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Abstract. 
In this article, we study the axialvector-diquark-axialvector-antidiquark type scalar, axialvector, tensor, and vector  tetraquark states with the QCD sum rules. The predicted mass  for the axialvector tetraquark state is in excellent agreement with the experimental value  from the BESIII collaboration and supports assigning the new  state to be a  tetraquark state with . The predicted mass  disfavors assigning  or  to be the vector partner of the new  state. As a byproduct, we obtain the masses of the corresponding  tetraquark states. The light tetraquark states lie in the region about  rather than .

1. Introduction
Recently, the BESIII collaboration studied the process  and observed a structure  in the  mass spectrum [1]. The fitted mass and width are  and , respectively, with assumption of the spin-parity , the corresponding significance is , while the fitted mass and width are  and , respectively, with assumption of the spin-parity , the corresponding significance is . The  state was observed in the  decay model rather than in the  decay model; they may contain a large  component; in other words, it may have a large tetraquark component. In Ref. [2], Wang et al. assign the  state to be the second radial excitation of . In Ref. [3], Cui et al. assign  to be the partner of the tetraquark state  with the .
We usually assign the lowest scalar nonet mesons  to be tetraquark states and assign the higher scalar nonet mesons  to be the conventional  quark-antiquark states [4–6]. In Ref. [7], we take the nonet scalar mesons below  as the two-quark-tetraquark mixed states and study their masses and pole residues with the QCD sum rules in detail and observe that the dominant Fock components of the nonet scalar mesons below  are conventional two-quark states. The light tetraquark states may lie in the region about  rather than lie in the region about .
In this article, we take the axialvector diquark operators as the basic constituents to construct the tetraquark current operators to study the scalar (), axialvector (), tensor (), and vector () tetraquark states with the QCD sum rules and explore the possible assignments of the new  state. We take the axialvector diquark operators as the basic constituents because the favored configurations from the QCD sum rules are the scalar and axialvector diquark states [8–10]; the current operators or quark structures chosen in the present work differ from that in Ref. [3] completely.
The article is arranged as follows: we derive the QCD sum rules for the masses and pole residues of the  tetraquark states in Section 2; in Section 3, we present the numerical results and discussions; Section 4 is reserved for our conclusion.
2. QCD Sum Rules for the  Tetraquark States
We write down the two-point correlation functions  and  firstly
where , ,
where , , , , and  are color indexes and  is the charge conjugation matrix. Under charge conjugation transform , the currents  and  have the properties

The doubly strange diquark operators
with ,  in color antitriplet  and
with , ,  in color sextet  satisfy Fermi-Dirac statistics. On the other hand, the scattering amplitude for one-gluon exchange is proportional to
where
 is the Gell-Mann matrix. The negative sign in front of the antisymmetric antitriplet  indicates that the interaction is attractive, which favors formation of the diquarks in color antitriplet. The positive sign in front of the symmetric sextet  indicates that the interaction is repulsive, which disfavors formation of the diquarks in color sextet. The diquark states which couple potentially to the , , and  operators in color sextet  are expected to have larger masses than the diquark states which couple potentially to the  and  operators in color antitriplet . We prefer the diquark operators in color antitriplet  to the diquark operators in color sextet  in constructing the tetraquark current operators. Up to now, the scalar and axialvector diquark states in color antitriplet  have been studied with the QCD sum rules [8–10]. In our previous studies, we observed that the pseudoscalar and vector diquark states in color antitriplet  are not favored configurations and cannot lead to stable QCD sum rules, which are not included in Ref. [8]. The tensor diquark states, which have both  and  components, have not been studied with the QCD sum rules yet. We can draw the conclusion tentatively that the most favored quark configuration is the axialvector diquark operator . In Ref. [3], Cui et al. choose the pseudoscalar diquark operator in color sextet  and vector antidiquark operator in color antisextet  and axialvector diquark operator in color antitriplet  and tensor antidiquark operator in color triplet  to construct the axialvector currents to study the axialvector tetraquark states. In Ref. [11], we choose the color octet-octet type vector four-quark current to study ; Fierz rearrangement of this current cannot lead to a diquark-antidiquark type tensor component. In the present work, we choose the axialvector diquark (antidiquark) operators in color antitriplet  (triplet ) to construct the tensor current, which is expected to couple potentially to the lowest tetraquark states, to study both the axialvector and vector tetraquark states. The quark configuration in the present work differs completely from that in Ref. [3] and Ref. [11]; it is interesting to study the new quark configuration. Furthermore, the conclusion of the present work differs completely from that of Ref. [3].
At the hadronic side, we can insert a complete set of intermediate hadronic states with the same quantum numbers as the current operators  and  into the correlation functions  and  to obtain the hadronic representation [11–14]. After isolating the ground state contributions of the scalar, axialvector, vector, and tensor tetraquark states, we get the results
where ; the subscripts , , , and  denote the spin-parity  of the corresponding tetraquark states. The pole residues  and  are defined by
where  and  are the polarization vectors of the tetraquark states.
Now we contract  quarks in the correlation functions with the Wick theorem; there are four -quark propagators; if two -quark lines emit a gluon by itself and the other two -quark lines contribute a quark pair by itself, we obtain operator , which is of order  with  and of dimension . In this article, we take into account that the vacuum condensates up to dimension  and  in a consistent way. For the technical details, one can consult Refs. [7, 15]. Once the analytical expressions of the QCD spectral densities are obtained, we take the quark-hadron duality below the continuum thresholds  and perform Borel transform with respect to the variable  to obtain the QCD sum rules:
where , , , and .
and .
We derive equation (10) with respect to , then obtain the QCD sum rules for the masses of the tetraquark states through a fraction

3. Numerical Results and Discussions
We take the standard values of the vacuum condensates , , , , , and  at the energy scale  [12–14, 16] and choose the  mass  from the Particle Data Group [17] and evolve the -quark mass to the energy scale  with the renormalization group equation; furthermore, we neglect the small  and  quark masses.
We choose suitable Borel parameters and continuum threshold parameters to warrant the pole contributions (PC) are larger than , i.e.,
and convergence of the operator product expansion. The contributions of the vacuum condensates  in the operator product expansion are defined by
where the subscript  in the QCD spectral density  denotes the dimension of the vacuum condensates. We choose the values  to warrant the convergence of the operator product expansion. In Table 1, we present the ideal Borel parameters, continuum threshold parameters, pole contributions, and contributions of the vacuum condensates of dimension 10. In Figure 1, we plot the absolute contributions of the vacuum condensates of dimension  for the central values of the input parameters in the operator product expansion. Although in some cases the contributions of the perturbative terms  are not the dominant contributions, the contributions of the vacuum condensates of dimensions 6 and 8 are very large; the hierarchy  warrants the good convergent behavior of the operator product expansion; furthermore, the contributions , , and  are very small. From Table 1 and Figure 1, we can see that the pole dominance is well satisfied and the operator product expansion is well converged; we expect to make reliable predictions.
Table 1: The Borel parameters, continuum threshold parameters, pole contributions, contributions of the vacuum condensates of dimension 10, masses, and pole residues of the tetraquark states, where the subscripts , , , and  denote the scalar, axialvector, tensor, and vector tetraquark states, respectively.
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		(b)
Figure 1: The absolute contributions of the vacuum condensates of dimension  for the central values of the input parameters in the operator product expansion, where the , , , and  denote the scalar, axialvector, tensor, and vector tetraquark states, respectively, (a) and (b) denote the  and  quark constituents, respectively.


We take into account all uncertainties of the input parameters and obtain the values of the masses and pole residues of the  tetraquark states, which are shown explicitly in Figure 2 and Table 1. In this article, we have assumed that the energy gaps between the ground state and the first radial state are about  [18–20]. In Figure 2, we plot the masses of the scalar, axialvector, tensor, and vector  tetraquark states with variations of the Borel parameters at larger regions than the Borel windows shown in Table 1. From the figure, we can see that there appear platforms in the Borel windows.
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Figure 2: The masses with variations of the Borel parameters , where (a), (b), (c), and (d) denote the scalar, axialvector, tensor, and vector tetraquark states, respectively.


From Table 1, we can see that the uncertainties of the masses  are small, while the uncertainties of the pole residues  are large, for example,  and  for the scalar  tetraquark state. We obtain the tetraquark masses from a fraction, see equation (14); the uncertainties originating from the input parameters in the numerator and denominator are almost canceled out with each other, so the net uncertainties of the tetraquark masses are very small. In this article, we have neglected the perturbative  corrections. For the traditional two-quark light mesons, the perturbative  corrections amount to multiplying the perturbative terms with a factor  for the ,  mesons,  for the , ,  mesons, and  for the  mesons [14]. Now we estimate the possible uncertainties due to neglecting the perturbative  corrections by multiplying the perturbative terms with a factor . The additional uncertainties  and  are shown in Table 2. From the table, we can see again that the uncertainties of the mass  are small, while the uncertainties of the pole residues  are large, for example,  and  for the scalar  tetraquark state. In the QCD sum rules for the , ,  states, which are excellent candidates for the compact tetraquark states or loosely bound molecular states, the uncertainties of the masses are less than or about 6% [21]. Ref. [21] is the most recent review.
Table 2: The possible uncertainties induced by the perturbative  corrections, where the subscripts , , , and  denote the scalar, axialvector, tensor, and vector tetraquark states, respectively.
	

			
	

			
			
			
			
			
			
			
			
	



The predicted mass  for the axialvector tetraquark state is in excellent agreement with the experimental value  from the BESIII collaboration [1], which supports assigning the new  state to be an axialvector-diquark-axialvector-antidiquark type  tetraquark state. The predicted mass  for the vector tetraquark state lies above the experimental value of the mass of  or , , from the Particle Data Group, and disfavors assigning  or  to be the vector partner of the new  state. If  have a tetraquark component, it may have color octet-octet component [11]. As a byproduct, we obtain the masses and pole residues of the corresponding  tetraquark states, which are shown in Table 1. The present predictions can be confronted to the experimental data in the future.
Now we perform Fierz rearrangement to the currents both in the color and Dirac-spinor spaces

The diquark-antidiquark type currents can be rearranged into currents as special superpositions of color singlet-singlet type currents, which couple potentially to the meson-meson pairs or molecular states; the diquark-antidiquark type tetraquark states can be taken as special superpositions of meson-meson pairs and embody the net effects. The decays to their components are Okubo-Zweig-Iizuka supper-allowed; we can search for those tetraquark states in the decays

4. Conclusion
In this article, we construct the axialvector-diquark-axialvector-antidiquark type currents to interpolate the scalar, axialvector, tensor, and vector  tetraquark states, then calculate the contributions of the vacuum condensates up to dimension 10 in the operator product expansion and obtain the QCD sum rules for the masses and pole residues of those tetraquark states. The predicted mass  for the axialvector tetraquark state is in excellent agreement with the experimental value, , from the BESIII collaboration and supports assigning the new  state to be an axialvector-diquark-axialvector-antidiquark type  tetraquark state. The predicted mass  for the vector tetraquark state lies above the experimental value of the mass of , , from the Particle Data Group and disfavors assigning  to be the vector partner of the new  state. As a byproduct, we also obtain the masses and pole residues of the corresponding  tetraquark states. The present predictions can be confronted to the experimental data in the future.
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