ being real functions of x and σ are Pauli matrices.
The Pauli matrices σiði = 1, 2, 3Þ are the generators of the
non-abelian group SUð2Þ satisfying the commutation rela-
tions ½σi, σ j� = 2iεijkσk. In a more compact form, aðxÞ is
written as

a xð Þ = pαbα xð Þ, ð11Þ

where bαðxÞ are vectors associated to each of the four direc-
tions in Minkowski spacetime and pα are the components
of the one-form ~p. Then, the local gauge transformation
becomes

ψ′ xð Þ = eigpασ·b
α xð Þψ xð Þ: ð12Þ

The Dirac Lagrangian is not invariant under this local
gauge transformation since the derivative ∂μψ′ðxÞ introduces
a new term in the Lagrangian. In order to obtain an invariant
Lagrangian, a covariant derivative is defined as

Dμ = ∂μ − igpασ ·Aμα xð Þ, ð13Þ

where the tensor gauge field AμαðxÞ has three components
AμαðxÞ = ðAμα

1 ðxÞ, Aμα
2 ðxÞ, Aμα

3 ðxÞÞ and it transforms as

A′μαk xð Þ = Aμα
k xð Þ + ∂μbαk + 2gεijkpβA

μβ
i bαj : ð14Þ

An important note, there is one tensor gauge field Aμα
i ðxÞ

for each generator σi of the group SUð2Þ. Moreover, in the
definition of the covariant derivative Dμ (Equation (13)),
the gauge field Aμν should appear to keep the local gauge
invariance like in electromagnetism. In order to have it, the

oneform pα is introduced [26]. The one form makes the
phase function to split into phase factors each associated with
one of the four directions in spacetime.

Using these results and replacing the derivative ∂μ by
the covariant derivative Dμ, the Dirac Lagrangian is gauge
invariant, i.e.,

ℒD = −i�ψ xð ÞγμDμψ xð Þ +m�ψ xð Þψ xð Þ: ð15Þ

In this formulation, three new gauge tensor fields are
introduced. To write a full Lagrangian invariant under
local gauge transformation, a kinetic term of AμαðxÞ must
be constructed. To do that, an analogue of the electromag-
netic tensor Fμν is constructed. For obtaining the antisym-
metric third-rank tensor of the gauge field, let us consider
a covariant derivative (13). Then,

Dμ,Dν½ � = −igpασ · Fμνα, ð16Þ

where

Fμνα
k = ∂μAνα

k − ∂νAμα
k + 2gεijkpβA

μα
i Aνβ

j : ð17Þ

Then, the full Lagrangian that is invariant under local
SUð2Þ gauge transformations is

ℒ D = −i�ψ xð ÞγμDμψ xð Þ +m�ψ xð Þψ xð Þ − 1
16πFμνα ⋅ F

μνα:

ð18Þ

This Lagrangian describes two equal mass Dirac fields
interacting with three massless tensor gauge fields.

In conclusion, GEM is an approach based on formulating
gravity in analogy to electromagnetism. In this way, GEM
becomes a gauge field theory of gravity in contrast with the
geometric theory of General Relativity. Then, it is expected
that SUð2Þ be the gauge symmetry group. It is the Weyl ten-
sors ℰ ij andℬij that keep the connection of GEM to gravity.

Now, let us determine the energy-momentum tensor
associated with the non-abelian GEM field.

3.1. Energy-Momentum Tensor for Non-Abelian GEM. Here-
after, the Lagrangian density for the free non-abelian GEM
field is considered, i.e.,

ℒ = −
1

16π Fa
μναF

μναa ð19Þ

The index a is summed over the generators of the
gauge group and for an SUðNÞ group, one has a, b,
c = 1⋯N2 − 1: Here, as a first application of the
non-abelian GEM, the self-interaction between the tensor
gauge fields is ignored.

Using the energy-momentum tensor definition,

Tμν = ∂ℒ
∂ ∂μAa

λα

� � ∂νAa
λα − ημνℒ , ð20Þ
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the energy-momentum tensor associated with the non-
abelian GEM field is

Tμν = 1
4 −ℱ μa

λαℱ
νλαa + 1

4 η
μνℱ a

ρσθℱ
ρσθa

� �
: ð21Þ

To avoid a product of field operators at the same space-
time point, the energy-momentum tensor is written as

Tμν xð Þ = 1
4π lim

x ′→x
τ −ℱ μa

λα xð Þℱ νλαa x′
� �hn

+ 1
4 η

μνℱ a
ρσθ xð Þℱ ρσθa x′

� �io ð22Þ

where τ is the time order operator.
The quantization of the non-abelian GEM field requires

that

πκλa = ∂ℒ
∂ ∂0Aa

κλð Þ = −
1
4π F0κλa: ð23Þ

the commutation relation0 and div ~A = ∂iAij = 0, the
covariant quantization is carried out and the commutation
relation is

Aija x, tð Þ, πklb x′, t
� �h i

= i
2 δikδjl − δilδjk
h

−
1
∇2 δjl∂i∂k−−δjk∂i∂l − δil∂j∂k
�

+ δik∂j∂lÞ
i
δ3 x − x′
� �

δab:

ð24Þ

Other commutation relations are zero.
In order to write the energy-momentum tensor, let us

consider

τ ℱ ακγa xð Þℱ μνρa x′
� �h i

=ℱ ακγa xð Þℱ μνρa x′
� �

θ x0 − x0′
� �

+ℱ μνρa x′
� �

ℱ ακγa xð Þθ x0 − x0′
� �

,

ð25Þ

with θðx0 − x0′Þ being the step function. In the calculations
that follow, we use the commutation relation, Equation
(24), and

∂μθ x0 − x0′
� �

= nμ0δ x0 − x0′
� �

, ð26Þ

where nμ0 = ð1, 0, 0, 0Þ is a time-like vector.
Using these definitions, the energy-momentum tensor

for the non-abelian GEM field becomes

Tμν xð Þ = −
1
4π lim

x′→x
Δμν,λεωυ x, x′

� �
τ Aa

λε xð ÞAa
ωυ x′
� �h in o

,

ð27Þ

where

Δμν,λεωυ x, x′
� �

= Γμ
ρα,

νρα,λεωυ x, x′
� �

−
1
4 η

μνΓρσθ,
ρσθ,

λεωυ
x, x′
� �

,

ð28Þ

with

Γακγ,μνρ,λεωυ x, x′
� �

= gκλgεγ∂α − gαλgεγ∂κ
� �
� gνωgρυ∂′μ − gμωgρυ∂′ν
� �

:
ð29Þ

The vacuum expectation value of the energy-momentum
tensor leads to the expression

Tμν xð Þh i = 0 ∣ Tμν xð Þ ∣ 0h i
= −

1
4π lim

x′→x
Δμν,λεωυ x, x′

� �
0 τ Aa

λε xð ÞAa
ωυ x′
� �h i��� ���0D En o

,

ð30Þ

where the graviton propagator is

0 τ Aa
λε xð ÞAa

ωυ x′
� �h i��� ���0D E

= δab 0 τ Aa
λε xð ÞAb

ωυ x′
� �h i��� ���0D E

= iδab Dab
λεωυ x − x′
� �

,

ð31Þ

with

Dab
λεωυ =

1
2 δ

ab gλωgευ + gλυgεω − gλεgωυð ÞG0 x − x′
� �

, ð32Þ

and G0ðx − x′Þ is the massless scalar field propagator. Then,
the vacuum expectation value of TμνðxÞ becomes

Tμν xð Þh i = −
3i
8π lim

x′→x
Γμν x, x′
� �

G0 x − x′
� �n o

, ð33Þ

with

Γμν x, x′
� �

= 8 ∂μ∂′ν − 1
4 η

μν∂ρ∂′ρ
	 


: ð34Þ

Now, the main objective is to study the effects due to tem-
perature and spatial compactification in Equation (33). To
achieve such an objective, the Thermo Field Dynamics for-
malism is used.

4. Thermo Field Dynamics (TFD) Formalism

Here, the Thermo Field Dynamics (TFD) formalism is intro-
duced. TFD is a quantum field theory at finite temperature
[31–36]. In this formalism, the statistical average of any
operator is equal to its expected value in a thermal vac-
uum. For this equality to be true, two main elements are
required, i.e., (i) doubling of the original Hilbert space
and (ii) the Bogoliubov transformation.
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This doubling is defined as ST = S ⊗ ~S , where ~S and S

are the tilde and original Hilbert space, respectively. The
Bogoliubov transformation corresponds to a rotation of the
tilde and non-tilde variables which introduces the thermal
effects. To understand this doubling of Hilbert space, let
us consider

d αð Þ
~d
†
αð Þ

 !
=ℬ αð Þ

d kð Þ
~d
†
kð Þ

 !
, ð35Þ

where ℬðαÞ is the Bogoliubov transformation given as

ℬ αð Þ =
u αð Þ −v αð Þ
−v αð Þ u αð Þ

 !
ð36Þ

with

v2 αð Þ = eαω − 1ð Þ−1, u2 αð Þ = 1 + v2 αð Þ: ð37Þ

The parameter α is the compactification parameter
defined by α = ðα0, α1,⋯αD−1Þ and ω is energy. The tem-
perature effect is described by the choice α0 ≡ β and
α1,⋯αD−1 = 0. In this case, with α = β, the quantities
v2ðβÞ and u2ðβÞ are related to the Bose distribution.

In order to introduce an application of TFD formalism,
let us consider the free scalar field propagator. Then, in a
doublet notation, it is given as

G abð Þ
0 x − x′ ; α
� �

= i 0, ~0 τ ϕa x ; αð Þϕb x′ ; α
� �h i��� ���0, ~0D E

,

ð38Þ

where ϕðx ; αÞ =ℬðαÞϕðxÞℬ−1ðαÞ and a, b = 1, 2. Then,

G abð Þ
0 x − x′ ; α
� �

= i
ð

d4k

2πð Þ4 e
−ik x−x′ð ÞG abð Þ

0 k ; αð Þ, ð39Þ

where

G 11ð Þ
0 k ; αð Þ ≡ G0 k ; αð Þ = G0 kð Þ + v2 k ; αð Þ G0 kð Þ −G∗

0 kð Þ½ �,
ð40Þ

with

G0 kð Þ = 1
k2 −m2 + iε

,

G0 kð Þ −G∗
0 kð Þ½ � = 2πiδ k2 −m2� �

:

ð41Þ

The parameter v2ðk ; αÞ is the generalized Bogoliubov
transformation [39]. It is defined as

v2 k ; αð Þ = 〠
d

s=1
〠
σsf g

2s−1 〠
∞

lσ1 ,⋯,lσs=1
−ηð Þ

s+〠
s

r=1
lσr

exp −〠
s

j=1
ασ j

lσ j
kσ j

" #
,

ð42Þ

with d being the number of compactified dimensions, η = 1
ð−1Þ for fermions (bosons), fσsg denotes the set of all combi-
nations with s elements and k is the 4-momentum.

For the doubled notation, the vacuum expectation
value of the energy-momentum tensor of the non-abelian
GEM is

Tμν abð Þ x ; αð Þ
D E

= −
3i
8π lim

x′→x
Γμν x, x′
� �

G abð Þ
0 x − x′ ; α
� �n o

:

ð43Þ

In order to obtain a physical (renormalized) energy-
momentum tensor, the standard Casimir prescription is
used. Then,

T μν abð Þ x ; αð Þ = Tμν abð Þ x ; αð Þ
D E

− Tμν abð Þ xð Þ
D E

: ð44Þ

In this form, a measurable physical quantity is given as

T μν abð Þ x ; αð Þ = −
3i
8π lim

x ′→x
Γμν x, x′
� �

�G abð Þ
0 x − x′ ; α
� �n o

,

ð45Þ

where

�G abð Þ
0 x − x′ ; α
� �

=G abð Þ
0 x − x′ ; α
� �

−G abð Þ
0 x − x′
� �

: ð46Þ

In the next section, some applications for different
choices of parameter α are developed.

5. Some Applications

In this section, applications, which consider the temperature
effects and spatial compactifications, are calculated.

5.1. Stefan-Boltzmann Law. As a first application, consider
the thermal effect that appears for α = ðβ, 0, 0, 0Þ. In this case,
the generalized Bogoliubov transformation becomes

v2 βð Þ = 〠
∞

j0=1
e−βk

0 j0 : ð47Þ

Then, the Green function is given as

�G 11ð Þ
0 x − x′ ; α
� �

=
ð

d4k

2πð Þ4 e
−ik x−x ′ð Þ 〠

∞

j0=1
e−βk

0 j0 G0 kð Þ −G∗
0 kð Þ½ �,

= 2 〠
∞

j0=1
G0 x − x′ − iβj0n0
� �

,

ð48Þ
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where nμ0 = ð1, 0, 0, 0Þ. Then, the energy-momentum tensor
at finite temperature is

Tμν 11ð Þ x ; βð Þ = −
6i
π
lim
x′→x

〠
∞

j0=1
∂μ∂′ν − 1

4g
μν∂ρ∂′ρ

	 

G0 x − x′ − iβj0n0
� �( )

:

ð49Þ

Using the Riemann Zeta function, i.e.,

ζ 4ð Þ = 〠
∞

j0=1

1
j40

= π4

90 , ð50Þ

the Stefan-Boltzmann law for the non-abelian GEM field is
obtained as

E Tð Þ ≡T 00 11ð Þ x ; βð Þ = π

10T
4: ð51Þ

Note that the energy density of the non-abelian gauge
fields is similar to the abelian field case.

Here, the numeric value is multiplied by the group gener-
ator number.

5.2. Casimir Effect at Zero Temperature.Here, α = ð0, 0, 0, iLÞ
is chosen and the Bogoliubov transformation is

v2 Lð Þ = 〠
∞

l3=1
e−iLk

3l3 : ð52Þ

The Green function is

�G 11ð Þ
0 x − x′ ; L
� �

= 2 〠
∞

l3=1
G0 x − x′ − Ll3z
� �

: ð53Þ

A sum over l3, for L = 2d, defines the nontrivial part
of the Green function with the Dirichlet boundary condi-

tion. With these conditions, the energy-momentum tensor
becomes

T μν 11ð Þ x ; dð Þ = −
6i
π

lim
x→x ′

〠
∞

l3=1
∂μ∂′μ − 1

4g
μν∂ρ∂ρ′

	 

G0 x − x′ − 2dl3z
� �( )

:

ð54Þ

For μ = ν = 0, the Casimir energy to the non-abelian
field case is

E dð Þ ≡T 00 11ð Þ x ; dð Þ = −
π

480d4
, ð55Þ

and for μ = ν = 3, the Casimir pressure for the non-
abelian GEM field is

P dð Þ ≡T 33 11ð Þ x ; dð Þ = −
π

160d4
: ð56Þ

The negative sign shows that the Casimir force between
the plates is attractive, similar to the case of the electromag-
netic field and of the abelian GEM field.

5.3. Casimir Effect at Finite Temperature. For α = ðβ, 0, 0,
i2dÞ, the temperature effects and spatial compactifications
are considered. In this case, the Bogoliubov transformation
becomes

v2 k0, k3 ; β, d
� �

= v2 k0 ; β
� �

+ v2 k3 ; d
� �

+ 2v2 k0 ; β
� �

v2 k3 ; d
� �

= 〠
∞

j0=1
e−βk

0 j0 + 〠
∞

l3=1
e−iLk

3 l3 + 2 〠
∞

j0,l3=1
e−βk

0 j0−iLk
3l3 :

ð57Þ

The Green function, corresponding to the first two
terms, is given in Equation (48) and in Equation (53),
respectively. The Green function associated with the third
term is

Then, the Casimir energy and pressure at finite tempera-
ture are given, respectively, by

E β, dð Þ =T 00 11ð Þ β, dð Þ = π

10β4 −
π

480d4

+ 6
π3 〠

∞

j0,l3=1

3 βj0ð Þ2 − 2dl3ð Þ2
βj0ð Þ2 + 2dl3ð Þ2� �3 ,

P β, dð Þ =T 33 11ð Þ β, dð Þ = π

30β4 −
π

160d4

+ 6
π3 〠

∞

j0,l3=1

βj0ð Þ2 − 3 2dl3ð Þ2
βj0ð Þ2 + 2dl3ð Þ2� �3 :

ð59Þ

Note that the first and second terms are the Stefan-
Boltzmann law and Casimir effect at zero temperature,

�G 11ð Þ
0 x − x′ ; β, d
� �

= 2
ð

d4k

2πð Þ4 e
−ikðx−x ′Þ 〠

∞

j0,l3=1
e−βk

0 j0−iLk
3l3 G0 kð Þ −G∗

0 kð Þ½ � = 4 〠
∞

j0,l3=1
G0 x − x′ − iβj0n − 2dl3z
� �

: ð58Þ
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respectively, while the third term corresponds to the Casimir
effect at finite temperature.

In the last case, both effects, temperature and spatial
compactification, are present.

6. Conclusion

The non-abelian GEM field is investigated. First, the
Lagrangian formulation for the abelian GEM field is pre-
sented. Then, using the principle of local gauge invariance,
an extension of the non-abelian GEM field is constructed.
The symmetry group for the non-abelian GEM is group
SUð2Þ. The abelian and non-abelian GEMs have a corre-
spondence with the weak-field approach of General Relativ-
ity. The abelian GEM has a structure equivalent to the
weak-field approximation of first-order and non-abelian
Weyl GEM is equivalent to the weak-field approximation
up to the second order. For simplicity, the self-interaction
terms of the non-abelian gauge field are ignored. Then, the
energy-momentum tensor is calculated. The TFD formalism
is used to introduce thermal effects. This formalism requires
two basic ingredients: the doubling of the Hilbert space and
the Bogoliubov transformation. With this formalism, the
vacuum expectation value of the energy-momentum tensor
is obtained and thus, some applications for the non-abelian
GEM field are investigated. The Stefan-Boltzmann law and
the Casimir effect at finite temperature are calculated. Our
results show that the non-abelian quantities are similar to
the abelian quantities. The main difference consists in the fact
that the non-abelian results are equal to the abelian result
multiplied by the number of gauge fields. These results are
similar to the case of the electromagnetic field. For example,
the non-abelian GEM Casimir effect is attractive as the
electromagnetic case. In addition, calculations involving the
SUð2Þ group and GEM have not been done in the literature.
This work is the first to introduce this type of approach.
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