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Abstract. 
The cyclic graph 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 of a finite group 
	
		
			

				𝐺
			

		
	
 is
as follows: take 
	
		
			

				𝐺
			

		
	
 as the vertices of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 and join two distinct
vertices 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 if 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is cyclic. In this paper, we
investigate how the graph theoretical properties of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 affect the group theoretical
properties of 
	
		
			

				𝐺
			

		
	
. First, we consider some properties of 
	
		
			

				Γ
			

			

				𝐺
			

		
	

and characterize certain finite groups whose cyclic graphs have some properties. 
Then, we present some properties of the cyclic graphs of
the dihedral groups 
	
		
			

				𝐷
			

			
				2
				𝑛
			

		
	
 and the generalized quaternion groups 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
 for some 
	
		
			

				𝑛
			

		
	
. 
Finally, we present some parameters about the cyclic graphs of finite noncyclic groups of
order up to 
	
		
			
				1
				4
			

		
	
.


1. Introduction and Results
Recently, study of algebraic structures by graphs associated with them gives rise to many interesting results. There are many papers on assigning a graph to a group and algebraic properties of group by using the associated graph; for instance, see [1–4].
Let 
	
		
			

				𝐺
			

		
	
 be a group with identity element 
	
		
			

				𝑒
			

		
	
. One can associate a graph to 
	
		
			

				𝐺
			

		
	
 in many different ways. Abdollahi and Hassanabadi introduced a graph (called the noncyclic graph of a group; see [4]) associated with a group by the cyclicity of subgroups. It is a graph whose vertex set is the set 
	
		
			
				𝐺
				⧵
				C
				y
				c
				(
				𝐺
				)
			

		
	
, where 
	
		
			
				C
				y
				c
				(
				𝐺
				)
				=
				{
				𝑥
				∈
				𝐺
				|
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is cyclic for all 
	
		
			
				𝑦
				∈
				𝐺
				}
			

		
	
 and 
	
		
			

				𝑥
			

		
	
 is adjacent 
	
		
			

				𝑦
			

		
	
 if 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is not a cyclic subgroup. They established some graph theoretical properties (such as regularity) of this graph in terms of the group ones.
In this paper, we consider the converse. We associate a graph 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 with 
	
		
			

				𝐺
			

		
	
 (called the cyclic graph of 
	
		
			

				𝐺
			

		
	
) as follows: take 
	
		
			

				𝐺
			

		
	
 as the vertices of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 and two distinct vertices 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 are adjacent if and only if 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
. For example, Figure 1 is the cyclic graph of 
	
		
			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
, and Figure 2 is 
	
		
			

				Γ
			

			

				𝑆
			

			

				3
			

		
	
. For any group 
	
		
			

				𝐺
			

		
	
, it is easy to see that the cyclic graph 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is simple and undirected with no loops and multiple edges. By the definition, we shall explore how the graph theoretical properties of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 affect the group theoretical properties of 
	
		
			

				𝐺
			

		
	
. In particular, the structure of the group by some graph theoretical properties of the associated graph is determined.





	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	





Figure 1: 
	
		
			

				Γ
			

			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
. 						














	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
		
	

Figure 2: 
	
		
			

				Γ
			

			

				𝑆
			

			

				3
			

		
	
. 						


The outline of this paper is as follows. In Section 2, we introduce a lot of basic concepts and notations of group and graph theory which will be used in the sequel. In Section 3, we give some properties of the cyclic graph of a group on diameter, planarity, partition, clique number, and so forth and characterize a finite group whose cyclic graph is complete (planar, a star, regular, etc.). For example, the cyclic graph of any group is always connected whose diameter is at most 2 and the girth is either 3 or 
	
		
			

				∞
			

		
	
; the cyclic graph 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 of group 
	
		
			

				𝐺
			

		
	
 is complete if and only if 
	
		
			

				𝐺
			

		
	
 is cyclic and is a star if and only if 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 2-group. In particular, for a finite group 
	
		
			

				𝐺
			

		
	
, 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				A
				u
				t
				(
				𝐺
				)
			

		
	
 if and only if 
	
		
			
				𝐺
				≅
				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
, the Klein group. In Section 4, we present some properties of the cyclic graphs of the dihedral groups 
	
		
			

				𝐷
			

			
				2
				𝑛
			

		
	
, including degrees of vertices, traversability (Eulerian and Hamiltonian), planarity, coloring, and the number of edges and cliques. Furthermore, we get the automorphism group of 
	
		
			

				𝐷
			

			
				2
				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				≥
				3
			

		
	
. Particularly, for all 
	
		
			
				𝑛
				>
				2
			

		
	
, if 
	
		
			

				𝐺
			

		
	
 is a group with 
	
		
			

				Γ
			

			

				𝐺
			

			
				≅
				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
, then 
	
		
			
				𝐺
				≅
				𝐷
			

			
				2
				𝑛
			

		
	
. Similar to Section 4, we discuss the properties of the cyclic graphs on the generalized quaternion groups 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
 in Section 5. In Section 6, we obtain some parameters on the cyclic graphs of finite noncyclic groups of order up to 
	
		
			
				1
				4
			

		
	
.
2. Preliminaries
In this paper, we consider simple graphs which are undirected, with no loops or multiple edges. Let 
	
		
			

				Γ
			

		
	
 be a graph. We will denote 
	
		
			
				𝑉
				(
				Γ
				)
			

		
	
 and 
	
		
			
				𝐸
				(
				Γ
				)
			

		
	
 the set of vertices and edges of 
	
		
			

				Γ
			

		
	
, respectively. 
	
		
			

				Γ
			

		
	
 is, respectively called empty and complete if 
	
		
			
				𝑉
				(
				Γ
				)
			

		
	
 is empty and every two distinct vertices in 
	
		
			
				𝑉
				(
				Γ
				)
			

		
	
 are adjacent. A complete graph of order 
	
		
			

				𝑛
			

		
	
 is denoted by 
	
		
			

				𝐾
			

			

				𝑛
			

		
	
. The degree of a vertex 
	
		
			

				𝑣
			

		
	
 in 
	
		
			

				Γ
			

		
	
, denoted by 
	
		
			
				d
				e
				g
			

			

				Γ
			

			
				(
				𝑣
				)
			

		
	
, is the number of edges which are incident to 
	
		
			

				𝑣
			

		
	
. A subset 
	
		
			

				Ω
			

		
	
 of 
	
		
			
				𝑉
				(
				Γ
				)
			

		
	
 is called a clique if the induced subgraph of 
	
		
			

				Ω
			

		
	
 is complete. The order of the largest clique in 
	
		
			

				Γ
			

		
	
 is its clique number, which is denoted by 
	
		
			
				𝜔
				(
				Γ
				)
			

		
	
. A 
	
		
			

				𝑘
			

		
	
-vertex coloring of 
	
		
			

				Γ
			

		
	
 is an assignment of 
	
		
			

				𝑘
			

		
	
 colors to the vertices of 
	
		
			

				Γ
			

		
	
 such that no two adjacent vertices have the same color. The chromatic number 
	
		
			
				𝜒
				(
				Γ
				)
			

		
	
 of 
	
		
			

				Γ
			

		
	
 is the minimum 
	
		
			

				𝑘
			

		
	
 for which 
	
		
			

				Γ
			

		
	
 has a 
	
		
			

				𝑘
			

		
	
-vertex coloring. If 
	
		
			
				𝑢
				,
				𝑣
				∈
				𝑉
				(
				Γ
				)
			

		
	
, then 
	
		
			
				𝑑
				(
				𝑢
				,
				𝑣
				)
			

		
	
 denotes the length of the shortest path between 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑣
			

		
	
. The largest distance between all pairs of 
	
		
			
				𝑉
				(
				Γ
				)
			

		
	
 is called the diameter of 
	
		
			

				Γ
			

		
	
 and denoted by 
	
		
			
				d
				i
				a
				m
				(
				Γ
				)
			

		
	
. The length of the shortest cycle in the graph 
	
		
			

				Γ
			

		
	
 is called girth of 
	
		
			

				Γ
			

		
	
; if 
	
		
			

				Γ
			

		
	
 does not contain any cycles, then its girth is defined to be infinity (
	
		
			

				∞
			

		
	
). For a vertex 
	
		
			

				𝑣
			

		
	
 of 
	
		
			

				Γ
			

		
	
, denote by 
	
		
			

				𝑁
			

			

				Γ
			

			
				(
				𝑣
				)
			

		
	
 the set of vertices in 
	
		
			

				Γ
			

		
	
 which are adjacent to 
	
		
			

				𝑣
			

		
	
. A vertex 
	
		
			

				𝑣
			

		
	
 of 
	
		
			

				Γ
			

		
	
 is a cutvertex if 
	
		
			
				Γ
				−
				{
				𝑣
				}
			

		
	
 is disconnected. An 
	
		
			
				𝑥
				−
				𝑦
			

		
	
 path of length 
	
		
			
				𝑑
				(
				𝑥
				,
				𝑦
				)
			

		
	
 is called an 
	
		
			
				𝑥
				−
				𝑦
			

		
	
 geodesic; the closed interval 
	
		
			
				𝐼
				[
				𝑥
				,
				𝑦
				]
			

		
	
 of 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 is the set of those vertices belonging to at least one 
	
		
			
				𝑥
				−
				𝑦
			

		
	
 geodesic. A set 
	
		
			

				𝑈
			

		
	
 of 
	
		
			
				𝑉
				(
				Γ
				)
			

		
	
 is called a geodetic set for 
	
		
			

				Γ
			

		
	
 if 
	
		
			
				𝐼
				[
				𝑈
				]
				=
				𝑉
				(
				Γ
				)
			

		
	
, where 
	
		
			
				⋃
				𝐼
				[
				𝑈
				]
				=
			

			
				𝑥
				,
				𝑦
				∈
				𝑈
			

			
				𝐼
				[
				𝑥
				,
				𝑦
				]
			

		
	
. A geodetic set of minimum cardinality in 
	
		
			

				Γ
			

		
	
 is called a minimum geodetic set and this cardinality is the geodetic number. A set 
	
		
			

				𝑆
			

		
	
 of vertices of 
	
		
			

				Γ
			

		
	
 is a dominating set of 
	
		
			

				Γ
			

		
	
 if every vertex in 
	
		
			
				𝑉
				(
				Γ
				)
				⧵
				𝑆
			

		
	
 is adjacent to some vertex in 
	
		
			

				𝑆
			

		
	
; the cardinality of a minimum dominating set is called the domination number of 
	
		
			

				Γ
			

		
	
 and is denoted by 
	
		
			
				𝛾
				(
				Γ
				)
			

		
	
. 
	
		
			

				Γ
			

		
	
 is a bipartite graph means that 
	
		
			
				𝑉
				(
				Γ
				)
			

		
	
 can be partitioned into two subsets 
	
		
			

				𝑈
			

		
	
 and 
	
		
			

				𝑊
			

		
	
, called partite sets, such that every edge of 
	
		
			

				Γ
			

		
	
 joins a vertex of 
	
		
			

				𝑈
			

		
	
 and a vertex of 
	
		
			

				𝑊
			

		
	
. If every vertex of 
	
		
			

				𝑈
			

		
	
 is adjacent to every vertex of 
	
		
			

				𝑊
			

		
	
, 
	
		
			

				Γ
			

		
	
 is called a complete bipartite graph, where 
	
		
			

				𝑈
			

		
	
 and 
	
		
			

				𝑊
			

		
	
 are independent. A complete bipartite graph with 
	
		
			
				|
				𝑈
				|
				=
				𝑠
			

		
	
 and 
	
		
			
				|
				𝑊
				|
				=
				𝑡
			

		
	
 is denoted by 
	
		
			

				𝐾
			

			
				𝑠
				,
				𝑡
			

		
	
. For more information, the reader can refer to [5].
In this paper, all groups considered are finite. Let 
	
		
			

				𝐺
			

		
	
 be a finite group with identity element 
	
		
			

				𝑒
			

		
	
. The number of elements of 
	
		
			

				𝐺
			

		
	
 is called its order and is denoted by 
	
		
			
				|
				𝐺
				|
			

		
	
. The order of an element 
	
		
			

				𝑥
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is the smallest positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑛
			

			
				=
				𝑒
			

		
	
. The order of an element 
	
		
			

				𝑥
			

		
	
 is denoted by 
	
		
			
				|
				𝑥
				|
			

		
	
. For more notations and terminologies in group theory consult [6].
3. Some Properties of the Cyclic Graphs
Definition 1. In group theory, a locally cyclic group is a group in which every finitely generalized subgroup is cyclic. A group is locally cyclic if and only if every pair of elements in the group generates a cyclic group. It is a fact that every finitely generalized locally cyclic group is cyclic. So a finite locally cyclic group is cyclic.
Definition 2 (see [7, 8]). Let 
	
		
			

				𝐺
			

		
	
 be a group. The cyclicizer of an element 
	
		
			

				𝑥
			

		
	
 of 
	
		
			

				𝐺
			

		
	
, denoted 
	
		
			
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
, is defined by
							
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				{
				𝑦
				∈
				𝐺
				∣
				⟨
				𝑥
				,
				𝑦
				⟩
				i
				s
				c
				y
				c
				l
				i
				c
				}
				.
			

		
	

						In general, the cyclicizer 
	
		
			
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
 of 
	
		
			

				𝑥
			

		
	
 is not a subgroup of 
	
		
			

				𝐺
			

		
	
. For example, let 
	
		
			
				𝐺
				=
				𝑍
			

			

				4
			

			
				×
				𝑍
			

			

				2
			

		
	
, then 
	
		
			
				C
				y
				c
			

			

				𝐺
			

			
				(
				(
				2
				,
				0
				)
				)
				=
				{
				(
				0
				,
				0
				)
				,
				(
				1
				,
				0
				)
				,
				(
				1
				,
				1
				)
				,
				(
				2
				,
				0
				)
				,
				(
				3
				,
				0
				)
				,
				(
				3
				,
				1
				)
				}
			

		
	
 is not a subgroup.
Definition 3. The cyclicizer 
	
		
			
				C
				y
				c
				(
				𝐺
				)
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is defined as follows:
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				C
				y
				c
				(
				𝐺
				)
				=
			

			
				𝑥
				∈
				𝐺
			

			
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				{
				𝑦
				∈
				𝐺
				∣
				⟨
				𝑥
				,
				𝑦
				⟩
				i
				s
				c
				y
				c
				l
				i
				c
				∀
				𝑥
				∈
				𝐺
				}
				.
			

		
	
By [9, Theorem 1], 
	
		
			
				C
				y
				c
				(
				𝐺
				)
			

		
	
 is a normal subgroup of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				C
				y
				c
				(
				𝐺
				)
				≤
				𝑍
				(
				𝐺
				)
			

		
	
.
Definition 4. Let 
	
		
			

				𝐺
			

		
	
 be a group. The cyclic graph 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is a graph with 
	
		
			
				𝑉
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				𝐺
			

		
	
 and two distinct vertices 
	
		
			
				𝑥
				,
				𝑦
			

		
	
 are adjacent in 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 if and only if 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
.
Proposition 5.  For any group 
	
		
			

				𝐺
			

		
	
, 
	
		
			
				d
				e
				g
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				|
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
				|
				−
				1
			

		
	
, where 
	
		
			
				𝑥
				∈
				𝐺
			

		
	
.
Proof. By Definitions 2 and 4, it is straightforward.
Proposition 6.  Let 
	
		
			

				𝐺
			

		
	
 be a group with the identity element 
	
		
			

				𝑒
			

		
	
. Then 
	
		
			
				d
				i
				a
				m
				(
				Γ
			

			

				𝐺
			

			
				)
				≤
				2
			

		
	
. In particular, 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is connected and the girth of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is either 
	
		
			

				3
			

		
	
 or 
	
		
			

				∞
			

		
	
.
Proof. Suppose that 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 are two distinct vertices of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
. If 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
, then 
	
		
			

				𝑥
			

		
	
 is adjacent to 
	
		
			

				𝑦
			

		
	
, and hence 
	
		
			
				𝑑
				(
				𝑥
				,
				𝑦
				)
				=
				1
			

		
	
. Thus we may assume that 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is not cyclic. Note that both 
	
		
			
				⟨
				𝑒
				,
				𝑥
				⟩
			

		
	
 and 
	
		
			
				⟨
				𝑒
				,
				𝑦
				⟩
			

		
	
 are cyclic and the vertices 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 are adjacent to 
	
		
			

				𝑒
			

		
	
; hence we get 
	
		
			
				𝑑
				(
				𝑥
				,
				𝑦
				)
				=
				2
			

		
	
. This means that 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is connected and 
	
		
			
				d
				i
				a
				m
				(
				Γ
			

			

				𝐺
			

			
				)
				≤
				2
			

		
	
. If there exist 
	
		
			
				𝑥
				≠
				𝑒
				,
				𝑦
				≠
				𝑒
			

		
	
 such that 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 are joined by some edge, then 
	
		
			
				{
				𝑥
				,
				𝑦
				,
				𝑒
				}
			

		
	
 is a cycle of order 3 of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 and so the girth of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is 
	
		
			

				3
			

		
	
. Otherwise, every two vertices (nonidentity elements of 
	
		
			

				𝐺
			

		
	
) of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 are not adjacent; that is, 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is a star, which implies that the girth of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is equal to 
	
		
			

				∞
			

		
	
.
The following proposition is obvious; we omit its proof.
Proposition 7.  Let 
	
		
			

				𝐺
			

		
	
 be a group with 
	
		
			
				|
				𝐺
				|
				>
				2
			

		
	
. Then 
	
		
			
				{
				𝑒
				}
			

		
	
 is a dominating set of order 
	
		
			

				1
			

		
	
 of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
. In particular, 
	
		
			
				𝛾
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				1
			

		
	
 and 
	
		
			
				d
				e
				g
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑒
				)
				=
				|
				𝐺
				|
				−
				1
			

		
	
.
Corollary 8.  Let 
	
		
			

				𝐺
			

		
	
 be a group. Then 
	
		
			
				{
				𝑥
				}
			

		
	
 is a dominating set if and only if 
	
		
			
				𝑥
				∈
				C
				y
				c
				(
				𝐺
				)
			

		
	
. Moreover, the number of the dominating sets of size 1 is 
	
		
			
				|
				C
				y
				c
				(
				𝐺
				)
				|
			

		
	
.
Theorem 9.  Let 
	
		
			

				𝐺
			

		
	
 be a nontrivial group. Then 
	
		
			
				d
				i
				a
				m
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				1
			

		
	
 (or equivalently 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is complete) if and only if 
	
		
			

				𝐺
			

		
	
 is a cyclic group.
Proof. Let 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 be two arbitrary elements of 
	
		
			

				𝐺
			

		
	
. Suppose that 
	
		
			
				d
				i
				a
				m
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				1
			

		
	
. Then 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
. By Definition 1, 
	
		
			

				𝐺
			

		
	
 is a cyclic group as 
	
		
			

				𝐺
			

		
	
 is finite. For the converse, if 
	
		
			

				𝐺
			

		
	
 is a cyclic group, then 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
. Thus 
	
		
			
				d
				i
				a
				m
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				1
			

		
	
, as desired.
Corollary 10.  Let 
	
		
			

				𝐺
			

		
	
 be noncyclic group. Then 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is not regular.
Theorem 11.  Let 
	
		
			

				𝐺
			

		
	
 be a group with the identity element 
	
		
			

				𝑒
			

		
	
. Then 
	
		
			

				Γ
			

			

				𝐺
			

			
				≅
				𝐾
			

			
				1
				,
				|
				𝐺
				|
				−
				1
			

		
	
 (or equivalently 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is a star) if and only if 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 2-group.
Proof. Assume that 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is a star. Let 
	
		
			

				𝑥
			

		
	
 be a nonidentity element of 
	
		
			

				𝐺
			

		
	
. If 
	
		
			
				|
				𝑥
				|
				≥
				3
			

		
	
, then 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑥
			

			
				−
				1
			

		
	
 are adjacent since 
	
		
			
				⟨
				𝑥
				,
				𝑥
			

			
				−
				1
			

			

				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
, which is contrary to 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 being a star. Hence 
	
		
			
				|
				𝑥
				|
				=
				2
			

		
	
. It follows that the order of every element of 
	
		
			

				𝐺
			

		
	
 is 2. If 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 are two elements of 
	
		
			

				𝐺
			

		
	
, then 
	
		
			
				(
				𝑥
				𝑦
				)
			

			

				2
			

			
				=
				𝑥
				𝑦
				𝑥
				𝑦
				=
				𝑥
				𝑥
				𝑦
				𝑦
				=
				𝑒
			

		
	
, and hence 
	
		
			
				𝑥
				𝑦
				=
				𝑦
				𝑥
			

		
	
. It means that 
	
		
			

				𝐺
			

		
	
 is an abelian group and 
	
		
			
				e
				x
				p
				(
				𝐺
				)
				=
				2
			

		
	
. It follows that 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 2-group.Conversely, suppose that 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 2-group. Then the order of every cyclic subgroup of 
	
		
			

				𝐺
			

		
	
 is 2. Let 
	
		
			

				𝑥
			

		
	
 is a nonidentity element of 
	
		
			

				𝐺
			

		
	
. If there exists an element 
	
		
			

				𝑦
			

		
	
 such that 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is cyclic, then 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
				=
				⟨
				𝑥
				⟩
			

		
	
, which implies 
	
		
			
				𝑦
				∈
				⟨
				𝑥
				⟩
			

		
	
. Note that 
	
		
			

				𝑥
			

		
	
 is an element of order 2; then 
	
		
			
				𝑦
				=
				𝑒
			

		
	
 as 
	
		
			
				𝑥
				≠
				𝑦
			

		
	
. It follows that the unique element 
	
		
			

				𝑒
			

		
	
 is adjacent to 
	
		
			

				𝑥
			

		
	
 in 
	
		
			

				Γ
			

			

				𝐺
			

		
	
. So 
	
		
			

				Γ
			

			

				𝐺
			

			
				≅
				𝐾
			

			
				1
				,
				|
				𝐺
				|
				−
				1
			

		
	
.
Corollary 12.  Let 
	
		
			

				𝐺
			

		
	
 be an elementary abelian 2-group. Then 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			

				)
			

		
	
 is isomorphic to the symmetric 
	
		
			

				𝑆
			

			
				|
				𝐺
				|
				−
				1
			

		
	
 on 
	
		
			
				|
				𝐺
				|
				−
				1
			

		
	
 letters.
Corollary 13.  Let 
	
		
			

				𝐺
			

		
	
 be group. Then 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is a tree if and only if 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 2-group.
Corollary 14.  Let 
	
		
			

				𝐺
			

		
	
 be group with 
	
		
			
				|
				𝐺
				|
				>
				2
			

		
	
. If 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is bipartite, then 
	
		
			
				C
				y
				c
				(
				𝐺
				)
				=
				{
				𝑒
				}
			

		
	
. 
Proof. Assume, on the contrary, 
	
		
			
				C
				y
				c
				(
				𝐺
				)
				≠
				{
				𝑒
				}
			

		
	
. Then there exist two adjacent vertices 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 such that 
	
		
			
				𝑥
				,
				𝑦
				∈
				C
				y
				c
				(
				𝐺
				)
			

		
	
. Since 
	
		
			
				|
				𝐺
				|
				>
				2
			

		
	
, there is an element 
	
		
			

				𝑧
			

		
	
 such that 
	
		
			
				𝑧
				≠
				𝑥
				,
				𝑧
				≠
				𝑦
			

		
	
. By Definition 3, 
	
		
			
				{
				𝑥
				,
				𝑦
				,
				𝑧
				}
			

		
	
 is a cycle of length 3 and so the subgraph of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 induced by 
	
		
			
				{
				𝑥
				,
				𝑦
				,
				𝑧
				}
			

		
	
 is an odd cycle, which is a contradiction to 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 being bipartite (see [5, Theorem 1.12, page 22]).
Remark 15. Let 
	
		
			
				𝐺
				=
				𝑍
			

			

				2
			

		
	
. Then 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is a bipartite graph, while 
	
		
			
				C
				y
				c
				(
				𝐺
				)
				≠
				{
				𝑒
				}
			

		
	
.
Corollary 16.  Let 
	
		
			

				𝐺
			

		
	
 be group. Then 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is bipartite if and only if 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 2-group.
Proposition 17.  Let 
	
		
			

				𝐺
			

			

				1
			

		
	
 and 
	
		
			

				𝐺
			

			

				2
			

		
	
 be two groups. If 
	
		
			

				𝐺
			

			

				1
			

			
				≅
				𝐺
			

			

				2
			

		
	
, then 
	
		
			

				Γ
			

			

				𝐺
			

			

				1
			

			
				≅
				Γ
			

			

				𝐺
			

			

				2
			

		
	
.
Proof. Let 
	
		
			

				𝜙
			

		
	
 be an isomorphism from 
	
		
			

				𝐺
			

			

				1
			

		
	
 to 
	
		
			

				𝐺
			

			

				2
			

		
	
. Obviously, 
	
		
			

				𝜙
			

		
	
 is a one-to-one correspondence between 
	
		
			

				Γ
			

			

				𝐺
			

			

				1
			

		
	
 and 
	
		
			

				Γ
			

			

				𝐺
			

			

				2
			

		
	
. Let 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 be two vertices of 
	
		
			

				Γ
			

			

				𝐺
			

			

				1
			

		
	
. If 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
				=
				⟨
				𝑔
				⟩
			

		
	
 is cyclic, then there exist two positive integers 
	
		
			
				𝑛
				,
				𝑚
			

		
	
 such that 
	
		
			
				𝑥
				=
				𝑔
			

			

				𝑛
			

		
	
 and 
	
		
			
				𝑦
				=
				𝑔
			

			

				𝑚
			

		
	
, so 
	
		
			

				𝑥
			

			

				𝜙
			

			
				=
				(
				𝑔
			

			

				𝜙
			

			

				)
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝜙
			

			
				=
				(
				𝑔
			

			

				𝜙
			

			

				)
			

			

				𝑚
			

		
	
; It means that 
	
		
			

				𝑥
			

			

				𝜙
			

			
				,
				𝑦
			

			

				𝜙
			

			
				∈
				⟨
				𝑔
			

			

				𝜙
			

			

				⟩
			

		
	
, that is, 
	
		
			
				⟨
				𝑥
			

			

				𝜙
			

			
				,
				𝑦
			

			

				𝜙
			

			

				⟩
			

		
	
 is a subgroup of 
	
		
			
				⟨
				𝑔
			

			

				𝜙
			

			

				⟩
			

		
	
. Thus 
	
		
			
				⟨
				𝑥
			

			

				𝜙
			

			
				,
				𝑦
			

			

				𝜙
			

			

				⟩
			

		
	
 is cyclic. Note that 
	
		
			

				𝜙
			

		
	
 is invertible. It follows that 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 are adjacent in 
	
		
			

				Γ
			

			

				𝐺
			

			

				1
			

		
	
 if and only if 
	
		
			

				𝑥
			

			

				𝜙
			

		
	
 is adjacent to 
	
		
			

				𝑦
			

			

				𝜙
			

		
	
 in 
	
		
			

				Γ
			

			

				𝐺
			

			

				2
			

		
	
. Consequently, 
	
		
			

				𝜙
			

		
	
 is a graph automorphism from 
	
		
			

				Γ
			

			

				𝐺
			

			

				1
			

		
	
 to 
	
		
			

				Γ
			

			

				𝐺
			

			

				2
			

		
	
, namely, 
	
		
			

				Γ
			

			

				𝐺
			

			

				1
			

			
				≅
				Γ
			

			

				𝐺
			

			

				2
			

		
	
.
Remark 18. The converse of Proposition 17 is not true in general. Let 
	
		
			

				𝐺
			

			

				1
			

		
	
 be the modular group of order 16 (a group is called a modular group if its lattice of subgroups is modular) with presentation
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				𝑠
				,
				𝑡
				∶
				𝑠
			

			

				8
			

			
				=
				𝑟
			

			

				2
			

			
				=
				𝑒
				,
				𝑠
				𝑡
				=
				𝑡
				𝑠
			

			

				5
			

			
				
				.
			

		
	

						Clearly, 
	
		
			

				𝐺
			

			

				1
			

			
				=
				{
				𝑠
			

			

				𝑘
			

			

				𝑡
			

			

				𝑚
			

			
				∣
				𝑘
				=
				0
				,
				1
				,
				…
				,
				7
				,
				𝑚
				=
				0
				,
				1
				}
			

		
	
. Let 
	
		
			

				𝐺
			

			

				2
			

			
				=
				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				8
			

		
	
. For 
	
		
			

				𝐺
			

			

				1
			

		
	
, this is the same subgroup lattice structure as for the lattice of subgroups of 
	
		
			

				𝐺
			

			

				2
			

		
	
. It is easy to see that 
	
		
			

				Γ
			

			

				𝐺
			

			

				1
			

			
				≅
				Γ
			

			

				𝐺
			

			

				2
			

		
	
, however, 
	
		
			

				𝐺
			

			

				1
			

			
				≇
				𝐺
			

			

				2
			

		
	
 because 
	
		
			

				𝐺
			

			

				1
			

		
	
 is not abelian.
Theorem 19.  Let 
	
		
			

				𝐺
			

		
	
 be a group and let 
	
		
			

				𝑎
			

		
	
 be an element of 
	
		
			

				𝐺
			

		
	
. If 
	
		
			
				|
				𝑔
				|
				≤
				|
				𝑎
				|
			

		
	
 for all 
	
		
			
				𝑔
				∈
				𝐺
			

		
	
, then 
	
		
			
				𝜔
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				|
				𝑎
				|
			

		
	
.
Proof. Let 
	
		
			
				|
				𝑎
				|
				=
				𝑛
			

		
	
. Then the induced subgraph of 
	
		
			
				{
				𝑎
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			
				𝑛
				−
				1
			

			
				,
				𝑒
				}
			

		
	
 is complete; hence 
	
		
			
				{
				𝑎
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			
				𝑛
				−
				1
			

			
				,
				𝑒
				}
			

		
	
 is a clique of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
. On the other hand, if 
	
		
			
				𝜔
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				𝑚
			

		
	
, then there exists a subset 
	
		
			

				𝐶
			

		
	
 of 
	
		
			
				𝑉
				(
				Γ
			

			

				𝐺
			

			

				)
			

		
	
 such that the subgraph of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 induced by 
	
		
			

				𝐶
			

		
	
 is complete and 
	
		
			
				|
				𝐶
				|
				=
				𝑚
			

		
	
. Note that the order of the largest clique is 
	
		
			

				𝑚
			

		
	
; 
	
		
			

				𝑒
			

		
	
 must be an element of 
	
		
			

				𝐶
			

		
	
. If 
	
		
			
				𝑥
				∈
				𝐶
			

		
	
, then we have 
	
		
			
				⟨
				𝑥
				,
				𝑔
				⟩
			

		
	
 being cyclic for every 
	
		
			

				𝑔
			

		
	
 in 
	
		
			
				𝐶
				⧵
				{
				𝑥
				}
			

		
	
. Clearly 
	
		
			
				⟨
				𝑥
				,
				𝑔
				⟩
				=
				⟨
				𝑥
			

			
				−
				1
			

			
				,
				𝑔
				⟩
			

		
	
; that is, 
	
		
			

				𝑥
			

			
				−
				1
			

			
				∈
				𝐶
			

		
	
. Let 
	
		
			
				𝑥
				,
				𝑦
			

		
	
 be two arbitrary elements of 
	
		
			

				𝐶
			

		
	
. So 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is cyclic. Since 
	
		
			
				⟨
				𝑥
				𝑦
				,
				𝑥
				⟩
				≤
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 and 
	
		
			
				⟨
				𝑥
				𝑦
				,
				𝑦
				⟩
				≤
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
, 
	
		
			
				𝑥
				𝑦
			

		
	
 and 
	
		
			

				𝑥
			

		
	
 are adjacent in 
	
		
			

				Γ
			

			

				𝐺
			

		
	
; yet, 
	
		
			
				𝑥
				𝑦
			

		
	
 is adjacent to 
	
		
			

				𝑦
			

		
	
. Suppose 
	
		
			
				𝑧
				∈
				𝐶
				⧵
				{
				𝑥
				,
				𝑦
				}
			

		
	
, it is easy to see that 
	
		
			
				⟨
				𝑥
				𝑦
				,
				𝑧
				⟩
				≤
				⟨
				𝑥
				,
				𝑦
				,
				𝑧
				⟩
			

		
	
. Since 
	
		
			
				⟨
				𝑥
				,
				𝑦
				,
				𝑧
				⟩
			

		
	
 is a locally cyclic group by Definition 1, 
	
		
			
				⟨
				𝑥
				,
				𝑦
				,
				𝑧
				⟩
			

		
	
 is a cyclic group; namely, 
	
		
			
				⟨
				𝑥
				𝑦
				,
				𝑧
				⟩
			

		
	
 is cyclic. Consequently, 
	
		
			
				𝑥
				𝑦
			

		
	
 and 
	
		
			

				𝑧
			

		
	
 are joined by an edge of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
. From what we have mentioned above, we can see that 
	
		
			

				𝐶
			

		
	
 is a group of 
	
		
			

				𝐺
			

		
	
. Again, 
	
		
			

				𝐶
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
 by Definition 1. Let 
	
		
			
				𝐶
				=
				⟨
				𝑏
				⟩
			

		
	
, where 
	
		
			

				𝑏
			

		
	
 is an element of 
	
		
			

				𝐺
			

		
	
. It follows that 
	
		
			
				|
				𝑏
				|
				≤
				|
				𝑎
				|
			

		
	
 from the hypothesis; that is, 
	
		
			
				𝜔
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				|
				𝑎
				|
			

		
	
.
Corollary 20.  Let 
	
		
			

				𝐺
			

		
	
 be group. If 
	
		
			
				𝐶
				=
				{
				𝑥
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			
				|
				𝑥
				|
				−
				1
			

			
				,
				𝑒
				}
				=
				⟨
				𝑥
				⟩
			

		
	
, then 
	
		
			

				𝐶
			

		
	
 is a clique of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
. Converse holds only when 
	
		
			

				𝐶
			

		
	
 is the largest clique.
Corollary 21.  Let 
	
		
			
				𝑛
				≥
				3
			

		
	
. Then 
	
		
			

				𝑆
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝐴
			

			

				𝑛
			

		
	
 are planar if and only if 
	
		
			
				𝑛
				=
				3
			

		
	
 or 
	
		
			

				4
			

		
	
.
Theorem 22.  Let 
	
		
			

				𝐺
			

		
	
 be a group. Then 
	
		
			
				d
				e
				g
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				|
				𝑥
				|
				−
				1
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑉
				(
				Γ
			

			

				𝐺
			

			
				)
				⧵
				{
				𝑒
				}
			

		
	
 if and only if every element of 
	
		
			
				𝐺
				⧵
				{
				𝑒
				}
			

		
	
 is of prime order.
Proof. Assume that 
	
		
			
				d
				e
				g
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				|
				𝑥
				|
				−
				1
			

		
	
 for every nonidentity element 
	
		
			

				𝑥
			

		
	
 of 
	
		
			

				𝐺
			

		
	
. If there exists an element 
	
		
			

				𝑥
			

		
	
 of 
	
		
			
				𝐺
				⧵
				{
				𝑒
				}
			

		
	
 such that 
	
		
			

				𝑥
			

		
	
 is not of prime order, then we may choose 
	
		
			

				𝑡
			

		
	
 such that 
	
		
			

				𝑡
			

		
	
 divides the order of 
	
		
			

				𝑥
			

		
	
 and 
	
		
			
				1
				<
				𝑡
				<
				|
				𝑥
				|
			

		
	
. Thus 
	
		
			

				𝑥
			

			

				𝑡
			

			
				≠
				𝑒
			

		
	
 and 
	
		
			

				𝑥
			

		
	
 is adjacent to 
	
		
			

				𝑥
			

			

				𝑡
			

		
	
, since 
	
		
			
				⟨
				𝑥
				,
				𝑥
			

			

				𝑡
			

			
				⟩
				=
				⟨
				𝑥
				⟩
			

		
	
. while 
	
		
			
				𝑥
				∉
				⟨
				𝑥
			

			

				𝑡
			

			

				⟩
			

		
	
 (otherwise, 
	
		
			
				⟨
				𝑥
				⟩
				=
				⟨
				𝑥
			

			

				𝑡
			

			

				⟩
			

		
	
, a contradiction). so 
	
		
			

				𝑁
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑡
			

			
				)
				=
				{
				𝑥
				}
				∪
				(
				⟨
				𝑥
			

			

				𝑡
			

			
				⟩
				⧵
				{
				𝑥
			

			

				𝑡
			

			
				}
				)
			

		
	
. This is contrary to 
	
		
			
				d
				e
				g
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
			

			

				𝑡
			

			
				)
				=
				|
				𝑥
			

			

				𝑡
			

			
				|
				−
				1
			

		
	
.For the converse, suppose every nonidentity element 
	
		
			

				𝑥
			

		
	
 of 
	
		
			

				𝐺
			

		
	
 is of prime order. If 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
, then 
	
		
			
				|
				⟨
				𝑥
				,
				𝑦
				⟩
				|
			

		
	
 is a prime number. Thereby, 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
				=
				⟨
				𝑥
				⟩
			

		
	
, and so 
	
		
			
				𝑦
				∈
				⟨
				𝑥
				⟩
			

		
	
. That is, 
	
		
			
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				⟨
				𝑥
				⟩
			

		
	
. Hence the theorem follows.
Theorem 23.  Let 
	
		
			

				𝐺
			

		
	
 be a group. Then 
	
		
			

				𝑁
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				∪
				{
				𝑥
				}
			

		
	
 is a cyclic subgroup for all 
	
		
			
				𝑥
				∈
				𝐺
				⧵
				{
				𝑒
				}
			

		
	
 if and only if every element 
	
		
			

				𝑥
			

		
	
 of 
	
		
			
				𝐺
				⧵
				{
				𝑒
				}
			

		
	
 is contained in precisely one maximal cyclic subgroup of 
	
		
			

				𝐺
			

		
	
.
Proof. Assume that every element of 
	
		
			
				𝐺
				⧵
				{
				𝑒
				}
			

		
	
 is contained in exactly one maximal cyclic subgroup of 
	
		
			

				𝐺
			

		
	
. If 
	
		
			

				𝑥
			

		
	
 is an element of 
	
		
			
				𝐺
				⧵
				{
				𝑒
				}
			

		
	
, then there is a maximal cyclic subgroup 
	
		
			
				⟨
				𝑦
				⟩
			

		
	
 such that 
	
		
			
				𝑥
				∈
				⟨
				𝑦
				⟩
			

		
	
. Let 
	
		
			
				𝑎
				∈
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
. Since 
	
		
			
				⟨
				𝑥
				,
				𝑎
				⟩
			

		
	
 is cyclic, 
	
		
			
				⟨
				𝑥
				,
				𝑎
				⟩
				=
				⟨
				𝑧
				⟩
			

		
	
. If 
	
		
			
				⟨
				𝑥
				,
				𝑎
				⟩
			

			

				/
			

			
				⩽
				⟨
				𝑦
				⟩
			

		
	
, then there exists a maximal cyclic subgroup 
	
		
			
				⟨
				𝑤
				⟩
			

		
	
 such that 
	
		
			
				𝑧
				∈
				⟨
				𝑤
				⟩
			

		
	
 as 
	
		
			
				𝑧
				≠
				𝑒
			

		
	
. However 
	
		
			
				𝑥
				∈
				⟨
				𝑤
				⟩
			

		
	
; this gives a contradiction to 
	
		
			
				⟨
				𝑦
				⟩
			

		
	
 being the precisely one maximal cyclic subgroup of containing 
	
		
			

				𝑥
			

		
	
. Consequently 
	
		
			
				⟨
				𝑥
				,
				𝑎
				⟩
				≤
				⟨
				𝑦
				⟩
			

		
	
, and so 
	
		
			
				𝑎
				∈
				⟨
				𝑦
				⟩
			

		
	
. Also, if 
	
		
			
				𝑏
				∈
				⟨
				𝑦
				⟩
			

		
	
, then 
	
		
			
				⟨
				𝑥
				,
				𝑏
				⟩
				≤
				⟨
				𝑦
				⟩
			

		
	
, so 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑏
			

		
	
 are adjacent in 
	
		
			

				Γ
			

			

				𝐺
			

		
	
; it means that 
	
		
			
				𝑏
				∈
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
. Thus 
	
		
			
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
				=
				⟨
				𝑦
				⟩
			

		
	
; that is, 
	
		
			
				C
				y
				c
			

			

				𝐺
			

			
				(
				𝑥
				)
			

		
	
 is cyclic. In other words, 
	
		
			

				𝑁
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				∪
				{
				𝑥
				}
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
.Conversely, let 
	
		
			

				𝑥
			

		
	
 be an element of 
	
		
			
				𝐺
				⧵
				{
				𝑒
				}
			

		
	
 such that 
	
		
			
				𝑥
				∈
				⟨
				𝑦
				⟩
			

		
	
 and 
	
		
			
				𝑥
				∈
				⟨
				𝑧
				⟩
			

		
	
, where 
	
		
			
				⟨
				𝑦
				⟩
			

		
	
 and 
	
		
			
				⟨
				𝑧
				⟩
			

		
	
 are two maximal cyclic subgroups of 
	
		
			

				𝐺
			

		
	
. Assume that 
	
		
			

				𝑁
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				∪
				{
				𝑥
				}
			

		
	
 is cyclic. Since 
	
		
			

				𝑥
			

		
	
 is adjacent to 
	
		
			

				𝑦
			

		
	
, we have 
	
		
			
				⟨
				𝑦
				⟩
				≤
				𝑁
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				∪
				{
				𝑥
				}
			

		
	
, so 
	
		
			
				⟨
				𝑦
				⟩
				=
				𝑁
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				∪
				{
				𝑥
				}
			

		
	
. Similarly, 
	
		
			
				⟨
				𝑧
				⟩
				=
				𝑁
			

			

				Γ
			

			

				𝐺
			

			
				(
				𝑥
				)
				∪
				{
				𝑥
				}
			

		
	
, and thus 
	
		
			
				⟨
				𝑦
				⟩
				=
				⟨
				𝑧
				⟩
			

		
	
; that is, 
	
		
			

				𝑥
			

		
	
 is contained in precisely one maximal cyclic subgroup of 
	
		
			

				𝐺
			

		
	
.
Theorem 24.  Let 
	
		
			

				𝐺
			

		
	
 be a group. Then 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				A
				u
				t
				(
				𝐺
				)
			

		
	
 if and only if 
	
		
			

				𝐺
			

		
	
 is isomorphic to the Klein group 
	
		
			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
.
Proof. First we suppose that 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				A
				u
				t
				(
				𝐺
				)
			

		
	
 for group 
	
		
			

				𝐺
			

		
	
. We shall show that 
	
		
			

				𝐺
			

		
	
 is isomorphic to the Klein group 
	
		
			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
 by the following steps.Step  1 ( 
	
		
			

				𝐺
			

		
	
 is abelian). Let 
	
		
			

				𝜓
			

		
	
 be an automorphism of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
. Then 
	
		
			

				𝜓
			

		
	
 is an automorphism of group 
	
		
			

				𝐺
			

		
	
, so 
	
		
			
				(
				𝑥
				𝑦
				)
			

			

				𝜓
			

			
				=
				𝑥
			

			

				𝜓
			

			

				𝑦
			

			

				𝜓
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
. Now we define the mapping 
	
		
			

				𝛼
			

		
	
: 
	
		
			

				𝑥
			

			

				𝛼
			

			
				=
				𝑥
			

			
				−
				1
			

		
	
 for all 
	
		
			

				𝑥
			

		
	
 in 
	
		
			
				𝑉
				(
				Γ
			

			

				𝐺
			

			

				)
			

		
	
. It is well known that 
	
		
			

				𝛼
			

		
	
 is a bijection and 
	
		
			
				⟨
				𝑎
				,
				𝑏
				⟩
			

		
	
 is cyclic if and only if 
	
		
			
				⟨
				𝑎
			

			
				−
				1
			

			
				,
				𝑏
			

			
				−
				1
			

			

				⟩
			

		
	
 is cyclic; that is, 
	
		
			
				𝑎
				𝑏
			

		
	
 is an edge of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 if and only if 
	
		
			

				𝑎
			

			

				𝛼
			

			

				𝑏
			

			

				𝛼
			

		
	
 is an edge of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
. Thus 
	
		
			
				𝛼
				∈
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			

				)
			

		
	
. By hypothesis, 
	
		
			
				𝛼
				∈
				A
				u
				t
				(
				𝐺
				)
			

		
	
, so 
	
		
			
				(
				𝑥
				𝑦
				)
			

			

				𝛼
			

			
				=
				𝑥
			

			

				𝛼
			

			

				𝑦
			

			

				𝛼
			

			
				=
				(
				𝑥
				𝑦
				)
			

			
				−
				1
			

			
				=
				𝑦
			

			
				−
				1
			

			

				𝑥
			

			
				−
				1
			

			
				=
				𝑥
			

			
				−
				1
			

			

				𝑦
			

			
				−
				1
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐺
			

		
	
; namely, 
	
		
			
				𝑥
				𝑦
				=
				𝑦
				𝑥
			

		
	
, and hence 
	
		
			

				𝐺
			

		
	
 is a abelian group.Step  2 ( 
	
		
			

				𝐺
			

		
	
 is not a cyclic group). If 
	
		
			

				𝐺
			

		
	
 is a cyclic group, then we can see that 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is isomorphic to the complete graph 
	
		
			

				𝐾
			

			
				|
				𝐺
				|
			

		
	
 by Theorem 9, and hence 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			

				)
			

		
	
 is isomorphic to the symmetric group 
	
		
			

				𝑆
			

			
				|
				𝐺
				|
			

		
	
. Since 
	
		
			
				|
				𝐺
				|
				≥
				3
			

		
	
 (if 
	
		
			
				|
				𝐺
				|
				=
				2
			

		
	
, then 
	
		
			
				A
				u
				t
				(
				𝐺
				)
				=
				{
				𝑒
				}
			

		
	
, but 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			
				)
				≅
				𝑍
			

			

				2
			

		
	
, a contradiction), 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			

				)
			

		
	
 is nonabelian. However, 
	
		
			
				A
				u
				t
				(
				𝐺
				)
			

		
	
 must be abelian as 
	
		
			

				𝐺
			

		
	
 is cyclic, a contradiction.Step  3 ( 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 2-group). By Step 1, we have 
	
		
			
				𝐺
				=
				⟨
				𝑎
			

			

				1
			

			
				⟩
				×
				⟨
				𝑎
			

			

				2
			

			
				⟩
				×
				⋯
				×
				⟨
				𝑎
			

			

				𝑟
			

			

				⟩
			

		
	
, where 
	
		
			
				|
				𝑎
			

			

				𝑖
			

			
				|
				∣
				|
				𝑎
			

			
				𝑖
				+
				1
			

			

				|
			

		
	
 for all 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑟
				−
				1
			

		
	
. It is clear that 
	
		
			
				𝑟
				>
				1
			

		
	
 by Step 2. Obviously, there exists a graph automorphism 
	
		
			

				𝜓
			

		
	
 such that 
	
		
			

				𝑎
			

			
				𝜓
				1
			

			
				=
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			
				𝜓
				𝑟
			

			
				=
				𝑎
			

			

				𝑟
			

			
				,
				(
				𝑎
			

			

				1
			

			

				𝑎
			

			

				𝑟
			

			

				)
			

			

				𝜓
			

			
				=
				(
				𝑎
			

			

				1
			

			

				𝑎
			

			

				𝑟
			

			

				)
			

			
				−
				1
			

		
	
, and 
	
		
			
				(
				(
				𝑎
			

			

				1
			

			

				𝑎
			

			

				𝑟
			

			

				)
			

			
				−
				1
			

			

				)
			

			

				𝜓
			

			
				=
				𝑎
			

			

				1
			

			

				𝑎
			

			

				𝑟
			

		
	
. Since 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				A
				u
				t
				(
				𝐺
				)
			

		
	
, we have 
	
		
			
				𝜓
				∈
				A
				u
				t
				(
				𝐺
				)
			

		
	
 and 
	
		
			
				(
				𝑎
			

			

				1
			

			

				𝑎
			

			

				𝑟
			

			

				)
			

			

				𝜓
			

			
				=
				𝑎
			

			
				𝜓
				1
			

			

				𝑎
			

			
				𝜓
				𝑟
			

		
	
. It follows that 
	
		
			

				𝑎
			

			
				2
				1
			

			
				=
				𝑎
			

			
				𝑟
				−
				2
			

			
				∈
				⟨
				𝑎
			

			

				1
			

			
				⟩
				∩
				⟨
				𝑎
			

			

				𝑟
			

			
				⟩
				=
				{
				𝑒
				}
			

		
	
. Furthermore, 
	
		
			
				|
				𝑎
			

			

				1
			

			
				|
				=
				|
				𝑎
			

			

				𝑟
			

			
				|
				=
				2
			

		
	
. In particular, 
	
		
			
				|
				𝑎
			

			

				2
			

			
				|
				=
				|
				𝑎
			

			

				3
			

			
				|
				=
				⋯
				=
				|
				𝑎
			

			
				𝑟
				−
				1
			

			
				|
				=
				2
			

		
	
. It follows that 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 2-group.Step  4 (finishing the proof). Let 
	
		
			
				|
				𝐺
				|
				=
				2
			

			

				𝑛
			

		
	
 for some positive integer 
	
		
			

				𝑛
			

		
	
. By Step 3 and Theorem 11, 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is isomorphic to the star 
	
		
			

				𝐾
			

			
				1
				,
				2
			

			

				𝑛
			

			
				−
				1
			

		
	
. So 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			

				)
			

		
	
 is the symmetric group 
	
		
			

				𝑆
			

			

				2
			

			

				𝑛
			

			
				−
				1
			

		
	
 of degree 
	
		
			

				2
			

			

				𝑛
			

			
				−
				1
			

		
	
, while 
	
		
			
				A
				u
				t
				(
				𝐺
				)
			

		
	
 is isomorphic to the general linear group 
	
		
			
				G
				L
				(
				𝑛
				,
				2
				)
			

		
	
. Thus 
	
		
			
				𝑛
				=
				2
			

		
	
 as 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				A
				u
				t
				(
				𝐺
				)
			

		
	
. That is, 
	
		
			
				𝐺
				≅
				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
.For the converse, we suppose that 
	
		
			
				𝐺
				≅
				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
. Then we have 
	
		
			
				A
				u
				t
				(
				𝐺
				)
				=
				𝑆
			

			

				3
			

		
	
. On the other hand, 
	
		
			

				Γ
			

			

				𝐺
			

			
				≅
				𝐾
			

			
				1
				,
				3
			

		
	
, and so 
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				A
				u
				t
				(
				𝐺
				)
				=
				𝑆
			

			

				3
			

		
	
.
Remark 25. Suppose 
	
		
			
				𝐺
				=
				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
, then 
	
		
			

				Γ
			

			

				𝐺
			

			
				≅
				𝐾
			

			
				1
				,
				3
			

		
	
. Let 
	
		
			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

			
				=
				{
				𝑒
				,
				𝑎
				,
				𝑏
				,
				𝑎
				𝑏
				∣
				𝑎
			

			

				2
			

			
				=
				𝑏
			

			

				2
			

			
				=
				𝑒
				,
				𝑎
				𝑏
				=
				𝑏
				𝑎
				}
			

		
	
. Then 
	
		
			
				|
				A
				u
				t
				(
				𝐺
				)
				|
				=
				6
			

		
	
, more specifically,
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝜑
			

			

				1
			

			
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				𝜑
				𝑎
				↦
				𝑎
				,
				𝑏
				↦
				𝑎
				𝑏
				,
				𝑎
				𝑏
				↦
				𝑏
				,
				𝑒
				↦
				𝑒
				,
			

			

				2
			

			
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				𝜑
				𝑎
				↦
				𝑏
				,
				𝑏
				↦
				𝑎
				𝑏
				,
				𝑎
				𝑏
				↦
				𝑎
				,
				𝑒
				↦
				𝑒
				,
			

			

				3
			

			
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				𝜑
				𝑎
				↦
				𝑎
				𝑏
				,
				𝑏
				↦
				𝑏
				,
				𝑎
				𝑏
				↦
				𝑏
				,
				𝑒
				↦
				𝑒
				,
			

			

				4
			

			
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				𝜑
				𝑎
				↦
				𝑏
				,
				𝑏
				↦
				𝑎
				,
				𝑎
				𝑏
				↦
				𝑎
				𝑏
				,
				𝑒
				↦
				𝑒
				,
			

			

				5
			

			
				=
				⎧
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎩
				𝜑
				𝑎
				↦
				𝑎
				𝑏
				,
				𝑏
				↦
				𝑎
				,
				𝑎
				𝑏
				↦
				𝑏
				,
				𝑒
				↦
				𝑒
				,
			

			

				6
			

			
				=
				𝑒
				,
			

		
	

						here 
	
		
			

				𝜑
			

			

				𝑖
			

			
				∈
				A
				u
				t
				(
				𝐺
				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				6
			

		
	
. Clearly, we can see that 
	
		
			
				A
				u
				t
				(
				𝐺
				)
			

		
	
 is nonabelian; that is, 
	
		
			
				A
				u
				t
				(
				𝐺
				)
				≅
				𝑆
			

			

				3
			

		
	
.
Proposition 26.  Let 
	
		
			

				𝐺
			

		
	
 be an elementary abelian 
	
		
			

				𝑝
			

		
	
-group for some prime integer 
	
		
			

				𝑝
			

		
	
. Then 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 is isomorphic to Figure 3.











	
		
	


	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	













Figure 3: The cyclic graph of the elementary abelian 
	
		
			

				𝑝
			

		
	
-group.


Proof. Let 
	
		
			

				𝑥
			

		
	
 be an element of 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				𝑥
				≠
				𝑒
			

		
	
. Since 
	
		
			

				𝐺
			

		
	
 is an elementary abelian 
	
		
			

				𝑝
			

		
	
-group, we conclude that the order of 
	
		
			

				𝑥
			

		
	
 is 
	
		
			

				𝑝
			

		
	
. It follows that the subgraph of 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 induced by 
	
		
			
				{
				𝑥
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			
				𝑝
				−
				1
			

			

				}
			

		
	
 is isomorphic to the complete graph 
	
		
			

				𝐾
			

			
				𝑝
				−
				1
			

		
	
 of order 
	
		
			
				𝑝
				−
				1
			

		
	
. Let 
	
		
			

				𝑦
			

		
	
 be an element such that 
	
		
			
				𝑦
				∉
				⟨
				𝑥
				⟩
			

		
	
. If 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 are adjacent, then 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝐺
			

		
	
, which implies 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
				=
				⟨
				𝑥
				⟩
				=
				⟨
				𝑦
				⟩
			

		
	
 since 
	
		
			
				⟨
				𝑥
				,
				𝑦
				⟩
			

		
	
 is a cyclic subgroup of order 5, and this gives a contradiction to 
	
		
			
				𝑦
				∉
				⟨
				𝑥
				⟩
			

		
	
. Thus 
	
		
			

				𝑥
			

		
	
 is uniquely adjacent to every vertex of 
	
		
			
				{
				𝑒
				,
				𝑥
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			
				𝑝
				−
				1
			

			

				}
			

		
	
. This completes the proof.
Remark 27. Let 
	
		
			

				𝑝
			

		
	
 be composite. Then, in general, 
	
		
			

				𝑍
			

			

				𝑝
			

			
				×
				𝑍
			

			

				𝑝
			

			
				×
				⋯
				×
				𝑍
			

			

				𝑝
			

		
	
 is not isomorphic to Figure 3. For example, let 
	
		
			
				𝐺
				=
				𝑍
			

			

				4
			

			
				×
				𝑍
			

			

				4
			

		
	
, then 
	
		
			
				d
				e
				g
			

			

				Γ
			

			

				𝐺
			

			
				(
				(
				2
				,
				0
				)
				)
				=
				5
				>
				4
			

		
	
. In fact, 
	
		
			

				𝑁
			

			

				Γ
			

			

				𝐺
			

			
				(
				(
				2
				,
				0
				)
				)
				=
				{
				(
				1
				,
				2
				)
				,
				(
				0
				,
				0
				)
				,
				(
				3
				,
				2
				)
				,
				(
				1
				,
				0
				)
				,
				(
				3
				,
				0
				)
				}
			

		
	
.

4. The Cyclic Graphs of the Dihedral Groups
 For 
	
		
			
				𝑛
				≥
				3
			

		
	
, the dihedral group 
	
		
			

				𝐷
			

			
				2
				𝑛
			

		
	
 is an important example of finite groups. As is well known, 
	
		
			

				𝐷
			

			
				2
				𝑛
			

			
				=
				⟨
				𝑟
				,
				𝑠
				∶
				𝑠
			

			

				2
			

			
				=
				𝑟
			

			

				𝑛
			

			
				=
				𝑒
				,
				𝑠
			

			
				−
				1
			

			
				𝑟
				𝑠
				=
				𝑟
			

			
				−
				1
			

			

				⟩
			

		
	
. As a list,
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝐷
			

			
				2
				𝑛
			

			
				=
				
				𝑟
			

			

				1
			

			
				,
				𝑟
			

			

				2
			

			
				,
				…
				,
				𝑟
			

			

				𝑛
			

			
				=
				𝑒
				,
				𝑠
				𝑟
			

			

				1
			

			
				,
				𝑠
				𝑟
			

			

				2
			

			
				,
				…
				,
				𝑠
				𝑟
			

			

				𝑛
			

			
				
				.
			

		
	

Theorem 28.  Let 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 be the cyclic graph of 
	
		
			

				𝐷
			

			
				2
				𝑛
			

		
	
 and 
	
		
			
				𝑛
				≥
				3
			

		
	
. Then (1)
	
		
			
				d
				e
				g
			

			

				Γ
			

			
				𝐷
				2
				𝑛
			

			
				(
				𝑠
				𝑟
			

			

				𝑖
			

			
				)
				=
				1
			

		
	
 for any 
	
		
			
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
;(2)
	
		
			
				d
				e
				g
			

			

				Γ
			

			
				𝐷
				2
				𝑛
			

			
				(
				𝑟
			

			

				𝑖
			

			
				)
				=
				𝑛
				−
				1
			

		
	
 for any 
	
		
			
				1
				≤
				𝑖
				<
				𝑛
			

		
	
;(3)
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is not Eulerian;(4)
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is not Hamiltonian;(5)
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is planar if and only if 
	
		
			
				𝑛
				=
				3
			

		
	
 or 
	
		
			

				4
			

		
	
;(6)
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is a split graph;(7)
	
		
			
				A
				u
				t
				(
				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

			
				)
				≅
				𝑆
			

			

				𝑛
			

			
				×
				𝑆
			

			
				𝑛
				−
				1
			

		
	
.
Proof. (1) Clearly, the order of 
	
		
			
				𝑠
				𝑟
			

			

				𝑖
			

		
	
 is 2 for all 
	
		
			
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
 by the definition of 
	
		
			

				𝐷
			

			
				2
				𝑛
			

		
	
. Since every cyclic subgroup of 
	
		
			

				𝐺
			

		
	
 has a uniquely cyclic subgroup of order 2, 
	
		
			
				⟨
				𝑠
				𝑟
			

			

				𝑖
			

			
				,
				𝑠
				𝑟
			

			

				𝑗
			

			

				⟩
			

		
	
 is noncyclic; that is, 
	
		
			
				𝑠
				𝑟
			

			

				𝑖
			

		
	
 and 
	
		
			
				𝑠
				𝑟
			

			

				𝑗
			

		
	
 are not adjacent to each other. If 
	
		
			
				𝑠
				𝑟
			

			

				𝑖
			

		
	
 is adjacent to 
	
		
			

				𝑟
			

			

				𝑗
			

		
	
, where 
	
		
			
				𝑗
				≠
				𝑛
			

		
	
, then 
	
		
			
				⟨
				𝑠
				𝑟
			

			

				𝑖
			

			
				,
				𝑟
			

			

				𝑗
			

			

				⟩
			

		
	
 is cyclic and hence 
	
		
			
				⟨
				𝑠
				𝑟
			

			

				𝑖
			

			
				,
				𝑟
			

			

				𝑗
			

			
				⟩
				=
				⟨
				𝑟
			

			

				𝑘
			

			

				⟩
			

		
	
, which is a contradiction. Thus, 
	
		
			

				𝑒
			

		
	
 is the unique element of 
	
		
			

				𝐺
			

		
	
 which is adjacent to 
	
		
			
				𝑠
				𝑟
			

			

				𝑖
			

		
	
, as required.(2) It is easy to see that 
	
		
			
				d
				e
				g
			

			

				Γ
			

			
				𝐷
				2
				𝑛
			

			
				(
				𝑟
			

			

				𝑖
			

			
				)
				≥
				𝑛
				−
				1
			

		
	
 for any 
	
		
			
				1
				≤
				𝑖
				<
				𝑛
			

		
	
. Now (1) completes the proof.(3) Since 
	
		
			
				d
				e
				g
			

			

				Γ
			

			
				𝐷
				2
				𝑛
			

			
				(
				𝑠
				)
			

		
	
 is an odd integer by (1), 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is not Eulerian (see [5, Theorem 6.1, page 137]).(4) In view of (1) and (2), 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 contains a cut-vertex 
	
		
			

				𝑒
			

		
	
. In the light of [5, Theorem 6.5, page 145], we conclude that 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 cannot be Hamiltonian.(5) If 
	
		
			
				𝑛
				=
				3
			

		
	
 or 
	
		
			

				4
			

		
	
, then it is easy to see that 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is planar. Now suppose that 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is planar. Since the complete graph of order 
	
		
			

				5
			

		
	
 is not planar, we have 
	
		
			
				𝜔
				(
				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

			
				)
				<
				5
			

		
	
. Since the subgraph of 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 induced by 
	
		
			
				{
				𝑟
				,
				𝑟
			

			

				2
			

			
				,
				…
				,
				𝑟
			

			
				𝑛
				−
				1
			

			
				,
				𝑟
			

			

				𝑛
			

			

				}
			

		
	
 is complete, we have 
	
		
			
				𝑛
				<
				5
			

		
	
. That is, 
	
		
			
				𝑛
				=
				3
			

		
	
 or 
	
		
			

				4
			

		
	
, as desired.(6) By (1) and (2), the vertex set of 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 can be partitioned into the clique 
	
		
			
				{
				𝑟
				,
				𝑟
			

			

				2
			

			
				,
				…
				,
				𝑟
			

			
				𝑛
				−
				1
			

			
				,
				𝑒
				}
			

		
	
 and the independent set 
	
		
			
				{
				𝑠
				𝑟
			

			

				1
			

			
				,
				𝑠
				𝑟
			

			

				2
			

			
				,
				…
				,
				𝑠
				𝑟
			

			
				𝑛
				−
				1
			

			
				,
				𝑠
				}
			

		
	
, and hence 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is a split graph.(7) It is straightforward.
Corollary 29.  Let 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 be the cyclic graph of 
	
		
			

				𝐷
			

			
				2
				𝑛
			

		
	
 and 
	
		
			
				𝑛
				≥
				3
			

		
	
. Then 
	
		
			

				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
 is not bipartite.
Corollary 30.  Let 
	
		
			
				𝑛
				≥
				3
			

		
	
. Then 
	
		
			
				|
				𝐸
				(
				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

			
				)
				|
				=
				𝑛
				(
				𝑛
				+
				1
				)
				/
				2
			

		
	
.
Corollary 31.  Let 
	
		
			
				𝑛
				≥
				3
			

		
	
. Then 
	
		
			
				𝜔
				(
				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

			
				)
				=
				𝜒
				(
				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

			
				)
				=
				𝑛
			

		
	
.
Theorem 32.  Let 
	
		
			
				𝑛
				>
				2
			

		
	
 be an integer. If 
	
		
			

				𝐺
			

		
	
 is a group with 
	
		
			

				Γ
			

			

				𝐺
			

			
				≅
				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

		
	
, then 
	
		
			
				𝐺
				≅
				𝐷
			

			
				2
				𝑛
			

		
	
.
Proof. We have 
	
		
			
				|
				𝐺
				|
				=
				2
				𝑛
			

		
	
 by Definition 4. In view of Theorem 28, we can see that 
	
		
			
				𝜔
				(
				Γ
			

			

				𝐺
			

			
				)
				=
				𝑛
			

		
	
. It follows from Theorem 19 that there exists an element 
	
		
			
				𝑟
				∈
				𝐺
			

		
	
 such that 
	
		
			
				⟨
				𝑟
				⟩
			

		
	
 is a cyclic subgroup of order 
	
		
			

				𝑛
			

		
	
. Note that 
	
		
			
				|
				𝐺
				∶
				⟨
				𝑟
				⟩
				|
				=
				2
			

		
	
; we have 
	
		
			
				⟨
				𝑟
				⟩
			

		
	
 being a normal subgroup of 
	
		
			

				𝐺
			

		
	
. Since there are 
	
		
			

				𝑛
			

		
	
 vertices in 
	
		
			

				Γ
			

			

				𝐺
			

		
	
 such that the degrees equal 1, there exist 
	
		
			

				𝑛
			

		
	
 elements of order 2 in 
	
		
			

				𝐺
			

		
	
. Now we choose an involution 
	
		
			

				𝑠
			

		
	
 of order 2 of 
	
		
			

				𝐺
			

		
	
 such that 
	
		
			
				𝑠
				∉
				⟨
				𝑟
				⟩
			

		
	
. It is easy to see that 
	
		
			
				𝐺
				=
				⟨
				𝑟
				⟩
				⋊
				⟨
				𝑠
				⟩
			

		
	
; that is, 
	
		
			
				𝐺
				≅
				𝑍
			

			

				𝑛
			

			
				⋊
				𝑍
			

			

				2
			

		
	
. By the definition of dihedral group, 
	
		
			

				𝑍
			

			

				2
			

		
	
 acts on 
	
		
			

				𝑍
			

			

				𝑛
			

		
	
 by inversion. This implies that 
	
		
			
				𝐺
				≅
				𝐷
			

			
				2
				𝑛
			

		
	
, as required.
5. The Cyclic Graphs of the Generalized Quaternion Groups
 The quaternion group 
	
		
			

				𝑄
			

			

				8
			

		
	
 is also an important example of finite nonabelian groups; it is given by
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑄
			

			

				8
			

			
				=
				
				−
				1
				,
				𝑖
				,
				𝑗
				,
				𝑘
				∶
				(
				−
				1
				)
			

			

				2
			

			
				=
				1
				,
				𝑖
			

			

				2
			

			
				=
				𝑗
			

			

				2
			

			
				=
				𝑘
			

			

				2
			

			
				
				.
				=
				𝑖
				𝑗
				𝑘
				=
				−
				1
			

		
	

As a generalization of 
	
		
			

				𝑄
			

			

				8
			

		
	
, the generalized quaternion group 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
 is defined as  
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑄
			

			
				4
				𝑛
			

			
				=
				
				𝑎
				,
				𝑏
				∶
				𝑏
			

			

				2
			

			
				=
				𝑎
			

			

				𝑛
			

			
				,
				𝑎
			

			
				2
				𝑛
			

			
				=
				𝑒
				,
				𝑏
				𝑎
				𝑏
			

			
				−
				1
			

			
				=
				𝑎
			

			
				−
				1
			

			
				
				,
			

		
	

					where 
	
		
			

				𝑒
			

		
	
 is the identity element and 
	
		
			
				𝑛
				≥
				2
			

		
	
 (if 
	
		
			
				𝑛
				=
				2
			

		
	
, then 
	
		
			

				𝑄
			

			
				4
				𝑛
			

			
				=
				𝑄
			

			

				8
			

		
	
). Clearly, 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
 has order 
	
		
			
				4
				𝑛
			

		
	
 as a list
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑄
			

			
				4
				𝑛
			

			
				=
				
				𝑎
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			
				2
				𝑛
				−
				1
			

			
				,
				𝑒
				,
				𝑏
				,
				𝑎
				𝑏
				,
				…
				,
				𝑎
			

			
				2
				𝑛
				−
				1
			

			
				𝑏
				
				.
			

		
	

					Moreover, 
	
		
			
				𝑍
				(
				𝑄
			

			
				4
				𝑛
			

			
				)
				=
				{
				𝑒
				,
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				|
				𝑎
			

			

				𝑖
			

			
				𝑏
				|
				=
				4
			

		
	
, where 
	
		
			
				1
				≤
				𝑖
				≤
				2
				𝑛
			

		
	
.
Lemma 33.  
	
		
			
				𝐶
				𝑦
				𝑐
				(
				𝑄
			

			
				4
				𝑛
			

			
				)
				=
				{
				𝑒
				,
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
.
Proof. Since 
	
		
			
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
			

			

				2
			

			
				=
				𝑏
			

			

				2
			

			
				=
				𝑎
			

			

				𝑛
			

		
	
 and 
	
		
			
				|
				𝑎
			

			

				𝑖
			

			
				𝑏
				|
				=
				4
			

		
	
 for all 
	
		
			

				𝑖
			

		
	
, 
	
		
			
				⟨
				𝑎
			

			

				𝑖
			

			
				𝑏
				,
				𝑎
			

			

				𝑛
			

			
				⟩
				=
				⟨
				𝑎
			

			

				𝑖
			

			
				𝑏
				⟩
			

		
	
; that is, 
	
		
			

				𝑎
			

			

				𝑛
			

			
				∈
				C
				y
				c
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
			

		
	
 for all 
	
		
			

				𝑖
			

		
	
. On the other hand, it is obvious that 
	
		
			
				⟨
				𝑎
			

			

				𝑗
			

			
				,
				𝑎
			

			

				𝑛
			

			

				⟩
			

		
	
 is a cyclic subgroup of 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
 for all 
	
		
			

				𝑗
			

		
	
 as 
	
		
			
				⟨
				𝑎
			

			

				𝑗
			

			
				,
				𝑎
			

			

				𝑛
			

			
				⟩
				≤
				⟨
				𝑎
				⟩
			

		
	
, where 
	
		
			
				1
				≤
				𝑗
				≤
				2
				𝑛
			

		
	
. Consequently 
	
		
			

				𝑎
			

			

				𝑛
			

			
				∈
				𝐶
				𝑦
				𝑐
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑗
			

			

				)
			

		
	
 for all 
	
		
			

				𝑗
			

		
	
, namely, 
	
		
			

				𝑎
			

			

				𝑛
			

			
				∈
				C
				y
				c
				(
				𝑄
			

			
				4
				𝑛
			

			

				)
			

		
	
. However, 
	
		
			
				C
				y
				c
				(
				𝑄
			

			
				4
				𝑛
			

			
				)
				⊆
				𝑍
				(
				𝑄
			

			
				4
				𝑛
			

			

				)
			

		
	
, so 
	
		
			
				C
				y
				c
				(
				𝑄
			

			
				4
				𝑛
			

			
				)
				=
				𝑍
				(
				𝑄
			

			
				4
				𝑛
			

			
				)
				=
				{
				𝑒
				,
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
.
Proposition 34.  Let 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
 be the cyclic graph of 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
. Then (1)
	
		
			
				d
				e
				g
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
				=
				3
			

		
	
 for all 
	
		
			
				1
				≤
				𝑖
				≤
				2
				𝑛
			

		
	
;(2)
	
		
			
				d
				e
				g
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑗
			

			
				)
				=
				2
				𝑛
				−
				1
			

		
	
 for all 
	
		
			
				1
				≤
				𝑗
				<
				𝑛
			

		
	
 and 
	
		
			
				𝑛
				<
				𝑗
				<
				2
				𝑛
			

		
	
;(3)
	
		
			
				d
				e
				g
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑒
				)
				=
				d
				e
				g
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑛
			

			
				)
				=
				4
				𝑛
				−
				1
			

		
	
.
Proof. (1) Since 
	
		
			
				|
				𝑎
			

			

				𝑖
			

			
				𝑏
				|
				=
				4
			

		
	
 for all 
	
		
			
				1
				≤
				𝑖
				≤
				2
				𝑛
			

		
	
, 
	
		
			
				d
				e
				g
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
				≥
				3
			

		
	
. Obviously, 
	
		
			
				{
				𝑒
				,
				𝑎
			

			

				𝑛
			

			
				,
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
			

			
				−
				1
			

			
				}
				⊆
				𝑁
			

			

				Γ
			

			
				𝑄
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
			

		
	
. If 
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑏
			

		
	
 and 
	
		
			

				𝑎
			

			

				𝑗
			

			

				𝑏
			

		
	
 are joined by an edge, then 
	
		
			
				⟨
				𝑎
			

			

				𝑖
			

			
				𝑏
				,
				𝑎
			

			

				𝑗
			

			
				𝑏
				⟩
			

		
	
 is a cyclic subgroup of order 4; Note that 
	
		
			
				⟨
				𝑎
			

			

				𝑖
			

			
				𝑏
				⟩
			

		
	
 is a cyclic subgroup of order 4, then 
	
		
			

				𝑎
			

			

				𝑖
			

			
				𝑏
				=
				𝑎
			

			

				𝑗
			

			

				𝑏
			

		
	
 or 
	
		
			

				𝑎
			

			

				𝑖
			

			
				𝑏
				=
				(
				𝑎
			

			

				𝑗
			

			
				𝑏
				)
			

			
				−
				1
			

		
	
. On the other hand, it is easy to see that 
	
		
			
				⟨
				𝑎
			

			

				𝑖
			

			
				𝑏
				,
				𝑎
			

			

				𝑗
			

			

				⟩
			

		
	
 cannot be cyclic, where 
	
		
			
				1
				≤
				𝑗
				<
				𝑛
			

		
	
 and 
	
		
			
				𝑛
				<
				𝑗
				<
				2
				𝑛
			

		
	
. Consequently, we have 
	
		
			
				{
				𝑒
				,
				𝑎
			

			

				𝑛
			

			
				,
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
			

			
				−
				1
			

			
				}
				=
				𝑁
			

			

				Γ
			

			
				𝑄
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
			

		
	
, and so 
	
		
			
				d
				e
				g
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑖
			

			
				𝑏
				)
				=
				3
			

		
	
.(2) By the proof of (1), we see that 
	
		
			
				⟨
				𝑎
			

			

				𝑖
			

			
				𝑏
				,
				𝑎
			

			

				𝑗
			

			

				⟩
			

		
	
 is not cyclic for all 
	
		
			
				1
				≤
				𝑗
				<
				𝑛
			

		
	
 and 
	
		
			
				𝑛
				<
				𝑗
				<
				2
				𝑛
			

		
	
, so 
	
		
			
				d
				e
				g
			

			

				𝑄
			

			
				4
				𝑛
			

			
				(
				𝑎
			

			

				𝑗
			

			
				)
				=
				2
				𝑛
				−
				1
			

		
	
.(3) Obviously by Lemma 33.
Corollary 35.  Let 
	
		
			
				𝑛
				≥
				2
			

		
	
. Then 
	
		
			
				|
				𝐸
				(
				Γ
			

			

				𝐷
			

			
				4
				𝑛
			

			
				)
				|
				=
				2
				𝑛
			

			

				2
			

			
				+
				4
				𝑛
			

		
	
.
Corollary 36.  Let 
	
		
			
				𝑛
				≥
				2
			

		
	
. Then 
	
		
			
				𝜔
				(
				Γ
			

			

				𝐷
			

			
				4
				𝑛
			

			
				)
				=
				𝜒
				(
				Γ
			

			

				𝐷
			

			
				4
				𝑛
			

			
				)
				=
				2
				𝑛
			

		
	
.
Theorem 37.  Let 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
 be the cyclic graph of 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
. Then 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
 is planar if and only if 
	
		
			
				𝑛
				=
				2
			

		
	
.
Proof. Suppose 
	
		
			
				𝑛
				=
				2
			

		
	
. It is easy to see that 
	
		
			

				Γ
			

			

				𝑄
			

			

				8
			

		
	
 is planar. Now assume that 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
 is a planar graph. Then 
	
		
			
				𝜔
				(
				Γ
			

			

				𝐷
			

			
				2
				𝑛
			

			
				)
				<
				5
			

		
	
 since 
	
		
			

				𝐾
			

			

				5
			

		
	
 is nonplanar. By Theorem 19, there exists no the element 
	
		
			

				𝑔
			

		
	
 of 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
 such that 
	
		
			
				|
				𝑔
				|
				≥
				5
			

		
	
. However 
	
		
			
				|
				𝑎
				|
				=
				2
				𝑛
			

		
	
, and hence 
	
		
			
				𝑛
				=
				2
			

		
	
.
Theorem 38.  Let 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
 be the cyclic graph of 
	
		
			

				𝑄
			

			
				4
				𝑛
			

		
	
 and 
	
		
			
				𝑛
				≥
				2
			

		
	
. Then (1)
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
 is not Eulerian;(2)
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
 is not Hamiltonian.
Proof. (1) It is similar to the proof of (3) in Theorem 28.(2) Let 
	
		
			
				𝑘
				(
				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

			

				)
			

		
	
 denote the number of components in the graph 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
. By Theorem 6.5 of [5] on page 145, if 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
 is Hamiltonian, then for every nonempty proper set 
	
		
			

				𝑆
			

		
	
 of vertices of 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

		
	
, we have 
	
		
			
				𝑘
				(
				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

			
				−
				𝑆
				)
				≤
				|
				𝑆
				|
			

		
	
. Now suppose 
	
		
			
				𝑆
				=
				{
				𝑒
				,
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
. Then the number of components of the resulting graph 
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				𝑛
			

			
				−
				𝑆
			

		
	
 is equal to 
	
		
			
				𝑛
				+
				1
			

		
	
. However, 
	
		
			
				𝑛
				+
				1
				>
				|
				𝑆
				|
			

		
	
, a contradiction.
6. The Cyclic Graphs of Noncyclic Groups of Order up to 14
It is significant to obtain detailed information on the cyclic graphs of some noncyclic groups of lower order. In this section, we present a table on the cyclic graphs of noncyclic groups of order up to 
	
		
			
				1
				4
			

		
	
, as shown in Table 1.
Table 1
	

	Cyclic  graph 	 Isomorphic graph 	 Vertex degree sequences 	 Clique number 	 Geodetic  number 	 Planarity
	

	
	
		
			

				Γ
			

			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
	
	
		
			

				𝐾
			

			
				1
				,
				3
			

		
	
	 3, 1, 1, 1 	 2 	 3 	 Planar 
	
	
		
			

				Γ
			

			

				𝑆
			

			

				3
			

		
	
	 	 5, 2, 2, 1, 1, 1 	 3 	 5 	 Planar 
	
	
		
			

				Γ
			

			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				2
			

		
	
	
	
		
			

				𝐾
			

			
				1
				,
				7
			

		
	
	 7, 1, 1, 1, 1, 1, 1, 1 	 2 	 7 	 Planar 
	
	
		
			

				Γ
			

			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				4
			

		
	
	 	 7, 5, 3, 3, 3, 3, 1, 1 	 4 	 6 	 Planar 
	
	
		
			

				Γ
			

			

				𝐷
			

			

				8
			

		
	
	 	 7, 3, 3, 3, 1, 1, 1, 1 	 4 	 7 	 Planar 
	
	
		
			

				Γ
			

			

				𝑄
			

			

				8
			

		
	
	 	 7, 7, 3, 3, 3, 3, 3, 3 	 4 	 6 	 Planar 
	
	
		
			

				Γ
			

			

				𝑍
			

			

				3
			

			
				×
				𝑍
			

			

				3
			

		
	
	 	 8, 2, 2, 2, 2, 2, 2, 2, 2 	 3 	 8 	 Planar 
	
	
		
			

				Γ
			

			

				𝐷
			

			
				1
				0
			

		
	
	 	 9, 4, 4, 4, 4, 1, 1, 1, 1, 1 	 5 	 9 	 Nonplanar 
	
	
		
			

				Γ
			

			

				𝑍
			

			

				2
			

			
				×
				𝑍
			

			

				6
			

		
	
	 	 11, 9, 9, 5, 5, 5, 3, 3, 3, 3, 1, 1 	 6 	 10 	 Nonplanar 
	
	
		
			

				Γ
			

			

				𝐷
			

			
				1
				2
			

		
	
	 	 11, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1 	 6 	 11 	 Nonplanar 
	
	
		
			

				Γ
			

			

				𝑄
			

			
				4
				×
				3
			

		
	
	 	 11, 11, 5, 5, 5, 5, 3, 3, 3, 3, 3,  3 	 6 	 10 	 Nonplanar 
	
	
		
			

				Γ
			

			

				𝐴
			

			

				4
			

		
	
	 	 11, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 	 3 	 11 	 Planar 
	
	
		
			

				Γ
			

			

				𝐷
			

			
				1
				4
			

		
	
	 	 13, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1,  1, 1 	 7 	 13 	 Nonplanar 
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